51
|
Cheng HM, Wang JJ, Chen CH. The Role of Vascular Calcification in Heart Failure and Cognitive Decline. Pulse (Basel) 2017; 5:144-153. [PMID: 29761090 DOI: 10.1159/000484941] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/01/2017] [Indexed: 12/31/2022] Open
Abstract
Vascular calcification is heterogeneous and triggered by multiple mechanisms. It has been implicated in the development of heart failure with preserved ejection fraction (HFpEF) and cognitive function impairment. Understanding the pathophysiology of vascular calcification may help us improve the management of HFpEF, atherosclerosis, accelerated arterial stiffness, hypertension, and cognitive dysfunction. Currently, there are no effective strategies for treating accelerated arterial stiffness. This may indicate that once arterial stiffness or vascular calcification has developed, it may be less likely to stop the ongoing pathophysiology. Therefore, earlier intervention targeting the probable pathways of vascular calcification may benefit the patients with vascular calcification and related pathological conditions. In this review, we briefly discuss the proposed pathophysiological roles of vascular calcification in the development of heart failure and cognitive decline, the animal models used to study the link between vascular calcification and cardiovascular diseases, and the possible corresponding management strategies.
Collapse
Affiliation(s)
- Hao-Min Cheng
- Center for Evidence-Based Medicine, Department of Medical Education, Taipei Veterans General Hospital, Taipei, ROC.,Department of Medicine, National Yang-Ming University, Taipei, ROC.,Department of Public Health, National Yang-Ming University, Taipei, ROC
| | - Jiun-Jr Wang
- Department of School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan, ROC
| | - Chen-Huan Chen
- Center for Evidence-Based Medicine, Department of Medical Education, Taipei Veterans General Hospital, Taipei, ROC.,Department of Medicine, National Yang-Ming University, Taipei, ROC.,Department of Public Health, National Yang-Ming University, Taipei, ROC
| |
Collapse
|
52
|
Pimentel A, Ureña-Torres P, Zillikens MC, Bover J, Cohen-Solal M. Fractures in patients with CKD—diagnosis, treatment, and prevention: a review by members of the European Calcified Tissue Society and the European Renal Association of Nephrology Dialysis and Transplantation. Kidney Int 2017; 92:1343-1355. [DOI: 10.1016/j.kint.2017.07.021] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/12/2017] [Accepted: 07/17/2017] [Indexed: 01/29/2023]
|
53
|
Caffarelli C, Montagnani A, Nuti R, Gonnelli S. Bisphosphonates, atherosclerosis and vascular calcification: update and systematic review of clinical studies. Clin Interv Aging 2017; 12:1819-1828. [PMID: 29133976 PMCID: PMC5669782 DOI: 10.2147/cia.s138002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background Epidemiologic and clinical data have suggested the existence of a biologic linkage between the bone system and the vascular system. Bisphosphonates (BPs) are effective inhibitors of bone resorption and are currently considered the drugs of choice for the prevention and treatment of osteoporosis and related fractures. Data from several publications have suggested that BPs may also be effective in reducing the atherosclerotic process and vascular calcification, but the results of these studies are contrasting. This review aimed to allow a better understanding of the relationships between BPs and atherosclerosis in humans. Materials and methods Electronic databases of Pubmed-Medline, Cochrane Library and SCOPUS from inception to June 30, 2016 were searched. The full texts of the articles potentially eligible were carefully assessed and reviewed. Finally, 20 studies were found to be eligible and were included in the systematic review. All included studies were published between 2000 and 2014. Results In several studies, etidronate limited the progression of aortic and coronary calcification in hemodialysis patients, whereas the nitrogen-containing-BPs given orally did not significantly reduce vascular calcifications in patients with chronic kidney disease, kidney trasplant or in those with osteoporosis. Nitrogen-containing-BPs present favorable effects both on vessel wall thickness and on arterial elasticity due to both a reduction in serum lipids and the interaction of BPs with the bone tissue, with the consequent release of bone turnover markers and cytokines into the bloodstream. Conclusion To sum up, the BPs seem to have the potential of influencing atherosclerosis and calcium homeostasis at the level of vascular walls with several possible mechanisms which may differ according to the type, potency, dosage and administration route of BPs. Additional studies are needed to specifically address the mechanism by which BP use could influence cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- Carla Caffarelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, Italy
| | - Andrea Montagnani
- Division of Internal Medicine, General Hospital Misericordia, Grosseto, Italy
| | - Ranuccio Nuti
- Department of Medicine, Surgery and Neuroscience, University of Siena, Italy
| | - Stefano Gonnelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, Italy
| |
Collapse
|
54
|
High phosphate induces a pro-inflammatory response by vascular smooth muscle cells and modulation by vitamin D derivatives. Clin Sci (Lond) 2017; 131:1449-1463. [DOI: 10.1042/cs20160807] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 04/22/2017] [Accepted: 04/25/2017] [Indexed: 12/22/2022]
Abstract
In chronic kidney disease patients, high phosphate (HP) levels are associated with cardiovascular disease, the major cause of morbidity and mortality. Since serum phosphate has been independently correlated with inflammation, the present study aimed to investigate an independent direct effect of HP as a pro-inflammatory factor in VSMCs. A possible modulatory effect of vitamin D (VitD) was also investigated. The study was performed in an in vitro model of human aortic smooth muscle cells (HASMCs). Incubation of cells in an HP (3.3 mM) medium caused an increased expression of the pro-inflammatory mediators intercellular adhesion molecule 1 (ICAM-1), interleukins (ILs) IL-1β, IL-6, IL-8 and tumour necrosis factor α (TNF-α) (not corroborated at the protein levels for ICAM-1), as well as an increase in reactive oxygen/nitrogen species (ROS/RNS) production. This was accompanied by the activation of nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) signalling as demonstrated by the increase in the nuclear translocation of nuclear factor κ-light-chain-enhancer of activated B cells protein 65 (p65-NF-κΒ) assessed by Western blotting and confocal microscopy. Since all these events were attenuated by an antioxidant pre-incubation with the radical scavenger Mn(III)tetrakis (4-benzoic acid) porphyrin (MnTBAP), it is suggested that the inflammatory response is upstream mediated by the ROS/RNS-induced activation of NF-κΒ. Addition of paricalcitol (PC) 3·10−8 M to cells in HP prevented the phosphate induced ROS/RNS increase, the activation of NF-κΒ and the cytokine up-regulation. A bimodal effect was observed, however, for different calcitriol (CTR) concentrations, 10−10 and 10−12 M attenuated but 10−8 M stimulated this phosphate induced pro-oxidative and pro-inflammatory response. Therefore, these findings provide novel mechanisms whereby HP may directly favour vascular dysfunctions and new insights into the protective effects exerted by VitD derivatives.
Collapse
|
55
|
Shamsuzzaman S, Onal M, St John HC, Pike JW. Deletion of a Distal RANKL Gene Enhancer Delays Progression of Atherosclerotic Plaque Calcification in Hypercholesterolemic Mice. J Cell Biochem 2017; 118:4240-4253. [PMID: 28419519 DOI: 10.1002/jcb.26074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 04/14/2017] [Indexed: 12/18/2022]
Abstract
Receptor activator of NF-κB ligand (RANKL) is a TNF-like cytokine which mediates diverse physiological functions including bone remodeling and immune regulation. RANKL has been identified in atherosclerotic lesions; however, its role in atherosclerotic plaque development remains elusive. An enhancer located 75 kb upstream of the murine Rankl gene's transcription start site designated D5 is important for its calciotropic hormone- and cytokine-mediated expression. Here, we determined the impact of RANKL levels in atherosclerotic plaque development in the D5 enhancer-null (D5-/- ) mice in an atherogenic Apoe-/- background fed a high-fat diet (HFD). Rankl mRNA transcripts were increased in aortic arches and thoracic aortae of Apoe-/- mice; however, this increase was blunted in Apoe-/- ;D5-/- mice. Similarly, higher Rankl transcripts were identified in splenic T lymphocytes in Apoe-/- mice, and their levels were reduced in Apoe-/- ;D5-/- mice. When analyzed by micro-computed tomography (µCT), atherosclerotic plaque calcification was identified in six out of eight Apoe-/- mice, whereas only one out of eight Apoe-/- ;D5-/- mice developed plaque calcification after 12 weeks of HFD. However, following 18 weeks of HFD challenge, all of Apoe-/- and Apoe-/- ;D5-/- animals developed atherosclerotic plaque calcification. Likewise, atherosclerotic lesion sizes were site-specifically reduced in the aortic arch of Apoe-/- ;D5-/- mice at initial stage of atherosclerosis and this effect was diminished as atherosclerosis proceeded to a more advanced stage. Our data suggest that deletion of the RANKL D5 enhancer delays the progression of atherosclerotic plaque development and plaque calcification in hypercholesterolemic mice. This work provides important insight into RANKL's regulatory role in atherosclerosis. J. Cell. Biochem. 118: 4240-4253, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sohel Shamsuzzaman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Melda Onal
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Hillary C St John
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - J Wesley Pike
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| |
Collapse
|
56
|
Abstract
Untreated, severe, symptomatic aortic stenosis is associated with a dismal prognosis. The only treatment shown to improve survival is aortic valve replacement; however, before symptoms occur, aortic stenosis is preceded by a silent, latent phase characterized by a slow progression at the molecular, cellular, and tissue levels. In theory, specific medical therapy should halt aortic stenosis progression, reduce its hemodynamic repercussions on left ventricular function and remodeling, and improve clinical outcomes. In the present report, we performed a systematic review of studies focusing on the medical treatment of patients with aortic stenosis. Lipid-lowering therapy, antihypertensive drugs, and anticalcific therapy have been the main drug classes studied in this setting and are reviewed in depth. A critical appraisal of the preclinical and clinical evidence is provided, and future research avenues are presented.
Collapse
Affiliation(s)
- Guillaume Marquis-Gravel
- From Hôpital du Sacré-Coeur de Montréal, Université de Montréal, Montréal, QC, Canada (G.M.-G., P.G.); Cardiovascular Research Foundation, New York, NY (B.R., M.B.L., P.G.); Sahlgrenska University Hospital, Gothenburg, Sweden (B.R.); Columbia University Medical Center, New York, NY (M.B.L., P.G.); and Morristown Medical Center, Morristown, NJ (P.G.)
| | - Björn Redfors
- From Hôpital du Sacré-Coeur de Montréal, Université de Montréal, Montréal, QC, Canada (G.M.-G., P.G.); Cardiovascular Research Foundation, New York, NY (B.R., M.B.L., P.G.); Sahlgrenska University Hospital, Gothenburg, Sweden (B.R.); Columbia University Medical Center, New York, NY (M.B.L., P.G.); and Morristown Medical Center, Morristown, NJ (P.G.)
| | - Martin B Leon
- From Hôpital du Sacré-Coeur de Montréal, Université de Montréal, Montréal, QC, Canada (G.M.-G., P.G.); Cardiovascular Research Foundation, New York, NY (B.R., M.B.L., P.G.); Sahlgrenska University Hospital, Gothenburg, Sweden (B.R.); Columbia University Medical Center, New York, NY (M.B.L., P.G.); and Morristown Medical Center, Morristown, NJ (P.G.)
| | - Philippe Généreux
- From Hôpital du Sacré-Coeur de Montréal, Université de Montréal, Montréal, QC, Canada (G.M.-G., P.G.); Cardiovascular Research Foundation, New York, NY (B.R., M.B.L., P.G.); Sahlgrenska University Hospital, Gothenburg, Sweden (B.R.); Columbia University Medical Center, New York, NY (M.B.L., P.G.); and Morristown Medical Center, Morristown, NJ (P.G.).
| |
Collapse
|
57
|
Znorko B, Oksztulska-Kolanek E, Michałowska M, Kamiński T, Pawlak K. Does the OPG/RANKL system contribute to the bone-vascular axis in chronic kidney disease? A systematic review. Adv Med Sci 2017; 62:52-64. [PMID: 28189120 DOI: 10.1016/j.advms.2016.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/20/2016] [Accepted: 08/29/2016] [Indexed: 02/07/2023]
Abstract
Vascular calcification (VC) is highly prevalent in patients with chronic kidney disease (CKD) and is strongly associated with cardiovascular mortality and morbidity. Accumulating evidence over the past decade has challenged the hypothesis of close interaction between bone and VC what raises the possibility of a common underlying pathophysiological mechanism. Lately, bone regulatory proteins such as: osteoprotegerin (OPG) and Receptor Activator for Nuclear Factor κB Ligand (RANKL) has attracted attention of researchers as a possible key mediators of bone-vascular calcification imbalance. The literature search was carried out using the MEDLINE/PubMed database and a combination of keywords and MeSH terms, and only papers published since January 2005 to July 2016 were selected. The search resulted in 562 potential articles. After selection according to the eligibility criteria, 107 studies fulfilled were included (102 full texts and 5 was case reports). OPG and RANKL plays essential role in the regulation of bone metabolism and may be regarded as a possible link between VC, bone and mineral metabolism in CKD patients. Further studies are required to determine the diagnostic significance of these proteins in evaluation of progression and severity of VC process in CKD patients. Finally, the efficacy and safety, especially in regard to VC, of anti-RANKL therapy in CKD patients requires well-designed prospective, randomized trials.
Collapse
Affiliation(s)
- Beata Znorko
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Oksztulska-Kolanek
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Bialystok, Poland
| | | | - Tomasz Kamiński
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| | - Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
58
|
Choi NK, Solomon DH, Tsacogianis TN, Landon JE, Song HJ, Kim SC. Comparative Safety and Effectiveness of Denosumab Versus Zoledronic Acid in Patients With Osteoporosis: A Cohort Study. J Bone Miner Res 2017; 32:611-617. [PMID: 27736041 PMCID: PMC5340628 DOI: 10.1002/jbmr.3019] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/27/2016] [Accepted: 10/07/2016] [Indexed: 12/12/2022]
Abstract
Limited head-to-head comparative safety and effectiveness data exist between denosumab and zoledronic acid in real-world healthcare. We aimed to examine the safety and effectiveness of denosumab compared to zoledronic acid with regard to risk of serious infection and cardiovascular disease (CVD) and osteoporotic fracture. We conducted a cohort study using claims data (2009-2013) from a US commercial insurance plan database. We included patients aged ≥50 years who were newly initiated on denosumab or zoledronic acid. The primary outcomes were (1) hospitalization for serious infection; (2) composite CVD endpoint including myocardial infarction, stroke, coronary revascularization, and heart failure; and (3) nonvertebral osteoporotic fracture including hip, wrist, forearm, and pelvic fracture. To control for potential confounders, we used 1:1 propensity score (PS) matching. Cox proportional hazards models compared the risk of serious infection, CVD, and osteoporotic fracture within 365 days after initiation of denosumab versus zoledronic acid. After PS matching, a total of 2467 pairs of denosumab and zoledronic acid initiators were selected with a mean age of 63 years and 96% were female. When compared with zoledronic acid, denosumab was not associated with an increased risk of serious infection (HR 0.81; 95% confidence interval [CI], 0.55 to 1.21) or CVD (HR 1.11; 95% CI, 0.60 to 2.03). Similar results were obtained for each component of CVD. The risk of osteoporotic fracture was also similar between groups (HR 1.21; 95% CI, 0.84 to 1.73). This large population-based cohort study shows that denosumab and zoledronic acid have comparable clinical safety and effectiveness with regard to the risk of serious infection, CVD, and osteoporosis fracture within 365 days after initiation of medications. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Nam-Kyong Choi
- Division of Pharmacoepidemiology and Pharmacoeconomics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Institute of Environmental Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea.,Department of Health Convergence, Ewha Womans University, Seoul, Republic of Korea
| | - Daniel H Solomon
- Division of Pharmacoepidemiology and Pharmacoeconomics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA
| | - Theodore N Tsacogianis
- Division of Pharmacoepidemiology and Pharmacoeconomics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Joan E Landon
- Division of Pharmacoepidemiology and Pharmacoeconomics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Hong Ji Song
- Department of Family Medicine, Health Promotion Center, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Seoyoung C Kim
- Division of Pharmacoepidemiology and Pharmacoeconomics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
59
|
Chen NC, Hsu CY, Chen CL. The Strategy to Prevent and Regress the Vascular Calcification in Dialysis Patients. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9035193. [PMID: 28286773 PMCID: PMC5329685 DOI: 10.1155/2017/9035193] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/17/2017] [Indexed: 12/31/2022]
Abstract
The high prevalence of arterial calcification in end-stage renal disease (ESRD) is far beyond the explanation by common cardiovascular risk factors such as aging, diabetes, hypertension, and dyslipidemia. The finding relies on the fact that vascular and valvular calcifications are predictors of cardiovascular diseases and mortality in persons with chronic renal failure. In addition to traditional cardiovascular risk factors such as diabetes mellitus and blood pressure control, other ESRD-related risks such as phosphate retention, excess calcium, and prolonged dialysis time also contribute to the development of vascular calcification. The strategies are to reverse "calcium paradox" and lower vascular calcification by decreasing procalcific factors including minimization of inflammation (through adequate dialysis and by avoiding malnutrition, intravenous labile iron, and positive calcium and phosphate balance), correction of high and low bone turnover, and restoration of anticalcification factor balance such as correction of vitamin D and K deficiency; parathyroid intervention is reserved for severe hyperparathyroidism. The role of bone antiresorption therapy such as bisphosphonates and denosumab in vascular calcification in high-bone-turnover disease remains unclear. The limited data on sodium thiosulfate are promising. However, if calcification is to be targeted, ensure that bone health is not compromised by the treatments.
Collapse
Affiliation(s)
- Nai-Ching Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung City, Taiwan
| | - Chih-Yang Hsu
- Division of Nephrology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Chien-Liang Chen
- Division of Nephrology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| |
Collapse
|
60
|
Radu BM, Banciu A, Banciu DD, Radu M, Cretoiu D, Cretoiu SM. Calcium Signaling in Interstitial Cells: Focus on Telocytes. Int J Mol Sci 2017; 18:ijms18020397. [PMID: 28208829 PMCID: PMC5343932 DOI: 10.3390/ijms18020397] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/04/2017] [Accepted: 01/25/2017] [Indexed: 02/08/2023] Open
Abstract
In this review, we describe the current knowledge on calcium signaling pathways in interstitial cells with a special focus on interstitial cells of Cajal (ICCs), interstitial Cajal-like cells (ICLCs), and telocytes. In detail, we present the generation of Ca2+ oscillations, the inositol triphosphate (IP3)/Ca2+ signaling pathway and modulation exerted by cytokines and vasoactive agents on calcium signaling in interstitial cells. We discuss the physiology and alterations of calcium signaling in interstitial cells, and in particular in telocytes. We describe the physiological contribution of calcium signaling in interstitial cells to the pacemaking activity (e.g., intestinal, urinary, uterine or vascular pacemaking activity) and to the reproductive function. We also present the pathological contribution of calcium signaling in interstitial cells to the aortic valve calcification or intestinal inflammation. Moreover, we summarize the current knowledge of the role played by calcium signaling in telocytes in the uterine, cardiac and urinary physiology, and also in various pathologies, including immune response, uterine and cardiac pathologies.
Collapse
Affiliation(s)
- Beatrice Mihaela Radu
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, Verona 37134, Italy.
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, Bucharest 050095, Romania.
| | - Adela Banciu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, Bucharest 050095, Romania.
- Research Beyond Limits, Dimitrie Cantemir 15, Bucharest 040234, Romania.
- Engineering Faculty, Constantin Brancusi University, Calea Eroilor 30, Targu Jiu 210135, Romania.
| | - Daniel Dumitru Banciu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, Bucharest 050095, Romania.
- Research Beyond Limits, Dimitrie Cantemir 15, Bucharest 040234, Romania.
| | - Mihai Radu
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, Verona 37134, Italy.
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, P.O. Box MG-6, Magurele 077125, Romania.
| | - Dragos Cretoiu
- Division of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania.
- Victor Babes National Institute of Pathology, Bucharest 050096, Romania.
| | - Sanda Maria Cretoiu
- Division of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania.
- Victor Babes National Institute of Pathology, Bucharest 050096, Romania.
| |
Collapse
|
61
|
Chiu YG, Ritchlin CT. Denosumab: targeting the RANKL pathway to treat rheumatoid arthritis. Expert Opin Biol Ther 2017; 17:119-128. [PMID: 27871200 PMCID: PMC5794005 DOI: 10.1080/14712598.2017.1263614] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/18/2016] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic inflammatory disorder characterized by focal pathologic bone resorption due to excessive activity of osteoclasts (OC). Receptor activator of nuclear factor kappa B ligand (RANKL) is essential for the proliferation, differentiation, and survival of OC. Denosumab (DMab) is a humanized monoclonal antibody that binds to RANKL with high affinity and blocks its subsequent association with its receptor RANK on the surface of OC precursors. Area covered: The authors review the molecular and cellular mechanisms underlying therapeutic applications of DMab, provide recent highlights on pharmacology, efficacy and safety of DMab, and discuss the potential of DMab as a novel therapeutic option for the treatment of rheumatoid arthritis. Expert opinion: Clinical results suggest that DMab is efficient both in systemic and articular bone loss in RA with limited side effects. Diminished bone erosion activity was also noted in RA patients on corticosteroids and bisphosphonates. Combination of DMab with an anti-TNF agent was not associated with increased infection rates. Collectively, these data indicate that DMab, in combination with methotrexate and possibly other conventional synthetic Disease Modifying Anti-Rheumatic Drugs (csDMARDs), is an effective, safe and cost-effective option for the treatment of RA.
Collapse
Affiliation(s)
- Yahui Grace Chiu
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester, Box 695, Room G6456, Rochester, NY 14642
| | - Christopher T. Ritchlin
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester, Box 695, Room G6456, Rochester, NY 14642
| |
Collapse
|
62
|
Harper E, Forde H, Davenport C, Rochfort KD, Smith D, Cummins PM. Vascular calcification in type-2 diabetes and cardiovascular disease: Integrative roles for OPG, RANKL and TRAIL. Vascul Pharmacol 2016; 82:30-40. [DOI: 10.1016/j.vph.2016.02.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/01/2016] [Accepted: 02/21/2016] [Indexed: 12/14/2022]
|
63
|
Jin S, Zhu M, Yan J, Fang Y, Lu R, Zhang W, Zhang Q, Lu J, Qi C, Shao X, Zhang H, Jiang R, Ni Z. Serum sclerostin level might be a potential biomarker for arterial stiffness in prevalent hemodialysis patients. Biomark Med 2016; 10:689-99. [PMID: 27347702 DOI: 10.2217/bmm-2016-0031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM To explore the relationship between circulating sclerostin levels and pulse wave velocity (PWV) in prevalent hemodialysis (HD) patients. PATIENTS & METHODS 154 HD patients were enrolled and examined for serum sclerostin level, carotid-femoral pulse wave velocity (cf-PWV), abdominal artery calcification and calcaneus bone marrow density. RESULTS Serum sclerostin level was significantly elevated in patients with arterial stiffness. Univariate correlation showed serum sclerostin level significantly correlated with intact parathyroid hormone level, cf-PWV and calcaneus bone marrow density. Multiple linear regression analysis in patients with parathyroid hormone ≤300 pg/ml showed that pulse pressure, logAACs and serum sclerostin level were significant independent factors for cf-PWV. CONCLUSION Serum sclerostin level was significantly associated with PWV in prevalent HD patients without hyperparathyroidism.
Collapse
Affiliation(s)
- Shi Jin
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Mingli Zhu
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Jiayi Yan
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Yan Fang
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Renhua Lu
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Weiming Zhang
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Qi Zhang
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Jiayue Lu
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Chaojun Qi
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Xinghua Shao
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Haifen Zhang
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Rong Jiang
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Zhaohui Ni
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| |
Collapse
|
64
|
Généreux P, Stone GW, O'Gara PT, Marquis-Gravel G, Redfors B, Giustino G, Pibarot P, Bax JJ, Bonow RO, Leon MB. Natural History, Diagnostic Approaches, and Therapeutic Strategies for Patients With Asymptomatic Severe Aortic Stenosis. J Am Coll Cardiol 2016; 67:2263-2288. [PMID: 27049682 DOI: 10.1016/j.jacc.2016.02.057] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 02/03/2016] [Indexed: 01/06/2023]
Abstract
Aortic stenosis (AS) is one of the most common valvular diseases encountered in clinical practice. Current guidelines recommend aortic valve replacement (AVR) when the aortic valve is severely stenotic and the patient is symptomatic; however, a substantial proportion of patients with severe AS are asymptomatic at the time of first diagnosis. Although specific morphological valve features, exercise testing, stress imaging, and biomarkers can help to identify patients with asymptomatic severe AS who may benefit from early AVR, the optimal management of these patients remains uncertain and controversial. The current report presents a comprehensive review of the natural history and the diagnostic evaluation of asymptomatic patients with severe AS, and is followed by a meta-analysis from reported studies comparing an early AVR strategy to active surveillance, with an emphasis on the level of evidence substantiating the current guideline recommendations. Finally, perspectives on directions for future investigation are discussed.
Collapse
Affiliation(s)
- Philippe Généreux
- Columbia University Medical Center, New York, New York; Cardiovascular Research Foundation, New York, New York; Hôpital du Sacré-Coeur de Montréal, Montréal, Canada.
| | - Gregg W Stone
- Columbia University Medical Center, New York, New York; Cardiovascular Research Foundation, New York, New York
| | - Patrick T O'Gara
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Björn Redfors
- Cardiovascular Research Foundation, New York, New York; Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Philippe Pibarot
- Pulmonary Hypertension and Vascular Biology Research Group, Laval University, Québec, Canada
| | - Jeroen J Bax
- Leiden University Medical Center, Leiden, the Netherlands
| | - Robert O Bonow
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Martin B Leon
- Columbia University Medical Center, New York, New York; Cardiovascular Research Foundation, New York, New York
| |
Collapse
|
65
|
Welte T, Arnold F, Technau-Hafsi K, Neumann-Haefelin E, Wobser R, Zschiedrich S, Walz G, Kramer-Zucker A. Successful Management of Calciphylaxis in a Kidney Transplant Patient: Case Report. Transplant Direct 2016; 2:e70. [PMID: 27500261 PMCID: PMC4946510 DOI: 10.1097/txd.0000000000000582] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 02/09/2016] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Calciphylaxis is a rare and often fatal condition mostly associated with end-stage renal disease. The pathophysiology remains elusive and treatment options are scarce. We present a rare case of severe calciphylaxis after kidney transplantation in a patient with persistent hyperparathyroidism. CASE DESCRIPTION A 78-year-old man with a history of end-stage renal disease developed edema and ulcerations on both lower limbs 14 months after kidney transplantation while receiving an mammalian target of rapamycin inhibitor to manage polyoma virus-associated nephropathy. Skin biopsies taken from the ulcerations confirmed calciphylaxis. A multimodal treatment regimen combining medical (calcium-free phosphate binders, cinacalcet, paricalcitol, sodium thiosulfate, antibiotic treatment) and surgical treatments (debridement and autologous skin transplantation) ultimately resulted in successful wound healing. DISCUSSION We describe a case of severe calciphylaxis in a nonuremic patient after kidney transplantation. Rapid diagnosis by skin biopsy and an aggressive multimodal therapy regimen followed by long-term oral sodium thiosulfate treatment were crucial factors for a favorable outcome.
Collapse
Affiliation(s)
- Thomas Welte
- Renal Division, University Medical Center Freiburg, Freiburg, Germany
| | - Frederic Arnold
- Renal Division, University Medical Center Freiburg, Freiburg, Germany
| | | | | | - Rika Wobser
- Renal Division, University Medical Center Freiburg, Freiburg, Germany
| | | | - Gerd Walz
- Renal Division, University Medical Center Freiburg, Freiburg, Germany
- Center for Biological Signaling Studies (BIOSS), Freiburg, Germany
| | | |
Collapse
|
66
|
Szulc P. Abdominal aortic calcification: A reappraisal of epidemiological and pathophysiological data. Bone 2016; 84:25-37. [PMID: 26688274 DOI: 10.1016/j.bone.2015.12.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/30/2015] [Accepted: 12/09/2015] [Indexed: 12/16/2022]
Abstract
In men and women, there is a significant association between the risk of cardiovascular event (myocardial infarction, stroke) and risk of major fragility fracture (hip, vertebra). Abdominal aortic calcification (AAC) can be assessed using semiquantitative scores on spine radiographs and spine scans obtained by DXA. Severe AAC is associated with higher risk of major cardiovascular event. Not only does severe AAC reflect poor cardiovascular health status, but also directly disturbs blood flow in the vascular system. Severe (but not mild or moderate) AAC is associated with lower bone mineral density (BMD), faster bone loss and higher risk of major fragility fracture. The fracture risk remains increased after adjustment for BMD and other potential risk factors. The association between severe AAC and fracture risk was found in both sexes, mainly in the follow-ups of less than 10years. Many factors contribute to initiation and progression of AAC: lifestyle, co-morbidities, inorganic ions, dyslipidemia, hormones, cytokines (e.g. inflammatory cytokines, RANKL), matrix vesicles, microRNAs, structural proteins (e.g. elastin), vitamin K-dependent proteins, and medications (e.g. vitamin K antagonists). Osteogenic transdifferentiation of vascular smooth muscle cells (VSMC) and circulating osteoprogenitors penetrating into vascular wall plays a major role in the AAC initiation and progression. Vitamin K-dependent proteins protect vascular tunica media against formation of calcified deposits (matrix GLA protein, GLA-rich protein) and against VSMC apoptosis (Gas6). Further studies are needed to investigate clinical utility of AAC for the assessment of fracture and cardiovascular risk at the individual level and develop new medications permitting to prevent AAC progression.
Collapse
Affiliation(s)
- Pawel Szulc
- INSERM UMR 1033, University of Lyon, Hôpital Edouard Herriot, Lyon, France.
| |
Collapse
|
67
|
Martocchia A, Stefanelli M, Falaschi GM, Toussan L, Ferri C, Falaschi P. Recent advances in the role of cortisol and metabolic syndrome in age-related degenerative diseases. Aging Clin Exp Res 2016; 28:17-23. [PMID: 25813987 DOI: 10.1007/s40520-015-0353-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 03/13/2015] [Indexed: 12/28/2022]
Abstract
The metabolic syndrome (MetS) presents an increasing prevalence in elderly people. A significant role in MetS is played by the stress response and cortisol. The hypothalamic-pituitary-adrenal (HPA) axis activity is increased by central (loss of hippocampal glucocorticoid receptors) and peripheral (11β-hydroxysteroid dehydrogenase type 1, 11β-HSD1, hyperactivity) mechanisms. The HPA hyperactivity has been found in chronic diseases affecting the endocrine (abdominal obesity with MetS, type 2 diabetes), cardiovascular (atherosclerosis, essential hypertension), and nervous systems (dementia, depression), in aging. A novel therapeutic approach (11β-HSD1 inhibition) is promising in treating the HPA axis hyperactivity in chronic diseases with MetS. A large-scale national clinical trial (AGICO, AGIng, and COrtisol study) has been proposed by our group to evaluate the role of cortisol and MetS in the main pathologies of aging (vascular and degenerative dementia, cardiovascular diseases, type 2 diabetes, abdominal obesity).
Collapse
Affiliation(s)
- Antonio Martocchia
- Geriatric Unit, Faculty of Medicine and Psychology, Sapienza University of Rome, S. Andrea Hospital, Via di Grottarossa 1035, 00199, Rome, Italy.
| | - Manuela Stefanelli
- Geriatric Unit, Faculty of Medicine and Psychology, Sapienza University of Rome, S. Andrea Hospital, Via di Grottarossa 1035, 00199, Rome, Italy
| | - Giulia Maria Falaschi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Viale S. Salvatore, Delta 6 Building, Coppito, 67100, L'Aquila, Italy
| | - Lavinia Toussan
- Geriatric Unit, Faculty of Medicine and Psychology, Sapienza University of Rome, S. Andrea Hospital, Via di Grottarossa 1035, 00199, Rome, Italy
| | - Claudio Ferri
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Viale S. Salvatore, Delta 6 Building, Coppito, 67100, L'Aquila, Italy
| | - Paolo Falaschi
- Geriatric Unit, Faculty of Medicine and Psychology, Sapienza University of Rome, S. Andrea Hospital, Via di Grottarossa 1035, 00199, Rome, Italy.
| |
Collapse
|
68
|
Najar A, Fridoni M, Rezaei F, Bayat S, Bayat M. Supraphysiologic glucocorticoid administration increased biomechanical bone strength of rats' vertebral body. Lab Anim Res 2015; 31:180-187. [PMID: 26755921 PMCID: PMC4707146 DOI: 10.5625/lar.2015.31.4.180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 11/08/2015] [Accepted: 11/18/2015] [Indexed: 11/21/2022] Open
Abstract
The aim of this study is to assess the effects of different glucocorticoid administration protocols on biomechanical properties of the first lumbar vertebral body in rats. We divided 40 male rats into the following groups: control, dexamethasone (7 mg/week), dexamethasone (0.7 mg/week), methylprednisolone (7 mg/kg/week), methylprednisolone (5 mg/kg twice weekly), dexamethasone (7 mg/kg three times per week), dexamethasone (0.7 mg/kg three times per week, and low-level laser treated rats. Lumbar vertebrae in rats were exposed to the pulsed laser. We conducted a biomechanical test to examine the mechanical properties of vertebral body in rats' lumbar bone. Supraphysiologic glucocorticoid administration protocols did not impair the biomechanical properties of rats' vertebral bodies compared to control and laser-treated rats. Supraphysiologic glucocorticoid administration caused an anabolic effect on the vertebral bodies.
Collapse
Affiliation(s)
- Azam Najar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadjavad Fridoni
- Department of Anatomy, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Fatemesadat Rezaei
- Celluar and Molecular Biology Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saba Bayat
- School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mohammad Bayat
- Celluar and Molecular Biology Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
69
|
Nie B, Zhou SQ, Fang X, Zhang SY, Guan SM. The function and meaning of receptor activator of NF-κB ligand in arterial calcification. ACTA ACUST UNITED AC 2015; 35:666-671. [PMID: 26489619 DOI: 10.1007/s11596-015-1487-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 09/22/2015] [Indexed: 12/18/2022]
Abstract
Osteoclast-like cells are known to inhibit arterial calcification. Receptor activator of NF-κB ligand (RANKL) is likely to act as an inducer of osteoclast-like cell differentiation. However, several studies have shown that RANKL promotes arterial calcification rather than inhibiting arterial calcification. The present study was conducted in order to investigate and elucidate this paradox. Firstly, RANKL was added into the media, and the monocyte precursor cells were cultured. Morphological observation and Tartrate resistant acid phosphatase (TRAP) staining were used to assess whether RANKL could induce the monocyte precursor cells to differentiate into osteoclast-like cells. During arterial calcification, in vivo and in vitro expression of RANKL and its inhibitor, osteoprotegerin (OPG), was detected by real-time PCR. The extent of osteoclast-like cell differentiation was also assessed. It was found RANKL could induce osteoclast-like cell differentiation. There was no in vivo or in vitro expression of osteoclast-like cells in the early stage of calcification. At that time, the ratio of RANKL to OPG was very low. In the late stage of calcification, a small amount of osteoclast-like cell expression coincided with a relatively high ratio of RANKL to OPG. According to the results, the ratio of RANKL to OPG was very low during most of the arterial calcification period. This made it possible for OPG to completely inhibit RANKL-induced osteoclast-like cell differentiation. This likely explains why RANKL had the ability to induce osteoclast-like cell differentiation but acted as a promoter of calcification instead.
Collapse
Affiliation(s)
- Bin Nie
- Department of Geriatrics, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Shao-Qiong Zhou
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xin Fang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shao-Ying Zhang
- Department of Geriatrics, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China.
| | - Si-Ming Guan
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
70
|
Hénaut L, Sanchez-Nino MD, Aldamiz-Echevarría Castillo G, Sanz AB, Ortiz A. Targeting local vascular and systemic consequences of inflammation on vascular and cardiac valve calcification. Expert Opin Ther Targets 2015; 20:89-105. [PMID: 26788590 DOI: 10.1517/14728222.2015.1081685] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Cardiac valve calcification and vascular calcification (VC) are associated with cardiovascular mortality in the general population and in patients with chronic kidney disease (CKD). CKD, diabetes mellitus, and atherosclerosis are among the causes of systemic inflammation that are associated with VC. AREAS COVERED This review collates clinical and experimental evidence that inflammation accelerates VC progression. Specifically, we review the actions of key pro-inflammatory cytokines and inflammation-related transcription factors on VC, and the role played by senescence. Inflammatory cytokines, such as the TNF superfamily and IL-6 superfamily, and inflammation-related transcription factor NF-κB promote calcification in cultured vascular smooth muscle cells, valvular interstitial cells, or experimental animal models through direct effects, but also indirectly by decreasing circulating Fetuin A or Klotho levels. EXPERT OPINION Experimental evidence suggests a causal link between inflammation and VC that would change the clinical approach to prevention and treatment of VC. However, the molecular basis remains unclear and little is known about VC in humans treated with drugs targeting inflammatory cytokines. The effect of biologicals targeting TNF-α, RANKL, IL-6, and other inflammatory mediators on VC, in addition to the impact of dietary phosphate in patients with chronic systemic inflammation, requires study.
Collapse
Affiliation(s)
- Lucie Hénaut
- a 1 Universidad Autónoma de Madrid, School of Medicine, Nephrology, IIS-Fundación Jiménez Díaz , Madrid, Spain
| | - Maria Dolores Sanchez-Nino
- b 2Universidad Autónoma de Madrid, School of Medicine, IIS-Fundación Jiménez Díaz, Madrid, Spain.,c 3 REDINREN , Madrid, Spain
| | | | - Ana B Sanz
- b 2Universidad Autónoma de Madrid, School of Medicine, IIS-Fundación Jiménez Díaz, Madrid, Spain.,c 3 REDINREN , Madrid, Spain
| | - Alberto Ortiz
- c 3 REDINREN , Madrid, Spain.,e 5 Chief of nephrology, Universidad Autónoma de Madrid, School of Medicine, IIS-Fundación Jiménez Díaz , Madrid, Spain .,f 6 Fundación Renal Iñigo Alvarez de Toledo-IRSIN , Madrid, Spain
| |
Collapse
|
71
|
Tölle M, Reshetnik A, Schuchardt M, Höhne M, van der Giet M. Arteriosclerosis and vascular calcification: causes, clinical assessment and therapy. Eur J Clin Invest 2015; 45:976-85. [PMID: 26153098 DOI: 10.1111/eci.12493] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 07/01/2015] [Indexed: 01/07/2023]
Abstract
BACKGROUND Arteriosclerosis is a pathological, structural (media vascular calcification) and physiological (modified vascular smooth vessel cells; increased arterial stiffness) alteration of the vessel wall. Through improved assessment methods (functional and imaging), it has become a well-known phenomenon in recent decades. However, its clinical importance was underestimated until recently. MATERIALS AND METHODS Currently available English-speaking data about conditions/diseases associated with arteriosclerosis, its clinical sequels, available diagnostic procedures and therapeutic modalities were reviewed and summarized. RESULTS In recent decades, emerging data have brought about a better understanding of causes and consequences of arteriosclerosis and highlight its growing clinical impact. CONCLUSION Although arteriosclerosis showed an independent clinical impact on cardiovascular morbidity and mortality, especially in patients with chronic kidney disease/end-stage renal disease (CKD/ESRD) and diabetes mellitus, convincing clinical therapy concepts are not available until now. The establishment of novel therapeutic strategies derived from basic research is strongly needed.
Collapse
Affiliation(s)
- Markus Tölle
- Charité Centrum 13, Department of Nephrology and Transplantation, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Alexander Reshetnik
- Charité Centrum 13, Department of Nephrology and Transplantation, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Mirjam Schuchardt
- Charité Centrum 13, Department of Nephrology and Transplantation, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | | | - Markus van der Giet
- Charité Centrum 13, Department of Nephrology and Transplantation, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| |
Collapse
|
72
|
Byon CH, Chen Y. Molecular Mechanisms of Vascular Calcification in Chronic Kidney Disease: The Link between Bone and the Vasculature. Curr Osteoporos Rep 2015; 13:206-15. [PMID: 25947259 PMCID: PMC4489999 DOI: 10.1007/s11914-015-0270-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Vascular calcification is highly prevalent in patients with chronic kidney disease (CKD) and increases mortality in those patients. Impaired calcium and phosphate homeostasis, increased oxidative stress, and loss of calcification inhibitors have been linked to vascular calcification in CKD. Additionally, impaired bone may perturb serum calcium/phosphate and their key regulator, parathyroid hormone, thus contributing to increased vascular calcification in CKD. Therapeutic approaches for CKD, such as phosphate binders and bisphosphonates, have been shown to ameliorate bone loss as well as vascular calcification. The precise mechanisms responsible for vascular calcification in CKD and the contribution of bone metabolism to vascular calcification have not been elucidated. This review discusses the role of systemic uremic factors and impaired bone metabolism in the pathogenesis of vascular calcification in CKD. The regulation of the key osteogenic transcription factor Runt-related transcription factor 2 (Runx2) and the emerging role of Runx2-dependent receptor activator of nuclear factor kappa-B ligand (RANKL) in vascular calcification of CKD are emphasized.
Collapse
Affiliation(s)
- Chang Hyun Byon
- Department of Pathology, University of Alabama at Birmingham, 614 Shelby Biomedical Research Bldg., 1825 University Blvd., Birmingham, AL 35294, USA
| | - Yabing Chen
- Department of Pathology, University of Alabama at Birmingham, 614 Shelby Biomedical Research Bldg., 1825 University Blvd., Birmingham, AL 35294, USA
- Department of Pathology, Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294, USA
| |
Collapse
|
73
|
Pawade TA, Newby DE, Dweck MR. Calcification in Aortic Stenosis. J Am Coll Cardiol 2015; 66:561-77. [DOI: 10.1016/j.jacc.2015.05.066] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/26/2015] [Accepted: 05/26/2015] [Indexed: 01/08/2023]
|
74
|
Choi HJ. New antiresorptive therapies for postmenopausal osteoporosis. J Menopausal Med 2015; 21:1-11. [PMID: 26046031 PMCID: PMC4452807 DOI: 10.6118/jmm.2015.21.1.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 03/19/2015] [Accepted: 03/25/2015] [Indexed: 12/18/2022] Open
Abstract
Osteoporosis is a systemic skeletal disease whose risk increases with age and it is common among postmenopausal women. Currently, almost all pharmacological agents for osteoporosis target the bone resorption component of bone remodeling activity. Current antiresorptive agents are effective, but the effectiveness of some agents is limited by real or perceived intolerance, longterm adverse events (AEs), coexisting comorbidities, and inadequate long-term adherence. New antiresorptive therapies that may expand options for the prevention and treatment of osteoporosis include denosumab, combination of conjugated estrogen/bazedoxifene and cathepsin K inhibitors. However, the long-term efficacy and AEs of these antiresorptive therapies need to be confirmed in studies with a longer follow-up period.
Collapse
Affiliation(s)
- Hee-Jeong Choi
- Department of Family Medicine, Eulji University School of Medicine, Daejeon, Korea
| |
Collapse
|
75
|
Pikilidou M, Yavropoulou M, Antoniou M, Yovos J. The Contribution of Osteoprogenitor Cells to Arterial Stiffness and Hypertension. J Vasc Res 2015; 52:32-40. [DOI: 10.1159/000381098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/15/2015] [Indexed: 11/19/2022] Open
|
76
|
Evrard S, Delanaye P, Kamel S, Cristol JP, Cavalier E. Vascular calcification: from pathophysiology to biomarkers. Clin Chim Acta 2015; 438:401-14. [PMID: 25236333 DOI: 10.1016/j.cca.2014.08.034] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 02/06/2023]
Abstract
The link between vascular calcification (VC) and increased mortality is now well established. Over time, as clinical importance of this phenomenon has begun to be fully considered, scientists have highlighted more and more physiopathological mechanisms and signaling pathways that underlie VC. Several conditions such as diabetes, dyslipidemia and renal diseases are undoubtedly identified as predisposing factors. But even if the process is better understood, many questions still remain unanswered. This review briefly develops the various theories that attempt to explain mineralization genesis. Nonetheless, the main purpose of the article is to provide a profile of the various existing biomarkers of VC. Indeed, in the past years, a lot of inhibitors and promoters, which form a dense and interconnected network, were identified. Given importance to assess and control mineralization process, a focusing on accumulated knowledge of each marker seemed to be necessary. Therefore, we tried to define their respective role in the physiopathology and how they can contribute to calcification risk assessment. Among these, Klotho/fibroblast growth factor-23, fetuin-A, Matrix Gla protein, Bone morphogenetic protein-2, osteoprotegerin, osteopontin, osteonectin, osteocalcin, pyrophosphate and sclerostin are specifically discussed.
Collapse
Affiliation(s)
- Séverine Evrard
- Department of Clinical Chemistry, University of Liège, CHU Sart-Tilman, Liège, Belgium
| | - Pierre Delanaye
- Department of Nephrology, Dialysis and Hypertension, University of Liège, CHU Sart-Tilman, Liège, Belgium
| | - Said Kamel
- Laboratoire de Biochimie, CHU Amiens, Amiens, France; INSERM U1088, Université de Picardie Jules-Verne, Amiens, France
| | - Jean-Paul Cristol
- Laboratoire de Biochimie, CHRU de Montpellier, Hôpital Lapeyronie, Montpellier, France
| | - Etienne Cavalier
- Department of Clinical Chemistry, University of Liège, CHU Sart-Tilman, Liège, Belgium.
| |
Collapse
|
77
|
Roy-Chaudhury P. Emerging Therapies for Chronic Kidney Disease. CHRONIC RENAL DISEASE 2015:771-780. [DOI: 10.1016/b978-0-12-411602-3.00064-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
78
|
Lerman DA, Prasad S, Alotti N. Calcific Aortic Valve Disease: Molecular Mechanisms and Therapeutic Approaches. Eur Cardiol 2015; 10:108-112. [PMID: 27274771 PMCID: PMC4888946 DOI: 10.15420/ecr.2015.10.2.108] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 10/28/2015] [Indexed: 01/28/2023] Open
Abstract
Calcification occurs in atherosclerotic vascular lesions and In the aortic valve. Calcific aortic valve disease (CAVD) is a slow, progressive disorder that ranges from mild valve thickening without obstruction of blood flow, termed aortic sclerosis, to severe calcification with impaired leaflet motion, termed aortic stenosis. In the past, this process was thought to be 'degenerative' because of time-dependent wear and tear of the leaflets, with passive calcium deposition. The presence of osteoblasts in atherosclerotic vascular lesions and in CAVD implies that calcification is an active, regulated process akin to atherosclerosis, with lipoprotein deposition and chronic inflammation. If calcification is active, via pro-osteogenic pathways, one might expect that development and progression of calcification could be inhibited. The overlap in the clinical factors associated with calcific valve disease and atherosclerosis provides further support for a shared disease mechanism. In our recent research we used an in vitro porcine valve interstitial cell model to study spontaneous calcification and potential promoters and inhibitors. Using this model, we found that denosumab, a human monoclonal antibody targeting the receptor activator of nuclear factor-κB ligand may, at a working concentration of 50 μg/mL, inhibit induced calcium deposition to basal levels.
Collapse
Affiliation(s)
- Daniel Alejandro Lerman
- Royal Infirmary Hospital of Edinburgh (NHS Lothian), The University of Edinburgh, United Kingdom
| | - Sai Prasad
- Royal Infirmary Hospital of Edinburgh (NHS Lothian), The University of Edinburgh, United Kingdom
| | | |
Collapse
|
79
|
Ueki K, Yamada S, Tsuchimoto A, Tokumoto M, Kumano T, Kitazono T, Tsuruya K. Rapid progression of vascular and soft tissue calcification while being managed for severe and persistent hypocalcemia induced by denosumab treatment in a patient with multiple myeloma and chronic kidney disease. Intern Med 2015; 54:2637-42. [PMID: 26466702 DOI: 10.2169/internalmedicine.54.4946] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We herein present the case of a patient with myeloma and chronic kidney disease (CKD) who developed rapidly progressive vascular and soft tissue calcification during the course of treatment for severe hypocalcemia induced by the administration of denosumab for myeloma and hypercalcemia. Because a large amount of supplementation with active vitamin D and calcium was required to correct the severe hypocalcemia, rapidly progressive vascular calcification developed. Seeing that patients with CKD are prone to developing severe and prolonged hypocalcemia after denosumab treatment, physicians should closely monitor the patients' serum calcium levels and manage their hypocalcemia appropriately so as to avoid the development of significant ectopic calcification.
Collapse
Affiliation(s)
- Kenji Ueki
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | | | | | | | | | | | | |
Collapse
|
80
|
Abstract
Osteoporosis (OP) and cardiovascular diseases (CVD) are the most important causes of mortality and morbility in the elderly. Lots of studies showed a correlation between bone loss and cardiovascular risk mediated by the vascular calcification. The relationship between OP and CVD could be firstly explained by their common risk factors such as age, smoking, alcohol consumption, physical activity and menopause. However, other different hypotheses were proposed to clarify this link. Multiple factors, for example bone morphogenetic proteins, osteoprotegerin, receptor activator of nuclear factor κB ligand, parathyroid hormone, phosphate, oxidized lipids and vitamins D and K seemed to be involved in both conditions, indicating a possible common pathophysiologic mechanism. We review and discuss the available data describing this association. Further studies are necessary to better investigate similarities between OP and CVD.
Collapse
Affiliation(s)
- S Lello
- a Department of Woman and Child Health , Catholic University , Rome , Italy
| | - A Capozzi
- a Department of Woman and Child Health , Catholic University , Rome , Italy
| | - G Scambia
- a Department of Woman and Child Health , Catholic University , Rome , Italy
| |
Collapse
|
81
|
Lerman DA, Prasad S, Alotti N. Denosumab could be a Potential Inhibitor of Valvular Interstitial Cells Calcification in vitro. ACTA ACUST UNITED AC 2015; 5. [PMID: 27468412 DOI: 10.4172/2324-8602.1000249] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Denosumab is a fully human monoclonal antibody and novel antiresorptive agent that works by binding receptor activator of nuclear factor kappa-β ligand (RANKL) and inhibiting the signaling cascade that causes osteoclast maturation, activity, and survival. We aimed to elucidate the effect of Denosumab in the process of spontaneous and induced calcification in an in vitro porcine valvular interstitial cells (VICs) model. MATERIALS AND METHODS VICs were extracted from fresh porcine hearts by serial collagenase digestion. Spontaneous calcification of VICs was increased in vitro by adding Na3PO4 (3 mM, pH 7.4) and different concentrations (0.1, 1 and 10 ng/ml) of transforming growth factor beta (TGFß). The degree of calcification before and after treatment with Denosumab was estimated by Alizarin Red staining for calcium deposition, and Sirius Red staining for collagen. Colorimetric techniques were used to determine calcium and collagen deposition quantitatively. For statistical analysis we used SPSS and Microsoft Office Excel 2013. RESULTS Porcine aortic VICs in vitro were induced to calcify by the addition of either 3 mM Na3PO4, showing a 5.2 fold increase by 14 days (P<0.001), or 3 mM Na3PO4 + 10 ng/ml of TGFβ, showing a 7 fold increase by Day 14 (P<0.001). Denosumab inhibited induced calcification by 3 mM Na3PO4 and 3 mM Na3PO4 with the addition of TGFß at either 0.1, 1 or 10 ng/ml to basal levels only at a concentration of 50 μg/ml (P<0.001). CONCLUSION This study has proved that Denosumab could be a potential inhibitor of the calcification of VICs in vitro. A fuller understanding of the actions of Denosumab may identify a novel therapeutic strategy for clinical intervention against aortic valve calcification and aortic stenosis.
Collapse
Affiliation(s)
- Daniel Alejandro Lerman
- Department of Cardiothoracic Surgery, Royal Infirmary Hospital of Edinburgh (NHS Lothian) The University of Edinburgh, United Kingdom
| | - Sai Prasad
- Department of Cardiothoracic Surgery, Royal Infirmary Hospital of Edinburgh (NHS Lothian) The University of Edinburgh, United Kingdom
| | - Nasri Alotti
- Department of Cardiothoracic Surgery, Teaching Hospital of Zala County, Pécs University, Hungary
| |
Collapse
|
82
|
Milin AC, Vorobiof G, Aksoy O, Ardehali R. Insights into aortic sclerosis and its relationship with coronary artery disease. J Am Heart Assoc 2014; 3:e001111. [PMID: 25193296 PMCID: PMC4323780 DOI: 10.1161/jaha.114.001111] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Alexandra C Milin
- Department of Internal Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA
| | - Gabriel Vorobiof
- Department of Internal Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA
| | - Olcay Aksoy
- Department of Internal Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA
| | - Reza Ardehali
- Department of Internal Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA
| |
Collapse
|
83
|
Tavintharan S, Pek LTS, Liu JJ, Ng XW, Yeoh LY, Su Chi L, Chee Fang S. Osteoprotegerin is independently associated with metabolic syndrome and microvascular complications in type 2 diabetes mellitus. Diab Vasc Dis Res 2014; 11:359-62. [PMID: 25005034 DOI: 10.1177/1479164114539712] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIMS Osteoprotegerin (OPG) is a glycoprotein from tumour necrosis factor receptor superfamily, responsible for osteoclastogenesis inhibition and associated with arterial calcification and stiffness. We describe the association between metabolic syndrome (MS) and OPG in type 2 diabetes mellitus patients. METHODOLOGY We consecutively enrolled 1220 patients from our institution's Diabetes Centre from August 2011. Anthropometric data such as fasting blood/urine were obtained, and OPG was measured by enzyme-linked immunosorbent assay (ELISA). RESULTS Mean (standard deviation (SD)) of age and diabetes duration was 57.4 (10.9) years and 11.2 (8.9) years, respectively. Prevalence of MS was 64.3% (95% confidence interval (CI): 61.3%-67.2%) and associated with significantly higher OPG (5.44 vs 4.47 pmol/L) and microvascular complications. The presence of microvascular complications was associated with higher OPG: nephropathy (5.54 (2.20) vs 4.65 (1.70) pmol/L, p < 0.0001), neuropathy (6.33 (2.64) vs 5.06 (1.91) pmol/L, p < 0.0001) and retinopathy (6.08 (2.47) vs 5.00 (1.95) pmol/L, p < 0.0001). After adjusting for age, gender, ethnicity, glucose and microvascular complications, OPG remained an independent predictor of MS: (odds ratio (OR) = 1.102 (95% CI: 1.015-1.196), p = 0.021). CONCLUSION Higher OPG levels were associated with risk of MS and microvascular complications. Studies are needed to test whether OPG could be a useful biomarker identifying patients at risk of vascular complications and whether further exploration of this pathway may lead novel therapeutic options.
Collapse
Affiliation(s)
- S Tavintharan
- Diabetes Centre, Khoo Teck Puat Hospital, Singapore Division of Endocrinology, Khoo Teck Puat Hospital, Singapore
| | | | - Jian Jun Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Xiao Wei Ng
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Lee Ying Yeoh
- Division of Nephrology, Department of Medicine, Khoo Teck Puat Hospital, Singapore
| | - Lim Su Chi
- Diabetes Centre, Khoo Teck Puat Hospital, Singapore Division of Endocrinology, Khoo Teck Puat Hospital, Singapore
| | - Sum Chee Fang
- Diabetes Centre, Khoo Teck Puat Hospital, Singapore Division of Endocrinology, Khoo Teck Puat Hospital, Singapore
| |
Collapse
|
84
|
Lu KC, Wu CC, Yen JF, Liu WC. Vascular calcification and renal bone disorders. ScientificWorldJournal 2014; 2014:637065. [PMID: 25136676 PMCID: PMC4127293 DOI: 10.1155/2014/637065] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 06/15/2014] [Accepted: 06/28/2014] [Indexed: 12/11/2022] Open
Abstract
At the early stage of chronic kidney disease (CKD), the systemic mineral metabolism and bone composition start to change. This alteration is known as chronic kidney disease-mineral bone disorder (CKD-MBD). It is well known that the bone turnover disorder is the most common complication of CKD-MBD. Besides, CKD patients usually suffer from vascular calcification (VC), which is highly associated with mortality. Many factors regulate the VC mechanism, which include imbalances in serum calcium and phosphate, systemic inflammation, RANK/RANKL/OPG triad, aldosterone, microRNAs, osteogenic transdifferentiation, and effects of vitamins. These factors have roles in both promoting and inhibiting VC. Patients with CKD usually have bone turnover problems. Patients with high bone turnover have increase of calcium and phosphate release from the bone. By contrast, when bone turnover is low, serum calcium and phosphate levels are frequently maintained at high levels because the reservoir functions of bone decrease. Both of these conditions will increase the possibility of VC. In addition, the calcified vessel may secrete FGF23 and Wnt inhibitors such as sclerostin, DKK-1, and secreted frizzled-related protein to prevent further VC. However, all of them may fight back the inhibition of bone formation resulting in fragile bone. There are several ways to treat VC depending on the bone turnover status of the individual. The main goals of therapy are to maintain normal bone turnover and protect against VC.
Collapse
Affiliation(s)
- Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Cardinal Tien Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City 23148, Taiwan
| | - Chia-Chao Wu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Jen-Fen Yen
- Division of Nephrology, Department of Internal Medicine, Yonghe Cardinal Tien Hospital, 80 Zhongxing Street, Yonghe District, New Taipei City 23445, Taiwan
| | - Wen-Chih Liu
- Division of Nephrology, Department of Internal Medicine, Yonghe Cardinal Tien Hospital, 80 Zhongxing Street, Yonghe District, New Taipei City 23445, Taiwan
| |
Collapse
|
85
|
Instructions for producing a mouse model of glucocorticoid-induced osteoporosis. BONEKEY REPORTS 2014; 3:552. [PMID: 25120909 DOI: 10.1038/bonekey.2014.47] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/09/2014] [Indexed: 11/08/2022]
Abstract
Glucocorticoids are effective drugs used for the treatment of inflammatory diseases such as rheumatoid arthritis or asthma. Furthermore, they regulate various physiological processes, including bone remodeling. However, long-term high- and even low-dose glucocorticoid use is associated with a compromised bone quality and an increased fracture risk. At the cellular level, glucocorticoids suppress bone formation and stimulate bone resorption, which leads to loss of bone mass. To investigate the underlying mechanisms and new therapeutic strategies, the in vivo model for glucocorticoid-induced bone loss is widely used. This protocol outlines the common procedure that is currently used for the induction of bone loss in mice using glucocorticoids. It further provides useful hints and highlights possible pitfalls to take into account before starting an experiment.
Collapse
|
86
|
Leonard O, Spaak J, Goldsmith D. Regression of vascular calcification in chronic kidney disease - feasible or fantasy? a review of the clinical evidence. Br J Clin Pharmacol 2014; 76:560-72. [PMID: 23110527 DOI: 10.1111/bcp.12014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 10/23/2012] [Indexed: 12/19/2022] Open
Abstract
The complex relationships between cardiovascular, renal, and bone disease are increasingly recognized but not yet clearly understood. Vascular calcification (VC) represents a common end point between these interlinked systems. It is highly prevalent in chronic kidney disease (CKD) and may be responsible for some of the excess cardiovascular events seen in this condition. There is much interest in developing therapeutic agents to stop its development or reverse its progression. Traditionally considered to be due to abnormalities in calcium and phosphate metabolism alone, VC is now known to be the product of active, dynamic processes within the vessel wall. Primary prevention of VC is possible through successful prevention or reversal of progressive renal dysfunction, hypertension and hyperlipidaemia, but is challenging given the increasing global prevalence of these risk factors. Secondary prevention of VC through tight control of calcium and phosphate, can be achieved by dietary or pharmacological means. Both the modification of haemodialysis duration or methods and the use of renal transplantation have an effect. Novel drugs such as cinacalcet were hoped to halt calcification but results have been mixed, and no intervention has yet been shown to reverse calcification reliably. A new range of experimental targets involved in the putative mediatory pathways between bone and vascular disease has emerged. Aiming to manipulate the active mechanisms involved in calcium deposition, these hold hope for reversal of calcification, but are still theoretical or in early animal or human experimentation.
Collapse
|
87
|
Sprini D, Rini GB, Di Stefano L, Cianferotti L, Napoli N. Correlation between osteoporosis and cardiovascular disease. CLINICAL CASES IN MINERAL AND BONE METABOLISM : THE OFFICIAL JOURNAL OF THE ITALIAN SOCIETY OF OSTEOPOROSIS, MINERAL METABOLISM, AND SKELETAL DISEASES 2014; 11:117-119. [PMID: 25285139 PMCID: PMC4172178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Several evidences have shown in the last years a possible correlation between cardiovascular diseases and osteoporosis. Patients affected with osteoporosis, for example, have a higher risk of cardiovascular diseases than subjects with normal bone mass. However, the heterogeneous approaches and the different populations that have been studied so far have limited the strength of the findings. Studies conducted in animal models show that vascular calcification is a very complex mechanism that involves similar pathways described in the normal bone calcification. Proteins like BMP, osteopontin, osteoprotegerin play an important role at the bone level but are also highly expressed in the calcified vascular tissue. In particular, it seems that the OPG protect from vascular calcification and elevated levels have been found in patients with CVD. Other factors like oxidative stress, inflammation, free radicals, lipids metabolism are involved in this complex scenario. It is not a case that medications used for treating osteoporosis also inhibit the atherosclerotic process, acting on blood pressure and ventricular hypertrophy. Given the limited amount of available data, further studies are needed to elucidate the underlying mechanisms between osteoporosis and cardiovascular disease which may be important in the future also for preventive and therapeutic approaches of both conditions.
Collapse
Affiliation(s)
- Delia Sprini
- Department of Internal Medicine, University of Palermo, Palermo, Italy
| | | | - Laura Di Stefano
- Department of Internal Medicine, University of Palermo, Palermo, Italy
| | - Luisella Cianferotti
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Nicola Napoli
- Division of Bone and Mineral Diseases, Washington University in St Louis, St Louis MO, USA
| |
Collapse
|
88
|
Callegari A, Coons ML, Ricks JL, Rosenfeld ME, Scatena M. Increased calcification in osteoprotegerin-deficient smooth muscle cells: Dependence on receptor activator of NF-κB ligand and interleukin 6. J Vasc Res 2014; 51:118-31. [PMID: 24642764 DOI: 10.1159/000358920] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 01/14/2014] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Vascular calcification is highly correlated with cardiovascular disease morbidity and mortality. Osteoprotegerin (OPG) is a secreted decoy receptor for receptor activator of NF-κB ligand (RANKL). Inactivation of OPG in apolipoprotein E-deficient (ApoE-/-) mice increases lesion size and calcification. The mechanism(s) by which OPG is atheroprotective and anticalcific have not been entirely determined. We investigated whether OPG-deficient vascular smooth muscle cells (VSMCs) are more susceptible to mineralization and whether RANKL mediates this process. RESULTS Lesion-free aortas from 12-week-old ApoE-/-OPG-/- mice had spotty calcification, an appearance of osteochondrogenic factors and a decrease of smooth muscle markers when compared to ApoE-/-OPG+/+ aortas. In osteogenic conditions, VSMCs isolated from ApoE-/-OPG-/- (KO-VSMC) mice deposited more calcium than VSMCs isolated from ApoE-/-OPG+/+ (WT-VSMC) mice. Gene expression and biochemical analysis indicated accelerated osteochondrogenic differentiation. Ablation of RANKL signaling in KO-VSMCs rescued the accelerated calcification. While WT-VSMCs did not respond to RANKL treatment, KO-VSMCs responded with enhanced calcification and the upregulation of osteochondrogenic genes. RANKL strongly induced interleukin 6 (IL-6), which partially mediated RANKL-dependent calcification and gene expression in KO-VSMCs. CONCLUSIONS OPG inhibits vascular calcification by regulating the procalcific effects of RANKL on VSMCs and is thus a possible target for therapeutic intervention.
Collapse
Affiliation(s)
- Andrea Callegari
- Department of Bioengineering, University of Washington, Seattle, Wash., USA
| | | | | | | | | |
Collapse
|
89
|
Samelson EJ, Miller PD, Christiansen C, Daizadeh NS, Grazette L, Anthony MS, Egbuna O, Wang A, Siddhanti SR, Cheung AM, Franchimont N, Kiel DP. RANKL inhibition with denosumab does not influence 3-year progression of aortic calcification or incidence of adverse cardiovascular events in postmenopausal women with osteoporosis and high cardiovascular risk. J Bone Miner Res 2014; 29:450-7. [PMID: 23873632 PMCID: PMC3946983 DOI: 10.1002/jbmr.2043] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/24/2013] [Accepted: 07/11/2013] [Indexed: 11/09/2022]
Abstract
Atherosclerosis and osteoporosis are chronic diseases that progress with age, and studies suggest aortic calcification, an indicator of atherosclerosis, is inversely associated with bone mineral density (BMD). The osteoprotegerin (OPG)/receptor activator of NF-κB (RANK)/RANK ligand (RANKL) system has been proposed as a shared regulatory system for bone and vasculature. Denosumab (DMAb), a monoclonal antibody against RANKL, improved BMD and reduced fracture risk in the Fracture Reduction Evaluation of Denosumab in Osteoporosis Every 6 Months (FREEDOM) trial. We evaluated whether or not treatment with DMAb influenced progression of aortic calcification (AC) and incidence of cardiovascular (CV) adverse events. We included 2363 postmenopausal women with osteoporosis (1142 placebo, 1221 DMAb), selected from 7808 participants in the FREEDOM trial (3906 placebo, 3902 DMAb), at high risk of CV events according to modified Raloxifene Use for the Heart (RUTH) criteria. CV adverse events were reported by participants. AC scores were assessed using a semiquantitative method from lateral spine X-rays. Change in AC score from baseline to 12 (n = 1377), 24 (n = 1231), and 36 months (n = 1045) was calculated as AC score at follow-up minus AC score at baseline. AC progression was defined as change in AC score >0. Baseline characteristics, CV risk factors, and AC scores were similar between treatment groups. Mean age of participants was 74 years (range, 60-90), 88% were white, and 77% had AC score >0 at baseline. Frequency of AC progression over 3 years did not differ between women in placebo (22%) and DMAb (22%) groups (p = 0.98). AC progression did not differ between treatment groups when analyzed by baseline estimated glomerular filtration rate or by baseline AC scores. Frequency of CV adverse events did not differ between placebo (40%) and DMAb (38%) groups (p = 0.26). In conclusion, DMAb treatment had no effect on progression of AC or incidence of CV adverse events compared to placebo.
Collapse
Affiliation(s)
- Elizabeth J Samelson
- Institute for Aging Research, Hebrew Senior Life and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Cho HJ, Cho HJ, Kim HS. Vascular progenitor cells with decalcifying potential: a step toward prevention or treatment of atherosclerotic vascular calcification? Expert Rev Cardiovasc Ther 2014; 11:937-9. [DOI: 10.1586/14779072.2013.814875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
91
|
Rinotas V, Niti A, Dacquin R, Bonnet N, Stolina M, Han CY, Kostenuik P, Jurdic P, Ferrari S, Douni E. Novel genetic models of osteoporosis by overexpression of human RANKL in transgenic mice. J Bone Miner Res 2014; 29:1158-69. [PMID: 24127173 DOI: 10.1002/jbmr.2112] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/10/2013] [Accepted: 09/30/2013] [Indexed: 11/10/2022]
Abstract
Receptor activator of NF-κB ligand (RANKL) plays a key role in osteoclast-induced bone resorption across a range of degenerative bone diseases, and its specific inhibition has been recently approved as a treatment for women with postmenopausal osteoporosis at high or increased risk of fracture in the United States and globally. In the present study, we generated transgenic mice (TghuRANKL) carrying the human RANKL (huRANKL) genomic region and achieved a physiologically relevant pattern of RANKL overexpression in order to establish novel genetic models for assessing skeletal and extraskeletal pathologies associated with excessive RANKL and for testing clinical therapeutic candidates that inhibit human RANKL. TghuRANKL mice of both sexes developed early-onset bone loss, and the levels of huRANKL expression were correlated with bone resorption and disease severity. Low copy Tg5516 mice expressing huRANKL at low levels displayed a mild osteoporotic phenotype as shown by trabecular bone loss and reduced biomechanical properties. Notably, overexpression of huRANKL, in the medium copy Tg5519 line, resulted in severe early-onset osteoporosis characterized by lack of trabecular bone, destruction of the growth plate, increased osteoclastogenesis, bone marrow adiposity, increased bone remodeling, and severe cortical bone porosity accompanied by decreased bone strength. An even more severe skeletal phenotype developed in the high copy Tg5520 founder with extensive soft tissue calcification. Model validation was further established by evidence that denosumab, an antibody that inhibits human but not murine RANKL, fully corrected the hyper-resorptive and osteoporotic phenotypes of Tg5519 mice. Furthermore, overexpression of huRANKL rescued osteopetrotic phenotypes of RANKL-defective mice. These novel huRANKL transgenic models of osteoporosis represent an important advance for understanding the pathogenesis and treatment of high-turnover bone diseases and other disease states caused by excessive RANKL.
Collapse
Affiliation(s)
- Vagelis Rinotas
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece; Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Che Y, Bing C, Akhtar J, Tingting Z, Kezhou Y, Rong W. Lanthanum carbonate prevents accelerated medial calcification in uremic rats: role of osteoclast-like activity. J Transl Med 2013; 11:308. [PMID: 24330832 PMCID: PMC3878800 DOI: 10.1186/1479-5876-11-308] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/09/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Arterial medial calcification (AMC) is frequent prevalence in patients with end stage renal disease. Evidence about hyperphosphatemia induced anabolic crosstalk between osteoblast and osteoclast in AMC of uremia is rare. Lanthanum carbonate as an orally administered phosphate-binding agent to reduce phosphate load and ameliorate AMC, but direct evidence is missing. METHODS Detailed time-course studies were conducted of Sprague-Dawley rats fed with adenine and high phosphate diet to imitate the onset and progression of AMC of uremia. Calcification in great arteries was evaluated by VonKossa's and Masson's trichrome staining. Osteoblast (Runx2, Osteocalcin) and osteoclast (RANKL, Cathepsin K, TRAP) related genes were analyzed by Immunohistochemistry and qRT-PCR. Serum PTH, RANKL and OPG levels were detected by ELISA kit. RESULTS Serum phosphate was markedly increased in CRF group (6.94 ± 0.97 mmol/L) and 2%La group (5.12 ± 0.84 mmol/L) at week 4, while the latter group diminished significantly (2.92 ± 0.73 mmol/L vs CRF Group 3.48 ± 0.69, p < 0.01) at week 10. The rats that did not receive 2%La treatment had extensive von kossa staining for medial calcification in CRF group. In contrast, the rats in 2%La group just exhibit mild medial calcification. Inhibitory effect on progression of AMC was reflected by down regulated osteogenic genes and altered osteoclast-like genes. RANKL/OPG ratio in local calcification area was declined in 2%La group (vs CRF group, p <0.01), whereas marginal difference in serum among the three groups. In contrast to the robust expression of cathepsinK in calcified area, TRAP expression was not found. CONCLUSIONS Abnormal phosphate homeostasis, induction of osteogenic conversion and osteoclast suppression were contributed to the current mechanisms of uremia associated arterial medial calcification based on our studies. Beneficial effects of Lanthanum carbonate could be mainly due to the decreased phosphate retention and cross-talk between osteoblast and osteoclast-like cell, both of which can be the therapeutic target for uremia associated with AMC.
Collapse
Affiliation(s)
| | | | | | | | | | - Wang Rong
- Department of Nephrology, Provincial Hospital Affiliated to Shandong University, Shandong 250021, P, R, China.
| |
Collapse
|
93
|
Abstract
INTRODUCTION Denosumab is a fully human monoclonal antibody against the receptor activator of nuclear factor kappa-B ligand. It is an antiresorptive agent that reduces osteoclastogenesis. AREAS COVERED This drug evaluation reviews denosumab for use in osteoporosis. Denosumab has been shown to improve bone mineral density (BMD) and to reduce the incidence of new vertebral, hip and nonvertebral fractures in postmenopausal women. It prevents bone loss and reduces vertebral fracture risk in men with nonmetastatic prostate cancer who are receiving androgen deprivation therapy. It has also been shown to improve BMD in men with osteoporosis unrelated to androgen deprivation therapy. Safety concerns include infections, cancer, skin reactions, cardiovascular disease, hypocalcemia, osteonecrosis of the jaw and atypical femur fractures. EXPERT OPINION Although bisphosphonates are typically preferred as initial therapy for osteoporosis, denosumab could be used as initial therapy in select patients at high risk for fracture, including older patients who have difficulty with the dosing requirements of oral bisphosphonates, patients who are intolerant of or unresponsive to other therapies, and in those with impaired renal function. Additional data is needed to address issues regarding treatment duration and discontinuation, as well as to provide more information regarding denosumab's efficacy and safety.
Collapse
Affiliation(s)
- Dima L Diab
- University of Cincinnati Bone Health and Osteoporosis Center, Cincinnati VA Medical Center, Division of Endocrinology/Metabolism, Department of Internal Medicine , 260 Stetson St, Suite 4200, Cincinnati, OH 45219 , USA +1 513 558 4444 ; +1 513 558 8581 ;
| | | |
Collapse
|
94
|
Abstract
Cardiovascular complications are the leading cause of mortality in chronic (CKD) and end-stage renal disease (ESRD). The risk of developing cardiovascular complications is associated with changes in the structure and function of the arterial system, which are in many aspects similar to those occurring with aging. The presence of traditional risk factors does not fully explain the extension and severity of arterial disease. Therefore, other factors associated with CKD and ESRD must also be involved. Arterial calcification (AC) is a common complication of CKD and ESRD, and the extent of AC in general population as well as in patients with CKD is predictive of subsequent cardiovascular mortality beyond established conventional risk factors. AC is an active process similar to bone formation that implicates a variety of proteins involved in bone and mineral metabolism and is considered part of a systemic dysfunction defined as CKD-associated mineral and bone disorder (CKD-MBD).
Collapse
|
95
|
Yavropoulou MP, Pikilidou M, Yovos JG. Anti-osteoporotic drugs and vascular calcification: the bidirectional calcium traffic. J Vasc Res 2013; 51:37-49. [PMID: 24280985 DOI: 10.1159/000355204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 08/19/2013] [Indexed: 11/19/2022] Open
Abstract
During the last years, numerous epidemiological studies have demonstrated a direct relationship between vascular calcification and low bone mineral density. This observation is in line with experimental data demonstrating the osteogenic characteristics of calcified arteries. Various common risk factors have been suggested to link vascular calcification and bone loss, including aging, estrogen deficiency, vitamin D and K deficiency, diabetes mellitus, renal failure, smoking, chronic inflammation and oxidative stress. Although the underlying pathogenetic mechanisms are not yet clear, current research is focusing on anti-osteoporotic agents that could potentially affect the deposition of calcium in the arterial wall and thus provide an additional therapeutic strategy in elderly osteoporotic women prone to calcific cardiovascular disease.
Collapse
Affiliation(s)
- Maria P Yavropoulou
- Division of Endocrinology and Metabolism, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | |
Collapse
|
96
|
Rattazzi M, Bertacco E, Del Vecchio A, Puato M, Faggin E, Pauletto P. Aortic valve calcification in chronic kidney disease. Nephrol Dial Transplant 2013; 28:2968-76. [PMID: 24097800 DOI: 10.1093/ndt/gft310] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Several clinical studies reported an increased prevalence and accelerated progression of aortic valve calcification among patients with end-stage renal disease when compared with subjects with normal kidney function. Recently, mechanisms of calcific valve degeneration have been further elucidated and many of the pathways involved could be amplified in patients with decreased renal function. In particular, calcium-phosphate balance, MGP metabolism, OPG/RANK/RANKL triad, fetuin-A mineral complexes and FGF-23/Klotho axis have been shown to be impaired among patients with advanced chronic kidney disease and could play a role during vascular/valve calcification. The scope of the present review is to summarize the clinical data and the pathophysiological mechanisms potentially involved in the link between renal function decline and the progression of aortic valve disease.
Collapse
|
97
|
Wu M, Rementer C, Giachelli CM. Vascular calcification: an update on mechanisms and challenges in treatment. Calcif Tissue Int 2013; 93:365-73. [PMID: 23456027 PMCID: PMC3714357 DOI: 10.1007/s00223-013-9712-z] [Citation(s) in RCA: 298] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/31/2013] [Indexed: 10/27/2022]
Abstract
Vascular calcification is highly associated with cardiovascular disease mortality, particularly in high-risk patients with diabetes and chronic kidney diseases (CKD). In blood vessels, intimal calcification is associated with atherosclerosis, whereas medial calcification is a nonocclusive process which leads to increased vascular stiffness and reduced vascular compliance. In the valves, calcification of the leaflets can change the mechanical properties of the tissue and result in stenosis. For many decades, vascular calcification has been noted as a consequence of aging. Studies now confirm that vascular calcification is an actively regulated process and shares many features with bone development and metabolism. This review provides an update on the mechanisms of vascular calcification including the emerging roles of the RANK/RANKL/OPG triad, osteoclasts, and microRNAs. Potential treatments adapted from osteoporosis and CKD treatments that are under investigation for preventing and/or regressing vascular calcification are also reviewed.
Collapse
Affiliation(s)
| | | | - Cecilia M. Giachelli
- Corresponding author. Tel: 1-206-543-0205; fax: 1-206-616-9763. (C.M. Giachelli)
| |
Collapse
|
98
|
Di Bartolo BA, Cartland SP, Harith HH, Bobryshev YV, Schoppet M, Kavurma MM. TRAIL-deficiency accelerates vascular calcification in atherosclerosis via modulation of RANKL. PLoS One 2013; 8:e74211. [PMID: 24040204 PMCID: PMC3764101 DOI: 10.1371/journal.pone.0074211] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/26/2013] [Indexed: 11/18/2022] Open
Abstract
The osteoprotegerin (OPG) and receptor activator of nuclear factor-κB ligand (RANKL) cytokine system, not only controls bone homeostasis, but has been implicated in regulating vascular calcification. TNF–related apoptosis-inducing ligand (TRAIL) is a second ligand for OPG, and although its effect in vascular calcification in vitro is controversial, its role in vivo is not yet established. This study aimed to investigate the role of TRAIL in vascular calcification in vitro using vascular smooth muscle cells (VSMCs) isolated from TRAIL−/− and wild-type mice, as well as in vivo, in advanced atherosclerotic lesions of TRAIL−/−ApoE−/− mice. The involvement of OPG and RANKL in this process was also examined. TRAIL dose-dependently inhibited calcium-induced calcification of human VSMCs, while TRAIL−/− VSMCs demonstrated accelerated calcification induced by multiple concentrations of calcium compared to wild-type cells. Consistent with this, RANKL mRNA was significantly elevated with 24 h calcium treatment, while OPG and TRAIL expression in human VSMCs was inhibited. Brachiocephalic arteries from TRAIL−/−ApoE−/− and ApoE−/− mice fed a high fat diet for 12 w demonstrated increased chondrocyte-like cells in atherosclerotic plaque, as well as increased aortic collagen II mRNA expression in TRAIL−/−ApoE−/− mice, with significant increases in calcification observed at 20 w. TRAIL−/−ApoE−/− aortas also had significantly elevated RANKL, BMP-2, IL-1β, and PPAR-γ expression at 12 w. Our data provides the first evidence that TRAIL deficiency results in accelerated cartilaginous metaplasia and calcification in atherosclerosis, and that TRAIL plays an important role in the regulation of RANKL and inflammatory markers mediating bone turn over in the vasculature.
Collapse
MESH Headings
- Animals
- Aorta/metabolism
- Aorta/pathology
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Brachiocephalic Trunk/metabolism
- Brachiocephalic Trunk/pathology
- Calcium/metabolism
- Calcium/pharmacology
- Cells, Cultured
- Chondrocytes/drug effects
- Chondrocytes/metabolism
- Chondrocytes/pathology
- Collagen Type II/genetics
- Collagen Type II/metabolism
- Diet, High-Fat
- Gene Expression Regulation
- Humans
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Osteoprotegerin/genetics
- Osteoprotegerin/metabolism
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- RANK Ligand/genetics
- RANK Ligand/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction
- TNF-Related Apoptosis-Inducing Ligand/deficiency
- TNF-Related Apoptosis-Inducing Ligand/genetics
- TNF-Related Apoptosis-Inducing Ligand/pharmacology
- Vascular Calcification/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
Collapse
Affiliation(s)
| | - Siân P. Cartland
- Centre for Vascular Research, University of New South Wales, Sydney, NSW, Australia
| | - Hanis H. Harith
- Centre for Vascular Research, University of New South Wales, Sydney, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Yuri V. Bobryshev
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Michael Schoppet
- Department of Internal Medicine and Cardiology, Philips University, Marburg, Germany
| | - Mary M. Kavurma
- Centre for Vascular Research, University of New South Wales, Sydney, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
- * E-mail:
| |
Collapse
|
99
|
Sinningen K, Rauner M, Goettsch C, Al-Fakhri N, Schoppet M, Hofbauer LC. Monocytic expression of osteoclast-associated receptor (OSCAR) is induced in atherosclerotic mice and regulated by oxidized low-density lipoprotein in vitro. Biochem Biophys Res Commun 2013; 437:314-8. [PMID: 23817038 DOI: 10.1016/j.bbrc.2013.06.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 06/20/2013] [Indexed: 10/26/2022]
Abstract
The osteoclast-associated receptor (OSCAR), primarily described as a co-stimulatory regulator of osteoclast differentiation, represents a potential link between bone metabolism and vascular biology. Previously, we identified OSCAR as an endothelial cell-derived target of the proatherogenic factor oxidized low density lipoprotein (oxLDL). Since monocytes play an important role in the progression of atherosclerosis, we assessed whether atherogenic stimuli also regulate the expression of OSCAR on monocytes. Four-week-old male wild-type (WT), apolipoprotein e knockout (apoe KO), and LDL receptor knockout (ldlr KO) mice were fed a high-fat diet or normal chow for 6weeks. Peripheral blood mononuclear cells (PBMCs) isolated from the spleen were stained with antibodies against CD14 and OSCAR for subsequent flow cytometric analysis. OSCAR surface expression on CD14-positive monocytes increased 2-fold in PBMCs from apoe KO mice compared to WT mice. Feeding a high-fat diet further increased OSCAR surface expression 1.5-fold in apoe KO mice compared to normal diet. Moreover, OSCAR-positive macrophages were detected in atherosclerotic plaques of apoe KO mice. Interestingly, monocytic OSCAR expression was not altered in ldlr KO mice. In the murine macrophage cell line RAW 264.7, TNFα and oxLDL induced OSCAR mRNA expression by 2-fold and 5-fold (p<0.01), respectively. Blocking the oxLDL receptor LOX-1 and inhibiting the NF-κB pathway prevented OSCAR induction. In conclusion, OSCAR expression in monocytic cells is regulated by proatherogenic stimuli further pointing towards a role in vascular inflammation or plaque vulnerability during atherosclerosis.
Collapse
Affiliation(s)
- Kathrin Sinningen
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technical University, Dresden, Germany
| | | | | | | | | | | |
Collapse
|
100
|
Osako MK, Nakagami H, Shimamura M, Koriyama H, Nakagami F, Shimizu H, Miyake T, Yoshizumi M, Rakugi H, Morishita R. Cross-talk of receptor activator of nuclear factor-κB ligand signaling with renin-angiotensin system in vascular calcification. Arterioscler Thromb Vasc Biol 2013; 33:1287-96. [PMID: 23580147 DOI: 10.1161/atvbaha.112.301099] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Vascular calcification is accelerated by hypertension and also contributes to hypertension; however, it is an enigma why hypertension and vascular calcification are a vicious spiral. The present study elucidates the cross-talk between renin-angiotensin II system and receptor activator of nuclear factor-κB ligand (RANKL) system in vascular calcification. APPROACH AND RESULTS Angiotensin (Ang) II (10(-7) mol/L) significantly increased calcium deposition as assessed by Alizarin Red staining, associated with a significant increase in the expression of RANKL, RANK, and bone-related genes, such as cbfa1 and msx2, in human aortic vascular smooth muscle cells. Infusion of Ang II (100 ng/kg per minute) in ovariectomized ApoE(-/-) mice under high-fat diet significantly increased the expression of RANKL system and calcification in vivo, whereas administration of Ang II receptor blocker (olmesartan, 3 mg/kg per day) decreased the calcification and bone markers' expression. In addition, male OPG(-/-) mice showed a significant increase in vascular calcification followed by Ang II infusion as compared with wild type. Conversely, RANKL significantly increased Ang II type 1 receptor and angiotensin II-converting enzyme expression in vascular smooth muscle cells via extracellular signal-regulated protein kinase phosphorylation. CONCLUSIONS The present study demonstrated that Ang II significantly induced vascular calcification in vitro and in vivo through RANKL activation. In addition, RANKL activated renin-angiotensin II system, especially angiotensin II-converting enzyme and Ang II type 1 receptor. Cross-talk between renin-angiotensin II system and RANKL system might work as a vicious cycle to promote vascular calcification in atherosclerosis. Further studies to inhibit renin-angiotensin II system and RANKL may provide new therapeutic options to prevent and regress vascular calcification.
Collapse
Affiliation(s)
- Mariana Kiomy Osako
- Division of Vascular Medicine and Epigenetics, United Graduate School of Child Development, Osaka University, Suita, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|