51
|
Fanzani A, Conraads VM, Penna F, Martinet W. Molecular and cellular mechanisms of skeletal muscle atrophy: an update. J Cachexia Sarcopenia Muscle 2012; 3:163-79. [PMID: 22673968 PMCID: PMC3424188 DOI: 10.1007/s13539-012-0074-6] [Citation(s) in RCA: 247] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 05/13/2012] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscle atrophy is defined as a decrease in muscle mass and it occurs when protein degradation exceeds protein synthesis. Potential triggers of muscle wasting are long-term immobilization, malnutrition, severe burns, aging as well as various serious and often chronic diseases, such as chronic heart failure, obstructive lung disease, renal failure, AIDS, sepsis, immune disorders, cancer, and dystrophies. Interestingly, a cooperation between several pathophysiological factors, including inappropriately adapted anabolic (e.g., growth hormone, insulin-like growth factor 1) and catabolic proteins (e.g., tumor necrosis factor alpha, myostatin), may tip the balance towards muscle-specific protein degradation through activation of the proteasomal and autophagic systems or the apoptotic pathway. Based on the current literature, we present an overview of the molecular and cellular mechanisms that contribute to muscle wasting. We also focus on the multifacetted therapeutic approach that is currently employed to prevent the development of muscle wasting and to counteract its progression. This approach includes adequate nutritional support, implementation of exercise training, and possible pharmacological compounds.
Collapse
Affiliation(s)
- Alessandro Fanzani
- Department of Biomedical Sciences and Biotechnologies and Interuniversitary Institute of Myology (IIM), University of Brescia, viale Europa 11, 25123, Brescia, Italy,
| | | | | | | |
Collapse
|
52
|
Yeghiazaryan M, Żybura-Broda K, Cabaj A, Włodarczyk J, Sławińska U, Rylski M, Wilczyński GM. Fine-structural distribution of MMP-2 and MMP-9 activities in the rat skeletal muscle upon training: a study by high-resolution in situ zymography. Histochem Cell Biol 2012; 138:75-87. [PMID: 22419075 PMCID: PMC3374103 DOI: 10.1007/s00418-012-0940-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2012] [Indexed: 12/25/2022]
Abstract
Matrix metalloproteinases (MMPs) are key regulators of extracellular matrix remodeling, but have also important intracellular targets. The purpose of this study was to examine the activity and subcellular localization of the gelatinases MMP-2 and MMP-9 in skeletal muscle of control and physically trained rats. In control hind limb muscle, the activity of the gelatinases was barely detectable. In contrast, after 5 days of intense exercise, in Soleus (Sol), but not Extensor digitorum longus (EDL) muscle, significant upregulation of gelatinolytic activity in myofibers was observed mainly in the nuclei, as assessed by high resolution in situ zymography. The nuclei of quiescent satellite cells did not contain the activity. Within the myonuclei, the gelatinolytic activity colocalized with an activated RNA Polymerase II. Also in Sol, but not in EDL, there were few foci of mononuclear cells with strongly positive cytoplasm, associated with apparent necrotic myofibers. These cells were identified as activated satellite cells/myoblasts. No extracellular gelatinase activity was observed. Gel zymography combined with subcellular fractionation revealed training-related upregulation of active MMP-2 in the nuclear fraction, and increase of active MMP-9 in the cytoplasmic fraction of Sol. Using RT-PCR, selective increase in MMP-9 mRNA was observed. We conclude that training activates nuclear MMP-2, and increases expression and activity of cytoplasmic MMP-9 in Sol, but not in EDL. Our results suggest that the gelatinases are involved in muscle adaptation to training, and that MMP-2 may play a novel role in myonuclear functions.
Collapse
Affiliation(s)
- Marine Yeghiazaryan
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Katarzyna Żybura-Broda
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Anna Cabaj
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
- Institute of Biocybernetics and Biomedical Engineering, Trojdena 4, 02-109 Warsaw, Poland
| | - Jakub Włodarczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Urszula Sławińska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Marcin Rylski
- The Medical Center of Postgraduate Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Grzegorz M. Wilczyński
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| |
Collapse
|
53
|
Madaro L, Pelle A, Nicoletti C, Crupi A, Marrocco V, Bossi G, Soddu S, Bouché M. PKC theta ablation improves healing in a mouse model of muscular dystrophy. PLoS One 2012; 7:e31515. [PMID: 22348094 PMCID: PMC3279361 DOI: 10.1371/journal.pone.0031515] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 01/11/2012] [Indexed: 12/22/2022] Open
Abstract
Inflammation is a key pathological characteristic of dystrophic muscle lesion formation, limiting muscle regeneration and resulting in fibrotic and fatty tissue replacement of muscle, which exacerbates the wasting process in dystrophic muscles. Limiting immune response is thus one of the therapeutic options to improve healing, as well as to improve the efficacy of gene- or cell-mediated strategies to restore dystrophin expression. Protein kinase C θ (PKCθ) is a member of the PKCs family highly expressed in both immune cells and skeletal muscle; given its crucial role in adaptive, but also innate, immunity, it is being proposed as a valuable pharmacological target for immune disorders. In our study we asked whether targeting PKCθ could represent a valuable approach to efficiently prevent inflammatory response and disease progression in a mouse model of muscular dystrophy. We generated the bi-genetic mouse model mdx/θ(-/-), where PKCθ expression is lacking in mdx mice, the mouse model of Duchenne muscular dystrophy. We found that muscle wasting in mdx/θ(-/-) mice was greatly prevented, while muscle regeneration, maintenance and performance was significantly improved, as compared to mdx mice. This phenotype was associated to reduction in inflammatory infiltrate, pro-inflammatory gene expression and pro-fibrotic markers activity, as compared to mdx mice. Moreover, BM transplantation experiments demonstrated that the phenotype observed was primarily dependent on lack of PKCθ expression in hematopoietic cells.These results demonstrate a hitherto unrecognized role of immune-cell intrinsic PKCθ activity in the development of DMD. Although the immune cell population(s) involved remain unidentified, our findings reveal that PKCθ can be proposed as a new pharmacological target to counteract the disease, as well as to improve the efficacy of gene- or cell- therapy approaches.
Collapse
Affiliation(s)
- Luca Madaro
- Unit of Histology, and IIM, Sapienza University, DAHFMO, Rome, Italy
| | - Andrea Pelle
- Unit of Histology, and IIM, Sapienza University, DAHFMO, Rome, Italy
| | - Carmine Nicoletti
- Unit of Histology, and IIM, Sapienza University, DAHFMO, Rome, Italy
| | - Annunziata Crupi
- Unit of Histology, and IIM, Sapienza University, DAHFMO, Rome, Italy
| | - Valeria Marrocco
- Unit of Histology, and IIM, Sapienza University, DAHFMO, Rome, Italy
| | - Gianluca Bossi
- Department of Experimental Oncology, Regina Elena Cancer Institute, Rome, Italy
| | - Silvia Soddu
- Department of Experimental Oncology, Regina Elena Cancer Institute, Rome, Italy
| | - Marina Bouché
- Unit of Histology, and IIM, Sapienza University, DAHFMO, Rome, Italy
- * E-mail:
| |
Collapse
|
54
|
Abstract
The extracellular matrix (ECM) provides a solid scaffold and signals to cells through ECM receptors. The cell-matrix interactions are crucial for normal biological processes and when disrupted they may lead to pathological processes. In particular, the biological importance of ECM-cell membrane-cytoskeleton interactions in skeletal muscle is accentuated by the number of inherited muscle diseases caused by mutations in proteins conferring these interactions. In this review we introduce laminins, collagens, dystroglycan, integrins, dystrophin and sarcoglycans. Mutations in corresponding genes cause various forms of muscular dystrophy. The muscle disorders are presented as well as advances toward the development of treatment.
Collapse
Affiliation(s)
- Virginie Carmignac
- Muscle Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | |
Collapse
|
55
|
Current world literature. Curr Opin Organ Transplant 2011; 16:650-60. [PMID: 22068023 DOI: 10.1097/mot.0b013e32834dd969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
56
|
Villalta SA, Deng B, Rinaldi C, Wehling-Henricks M, Tidball JG. IFN-γ promotes muscle damage in the mdx mouse model of Duchenne muscular dystrophy by suppressing M2 macrophage activation and inhibiting muscle cell proliferation. THE JOURNAL OF IMMUNOLOGY 2011; 187:5419-28. [PMID: 22013114 DOI: 10.4049/jimmunol.1101267] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Duchenne muscular dystrophy is a degenerative disorder that leads to death by the third decade of life. Previous investigations have shown that macrophages that invade dystrophic muscle are a heterogeneous population consisting of M1 and M2 macrophages that promote injury and repair, respectively. In the present investigation, we tested whether IFN-γ worsens the severity of mdx dystrophy by activating macrophages to a cytolytic M1 phenotype and by suppressing the activation of proregenerative macrophages to an M2 phenotype. IFN-γ is a strong inducer of the M1 phenotype and is elevated in mdx dystrophy. Contrary to our expectations, null mutation of IFN-γ caused no reduction of cytotoxicity of macrophages isolated from mdx muscle and did not reduce muscle fiber damage in vivo or improve gross motor function of mdx mice at the early, acute peak of pathology. In contrast, ablation of IFN-γ reduced muscle damage in vivo during the regenerative stage of the disease and increased activation of the M2 phenotype and improved motor function of mdx mice at that later stage of the disease. IFN-γ also inhibited muscle cell proliferation and differentiation in vitro, and IFN-γ mutation increased MyoD expression in mdx muscle in vivo, showing that IFN-γ can have direct effects on muscle cells that could impair repair. Taken together, the findings show that suppression of IFN-γ signaling in muscular dystrophy reduces muscle damage and improves motor performance by promoting the M2 macrophage phenotype and by direct actions on muscle cells.
Collapse
Affiliation(s)
- S Armando Villalta
- Molecular, Cellular, and Integrative Physiology Program, University of California, Los Angeles, Los Angeles, CA 90095-1606, USA
| | | | | | | | | |
Collapse
|
57
|
Ljubicic V, Khogali S, Renaud JM, Jasmin BJ. Chronic AMPK stimulation attenuates adaptive signaling in dystrophic skeletal muscle. Am J Physiol Cell Physiol 2011; 302:C110-21. [PMID: 21940670 DOI: 10.1152/ajpcell.00183.2011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, we evaluated how a pharmacologically induced phenotype shift in dystrophic skeletal muscle would affect subsequent intracellular signaling in response to a complementary, adaptive physiological stimulus. mdx mice were treated with the AMP-activated protein kinase (AMPK) activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR; 500 mg·kg(-1)·day(-1)) for 30 days, and then one-half of the animals were subjected to a bout of treadmill running to induce acute AMPK and p38 MAPK signaling. The mRNA levels of phenotypic modifiers, including peroxisome proliferator-activated receptor-δ (PPARδ), PPARγ coactivator-1α (PGC-1α), receptor interacting protein 140 (RIP 140), and silent information regulator two ortholog 1 (SIRT1) were assessed in skeletal muscle, as well as the expression of the protein arginine methyltransferase genes PRMT1 and CARM1. We found unique AMPK and p38 phosphorylation and expression signatures between dystrophic and healthy muscle. In dystrophic skeletal muscle, treadmill running induced PPARδ, PGC-1α, and SIRT1 mRNAs, three molecules that promote the slow, oxidative myogenic program. In the mdx animals that received the chronic AICAR treatment, running-elicited AMPK and p38 phosphorylation was attenuated compared with vehicle-treated mice. Similarly, acute stress-evoked expression of PPARδ, PGC-1α, and SIRT1 was also blunted by chronic pharmacological AMPK stimulation. Skeletal muscle PRMT1 and CARM1 protein contents were higher in mdx mice compared with wild-type littermates. The acute running-evoked induction of PRMT1 and CARM1 mRNAs was also attenuated by the AICAR treatment. Our data demonstrate that prior pharmacological conditioning is a salient determinant in how dystrophic muscle adapts to subsequent complementary, acute physiological stress stimuli. These results provide insight into possible therapeutic applications of synthetic agonists in neuromuscular diseases, such as during chronic administration to Duchenne muscular dystrophy patients.
Collapse
Affiliation(s)
- Vladimir Ljubicic
- Department of Cellular and Molecular Medicine, Faculty of Medicine, and Center for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | | | |
Collapse
|
58
|
Current world literature. Curr Opin Neurol 2011; 24:511-6. [PMID: 21900773 DOI: 10.1097/wco.0b013e32834be5c1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
59
|
Dahiya S, Bhatnagar S, Hindi SM, Jiang C, Paul PK, Kuang S, Kumar A. Elevated levels of active matrix metalloproteinase-9 cause hypertrophy in skeletal muscle of normal and dystrophin-deficient mdx mice. Hum Mol Genet 2011; 20:4345-59. [PMID: 21846793 DOI: 10.1093/hmg/ddr362] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are a group of extracellular proteases involved in tissue remodeling in several physiological and pathophysiological conditions. While increased expression of MMPs (especially MMP-9) has been observed in skeletal muscle in numerous conditions, their physiological significance remains less-well understood. By generating novel skeletal muscle-specific transgenic (Tg) mice expressing constitutively active mutant of MMP-9 (i.e. MMP-9G100L), in this study, we have investigated the effects of elevated levels of MMP-9 on skeletal muscle structure and function in vivo. Tg expression of enzymatically active MMP-9 protein significantly increased skeletal muscle fiber cross-section area, levels of contractile proteins and force production in isometric contractions. MMP-9 stimulated the activation of the Akt signaling pathway in Tg mice. Moreover, expression of active MMP-9 increased the proportion of fast-type fiber in soleus muscle of mice. Overexpression of MMP-9 also considerably reduced the deposition of collagens I and IV in skeletal muscle in vivo. In one-year-old mdx mice (a model for Duchenne muscular dystrophy, DMD), deletion of the Mmp9 gene reduced fiber hypertrophy and phosphorylation of Akt and p38 mitogen-activated protein kinase. Collectively, our study suggests that elevated levels of active MMP-9 protein cause hypertrophy in skeletal muscle and that the modulation of MMP-9 levels may have therapeutic value in various muscular disorders including DMD.
Collapse
Affiliation(s)
- Saurabh Dahiya
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | | | | | | | | | | | | |
Collapse
|
60
|
Dahiya S, Givvimani S, Bhatnagar S, Qipshidze N, Tyagi SC, Kumar A. Osteopontin-stimulated expression of matrix metalloproteinase-9 causes cardiomyopathy in the mdx model of Duchenne muscular dystrophy. THE JOURNAL OF IMMUNOLOGY 2011; 187:2723-31. [PMID: 21810612 DOI: 10.4049/jimmunol.1101342] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Duchenne muscular dystrophy (DMD), caused by mutations in the dystrophin gene, is a common and lethal form of muscular dystrophy. With progressive disease, most patients succumb to death from respiratory or heart failure, or both. However, the mechanisms, especially those governing cardiac inflammation and fibrosis in DMD, remain less understood. Matrix metalloproteinase (MMPs) are a group of extracellular matrix proteases involved in tissue remodeling in both physiologic and pathophysiologic conditions. Previous studies have shown that MMP-9 exacerbates myopathy in dystrophin-deficient mdx mice. However, the role and the mechanisms of action of MMP-9 in cardiac tissue and the biochemical mechanisms leading to increased levels of MMP-9 in mdx mice remain unknown. Our results demonstrate that the levels of MMP-9 are increased in the heart of mdx mice. Genetic ablation of MMP-9 attenuated cardiac injury, left ventricle dilation, and fibrosis in 1-y-old mdx mice. Echocardiography measurements showed improved heart function in Mmp9-deficient mdx mice. Deletion of the Mmp9 gene diminished the activation of ERK1/2 and Akt kinase in the heart of mdx mice. Ablation of MMP-9 also suppressed the expression of MMP-3 and MMP-12 in the heart of mdx mice. Finally, our experiments have revealed that osteopontin, an important immunomodulator, contributes to the increased amounts of MMP-9 in cardiac and skeletal muscle of mdx mice. This study provides a novel mechanism for development of cardiac dysfunction and suggests that MMP-9 and OPN are important therapeutic targets to mitigating cardiac abnormalities in patients with DMD.
Collapse
Affiliation(s)
- Saurabh Dahiya
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | | | | | | | | | | |
Collapse
|
61
|
Laing NG, Davis MR, Bayley K, Fletcher S, Wilton SD. Molecular diagnosis of duchenne muscular dystrophy: past, present and future in relation to implementing therapies. Clin Biochem Rev 2011; 32:129-34. [PMID: 21912442 PMCID: PMC3157948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Duchenne muscular dystrophy (DMD) is the commonest and best-known of the muscular dystrophies. Being an X-linked disorder, it affects mainly boys. The disease gene was identified in 1987, with the majority of mutations demonstrated to be large-scale deletions. Current best practice molecular diagnosis includes multiplex ligation-dependent probe amplification (MLPA) followed by direct sequencing of all exons at the genomic level, or from cDNA, in order to detect point and other small mutations. The difference between DMD and the allelic Becker muscular dystrophy (BMD) is whether the precise mutation in the gene is a null mutation or results in a modified still partially functional protein. Over the last few years, significant progress has been made in moving experimental therapies into clinical trials, with one of the most promising possible therapies being anti-sense oligonucleotide induced exon-skipping, which converts DMD to BMD. In order to maximise the benefit from future therapies, it will be necessary to start administering the therapies as early as possible in the life of the affected boys, before significant muscle loss occurs. This will require early diagnosis, which evidence suggests is best achieved through population screening. Population screening also allows the avoidance of multiple affected boys in families with no previous family history.
Collapse
Affiliation(s)
- Nigel G Laing
- Centre for Medical Research, University of Western Australia M519, Western Australian Institute for Medical Research, QEII Medical Centre, Nedlands, WA 6009
| | - Mark R Davis
- Department of Anatomical Pathology, Royal Perth Hospital, Perth, WA 6000
| | - Klair Bayley
- Centre for Medical Research, University of Western Australia M519, Western Australian Institute for Medical Research, QEII Medical Centre, Nedlands, WA 6009
| | - Sue Fletcher
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Steve D Wilton
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, QEII Medical Centre, Nedlands, WA 6009, Australia
| |
Collapse
|
62
|
Wilton SD, Fletcher S. Novel compounds for the treatment of Duchenne muscular dystrophy: emerging therapeutic agents. APPLICATION OF CLINICAL GENETICS 2011; 4:29-44. [PMID: 23776365 PMCID: PMC3681176 DOI: 10.2147/tacg.s8762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The identification of dystrophin and the causative role of mutations in this gene in Duchenne and Becker muscular dystrophies (D/BMD) was expected to lead to timely development of effective therapies. Despite over 20 years of research, corticosteroids remain the only available pharmacological treatment for DMD, although significant benefits and extended life have resulted from advances in the clinical care and management of DMD individuals. Effective treatment of DMD will require dystrophin restitution in skeletal, cardiac, and smooth muscles and nonmuscle tissues; however, modulation of muscle loss and regeneration has the potential to play an important role in altering the natural history of DMD, particularly in combination with other treatments. Emerging biological, molecular, and small molecule therapeutics are showing promise in ameliorating this devastating disease, and it is anticipated that regulatory environments will need to display some flexibility in order to accommodate the new treatment paradigms.
Collapse
Affiliation(s)
- Steve D Wilton
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Crawley, Perth, WA, Australia
| | | |
Collapse
|
63
|
Peterson JM, Bakkar N, Guttridge DC. NF-κB Signaling in Skeletal Muscle Health and Disease. Curr Top Dev Biol 2011; 96:85-119. [DOI: 10.1016/b978-0-12-385940-2.00004-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
64
|
Villalta SA, Rinaldi C, Deng B, Liu G, Fedor B, Tidball JG. Interleukin-10 reduces the pathology of mdx muscular dystrophy by deactivating M1 macrophages and modulating macrophage phenotype. Hum Mol Genet 2010; 20:790-805. [PMID: 21118895 DOI: 10.1093/hmg/ddq523] [Citation(s) in RCA: 220] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
M1 macrophages play a major role in worsening muscle injury in the mdx mouse model of Duchenne muscular dystrophy. However, mdx muscle also contains M2c macrophages that can promote tissue repair, indicating that factors regulating the balance between M1 and M2c phenotypes could influence the severity of the disease. Because interleukin-10 (IL-10) modulates macrophage activation in vitro and its expression is elevated in mdx muscles, we tested whether IL-10 influenced the macrophage phenotype in mdx muscle and whether changes in IL-10 expression affected the pathology of muscular dystrophy. Ablation of IL-10 expression in mdx mice increased muscle damage in vivo and reduced mouse strength. Treating mdx muscle macrophages with IL-10 reduced activation of the M1 phenotype, assessed by iNOS expression, and macrophages from IL-10 null mutant mice were more cytolytic than macrophages isolated from wild-type mice. Our data also showed that muscle cells in mdx muscle expressed the IL-10 receptor, suggesting that IL-10 could have direct effects on muscle cells. We assayed whether ablation of IL-10 in mdx mice affected satellite cell numbers, using Pax7 expression as an index, but found no effect. However, IL-10 mutation significantly increased myogenin expression in vivo during the acute and the regenerative phase of mdx pathology. Together, the results show that IL-10 plays a significant regulatory role in muscular dystrophy that may be caused by reducing M1 macrophage activation and cytotoxicity, increasing M2c macrophage activation and modulating muscle differentiation.
Collapse
Affiliation(s)
- S Armando Villalta
- Molecular, Cellular and Integrative Physiology Program, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095-1606, USA
| | | | | | | | | | | |
Collapse
|