51
|
|
52
|
Abstract
Establishing sufficient skeletal muscle mass is essential for lifelong metabolic health. The intrauterine environment is a major determinant of the muscle mass that is present during the life course of an individual, because muscle fiber number is set at the time of birth. Thus, a compromised intrauterine environment from maternal nutrient restriction or placental insufficiency that restricts muscle fiber number can have permanent effects on the amount of muscle an individual will live with. Reduced muscle mass due to fewer muscle fibers persists even after compensatory or 'catch-up' postnatal growth occurs. Furthermore, muscle hypertrophy can only partially compensate for this limitation in fiber number. Compelling associations link low birth weight and decreased muscle mass to future insulin resistance, which can drive the development of the metabolic syndrome and type 2 diabetes, and the risk of cardiovascular events later in life. There are gaps in knowledge about the origins of reduced muscle growth at the cellular level and how these patterns are set during fetal development. By understanding the nutrient and endocrine regulation of fetal skeletal muscle growth and development, we can direct research efforts toward improving muscle growth early in life to prevent the development of chronic metabolic diseases later in life.
Collapse
Affiliation(s)
- Laura D. Brown
- Department of Pediatrics (Neonatology), University of Colorado School of Medicine, Anschutz Medical Campus F441, Perinatal Research Center, 13243 East 23 Avenue, Aurora, CO 80045, Phone: 303-724-0106, Fax: 303-724-0898
| |
Collapse
|
53
|
Chen W, Lv YT, Zhang HX, Ruan D, Wang S, Lin YC. Developmental specificity in skeletal muscle of late-term avian embryos and its potential manipulation. Poult Sci 2013; 92:2754-64. [PMID: 24046424 DOI: 10.3382/ps.2013-03099] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Unlike the mammalian fetus, development of the avian embryo is independent of the maternal uterus and is potentially vulnerable to physiological and environmental stresses close to hatch. In contrast to the fetus of late gestation in mammals, skeletal muscle in avian embryos during final incubation shows differential developmental characteristics: 1) muscle mobilization (also called atrophy) is selectively enhanced in the type II fibers (pectoral muscle) but not in the type I fibers (biceps femoris and semimembranosus muscle), involving activation of ubiquitin-mediated protein degradation and suppression of S6K1-mediated protein translation; 2) the proliferative activity of satellite cells is decreased in the atrophied muscle of late-term embryos but enhanced at the day of hatch, probably preparing for the postnatal growth. The mobilization of muscle may represent an adaptive response of avian embryos to external (environmental) or internal (physiological) changes, considering there are developmental transitions both in hormones and requirements for glycolytic substrates from middle-term to late-term incubation. Although the exact mechanism triggering muscle fiber atrophy is still unknown, nutritional and endocrine changes may be of importance. The atrophied muscle fiber recovers as soon as feed and water are available to the hatchling. In ovo feeding of late-term embryos has been applied to improve the nutritional status and therein enhances muscle development. Similarly, in ovo exposure to higher temperature or green light during the critical period of muscle development are also demonstrated to be potential strategies to promote pre- and posthatch muscle growth.
Collapse
Affiliation(s)
- W Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | | | | | | | | | | |
Collapse
|
54
|
Chen W, Tangara M, Xu J, Peng J. Developmental transition of pectoralis muscle from atrophy in late-term duck embryos to hypertrophy in neonates. Exp Physiol 2012; 97:861-72. [PMID: 22787243 DOI: 10.1113/expphysiol.2011.01083.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Unlike the mammalian fetus, whose growth is supported by the sustained provision of maternal nutrients, poultry embryos undergo development in a relatively closed space, and the yolk sac serves as the sole nutrient supply for embryonic development throughout the whole incubation period. To increase our understanding of the muscle developmental patterns in the final stage of incubation and early days posthatching, we used late-term duck embryos and newly hatched ducklings as animal models. Pectoralis muscle samples were collected at 22 days (22E) of incubation, 25 days (25E) of incubation, hatching and day 7 posthatching. The pectoralis muscle mass, muscle fibre bundles and myofibre cross-sectional area showed a marked reduction from 22E to hatching, but they increased dramatically by day 7 posthatching. The mRNA expression of Atrogin-1, a key mediator of the ubiquitin system responsible for protein degradation, increased dramatically with the age of late-term duck embryos, but it decreased by day 7 and reached a very low level. The extent of mRNA expression of FoxO1, one of the transcription factors of the Atrogin-1 gene, exhibited a transient increase at 25E and then decreased from hatching to day 7. The phosphorylated p70 ribosomal protein S6 kinase 1 (S6K1)/S6K1 ratio exhibited a dramatic reduction from 22E to hatching (P < 0.05) and then increased by day 7. The results of the present study indicated that there was a developmental transition of pectoralis muscle from atrophy in late-term duck embryos to hypertrophy in neonates.
Collapse
Affiliation(s)
- Wei Chen
- Department of Animal Nutrition and Feed Science, Huazhong Agricultural University, Wuhan, China
| | | | | | | |
Collapse
|
55
|
Maltin CA. Muscle development and obesity: Is there a relationship? Organogenesis 2012; 4:158-69. [PMID: 19279728 DOI: 10.4161/org.4.3.6312] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 05/20/2008] [Indexed: 12/25/2022] Open
Abstract
The formation of skeletal muscle from the epithelial somites involves a series of events triggered by temporally and spatially discrete signals resulting in the generation of muscle fibers which vary in their contractile and metabolic nature. The fiber type composition of muscles varies between individuals and it has now been found that there are differences in fiber type proportions between lean and obese animals and humans. Amongst the possible causes of obesity, it has been suggested that inappropriate prenatal environments may 'program' the fetus and may lead to increased risks for disease in adult life. The characteristics of muscle are both heritable and plastic, giving the tissue some ability to adapt to signals and stimuli both pre and postnatally. Given that muscle is a site of fatty acid oxidation and carbohydrate metabolism and that its development can be changed by prenatal events, it is interesting to examine the possible relationship between muscle development and the risk of obesity.
Collapse
Affiliation(s)
- Charlotte A Maltin
- School of Pharmacy and Life Sciences; Robert Gordon University; Aberdeen UK
| |
Collapse
|
56
|
Maternal protein restriction induce skeletal muscle changes without altering the MRFs MyoD and myogenin expression in offspring. J Mol Histol 2012; 43:461-71. [PMID: 22538480 DOI: 10.1007/s10735-012-9413-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 04/02/2012] [Indexed: 10/28/2022]
Abstract
Stimuli during pregnancy, such as protein restriction, can affect morphophysiological parameters in the offspring with consequences in adulthood. The phenomenon known as fetal programming can cause short- and long-term changes in the skeletal muscle phenotype. We investigated the morphology and the myogenic regulatory factors (MRFs) MyoD and myogenin expression in soleus, SOL; oxidative and slow twitching and in extensor digitorum longus, EDL; glycolytic and fast twitching muscles in the offspring of dams subjected to protein restriction during pregnancy. Four groups of male Wistar offspring rats were studied. Offspring from dams fed a low-protein diet (6 % protein, LP) and normal protein diet (17 % protein, NP) were euthanized at 30 and 112 days old, and their muscles were removed and kept at -80 °C. Muscles histological sections (8 μm) were submitted to a myofibrillar adenosine triphosphatase histochemistry reaction for morphometric analysis. Gene and protein expression levels of MyoD and myogenin were determined by RT-qPCR and western blotting. The major findings observed were distinct patterns of morphological changes in SOL and EDL muscles in LP offspring at 30 and 112 days old without changes in MRFs MyoD and myogenin expression. Our results indicate that maternal protein restriction followed by normal diet after birth induced morphological changes in muscles with distinct morphofunctional characteristics over the long term, but did not alter the MRFs MyoD and myogenin expression. Further studies are necessary to better understand the mechanisms underlying the maternal protein restriction response on skeletal muscle.
Collapse
|
57
|
Wang J, Li X, Yang X, Sun Q, Huang R, Xing J, Zhao R. Maternal dietary protein induces opposite myofiber type transition in Meishan pigs at weaning and finishing stages. Meat Sci 2011; 89:221-7. [DOI: 10.1016/j.meatsci.2011.04.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 01/21/2011] [Accepted: 04/20/2011] [Indexed: 01/21/2023]
|
58
|
Brutsaert TD, Tamvada KH, Kiyamu M, White DD, Gage TB. Low ponderal index is associated with decreased muscle strength and fatigue resistance in college-aged women. Early Hum Dev 2011; 87:663-9. [PMID: 21641734 PMCID: PMC3179787 DOI: 10.1016/j.earlhumdev.2011.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 05/05/2011] [Accepted: 05/16/2011] [Indexed: 10/18/2022]
Abstract
Poor fetal growth is associated with decrements in muscle strength likely due to changes during myogenesis. We investigated the association of poor fetal growth with muscle strength, fatigue resistance, and the response to training in the isolated quadriceps femoris. Females (20.6 years) born to term but below the 10th percentile of ponderal index (PI)-for-gestational-age (LOWPI, n=14) were compared to controls (HIGHPI, n=14), before and after an 8-week training. Muscle strength was assessed as grip-strength and as the maximal isometric voluntary contraction (MVC) of the quadriceps femoris. Muscle fatigue was assessed during knee extension exercise. Body composition and the maximal oxygen consumption (VO(2)max) were also measured. Controlling for fat free mass (FFM), LOWPI versus HIGHPI women had ~11% lower grip-strength (P=0.023), 9-24% lower MVC values (P=0.042 pre-trained; P=0.020 post-trained), a higher rate of fatigue (pre- and post-training), and a diminished training response (P=0.016). Statistical control for FFM increased rather than decreased strength differences between PI groups. The PI was not associated with VO(2)max or measures of body composition. Strength and fatigue decrements strongly suggest that poor fetal growth affects the pathway of muscle force generation. This could be due to neuromotor and/or muscle morphologic changes during development e.g., fiber number, fiber type, etc. Muscle from LOWPI women may also be less responsive to training. Indirectly, results also implicate muscle as a potential mediator between poor fetal growth and adult chronic disease, given muscle's direct role in determining insulin resistance, type II diabetes, physical activity, and so forth.
Collapse
Affiliation(s)
- Tom D. Brutsaert
- Department of Exercise Science, Department of Anthropology, Syracuse University, Syracuse, NY
| | - Kelli H. Tamvada
- Department of Anthropology, University at Albany, SUNY, Albany, NY
| | - Melisa Kiyamu
- Department of Anthropology, University at Albany, SUNY, Albany, NY
| | - Daniel D. White
- College of Nanoscale Science and Engineering, University at Albany, SUNY, Albany, NY
| | - Timothy B Gage
- Department of Anthropology, University at Albany, SUNY, Albany, NY
| |
Collapse
|
59
|
Du M, Zhao JX, Yan X, Huang Y, Nicodemus LV, Yue W, McCormick RJ, Zhu MJ. Fetal muscle development, mesenchymal multipotent cell differentiation, and associated signaling pathways. J Anim Sci 2011; 89:583-90. [PMID: 20852073 PMCID: PMC4100697 DOI: 10.2527/jas.2010-3386] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Enhancing muscle growth while reducing fat accumulation improves the efficiency of animal production. The fetal stage is crucial for skeletal muscle development. Fetal muscle development involves myogenesis, adipogenesis, and fibrogenesis from mesenchymal multipotent cells (MC), which are negatively affected by maternal nutrient deficiencies. Enhancing myogenesis increases the lean-to-fat ratio of animals, enhancing intramuscular adipogenesis increases intramuscular fat that is indispensible for the superior eating properties of meat because fat is the major contributor to meat flavor. The promotion of fibrogenesis leads to the accumulation of connective tissue, which contributes to the background toughness of meat and is undesirable. Thus, it is essential to regulate MC differentiation to enhance lean growth and improve meat quality. To date, our understanding of mechanisms regulating the lineage commitment of MC is limited. In this review, we first discuss the impact of maternal nutrient deficiency on fetal development, offspring body composition, and meat quality. Because maternal nutrition affects fetal muscle through altering MC differentiation, we then review several important extracellular morphogens regulating MC differentiation, including hedgehog, Wingless and Int (Wnt), and bone morphogenic proteins. Possible involvement of epigenetic modifications associated with histone deacetylases class IIa and histone acetyltransferase, p300, in MC differentiation is also discussed.
Collapse
Affiliation(s)
- M Du
- Developmental Biology Group, Department of Animal Science, University of Wyoming, Laramie 82071, USA.
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Advances in research on the prenatal development of skeletal muscle in animals in relation to the quality of muscle-based food. I. Regulation of myogenesis and environmental impact. Animal 2011; 5:703-17. [DOI: 10.1017/s1751731110002089] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
61
|
Kenyon PR, Pain SJ, Hutton PG, Jenkinson CMC, Morris ST, Peterson SW, Blair HT. Effects of twin-bearing ewe nutritional treatments on ewe and lamb performance to weaning. ANIMAL PRODUCTION SCIENCE 2011. [DOI: 10.1071/an10184] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nutrition of the ewe at various stages of pregnancy is known to affect ewe and offspring performance. However, little is known regarding the potential interactions among differing maternal nutrition regimens in early and mid–late pregnancy. The objective of the present study was to examine the effects and potential interactions of three pastoral nutritional treatments from Day 21 of pregnancy (P21) to P50 (Sub-maintenanceP21–50 (total liveweight change achieved, SMP21-50, –0.15 ± 0.02 kg/day) v. MaintenanceP21–50 (MP21-50,–0.02 ± 0.02 kg/day) v. Ad libitumP21–50 (AdP21-50,0.15 ± 0.02 kg/day) and two pastoral nutritional treatments from P50 to P139 [MaintenanceP50–139 (designed to match change in conceptus mass, total liveweight change achieved, 0.19 ± 0.01 kg/day) v. Ad libitumP50–139 (0.26 ± 0.01 kg/day)] on 382 twin-bearing ewes and their offspring until 91 days after the mid-point of lambing (L91). Ewe liveweight and condition scores in pregnancy and lactation, and lamb liveweights, indices of colostrum uptake and survival were recorded. There were no interactions between nutritional periods for lamb liveweight, apparent colostrum intake and survival, and ewe liveweight, condition score and total weight of lamb per ewe at the end of the study. At L91, ewe nutritional treatment during P21–50 or P50–139 had no effect on either ewe liveweight or body condition score. Ewe nutritional treatment during P21–50 had no effect on lamb birthweight. Lambs born to AdP50–139 ewes were lighter (P < 0.05) than those born to MP50–139 ewes (5.32 ± 0.04 v. 5.48 ± 0.04 kg, respectively). Ewe nutritional treatment during P21–50 or P50–139 had no (P > 0.05) effect on indices of colostrum uptake in lambs at 24–36 h of age. At L91, ewe nutritional treatment during P21–50 or P50–139 had no effect on lamb liveweight, survival or total weight of lamb per ewe. In conclusion, although considerable differences in ewe liveweight were observed during pregnancy, the nutritional treatments had no effect on the production parameters measured at the end of the study. These results indicate, first, that farmers can use early pregnancy as a period to control ewe nutrition when ewes are offered at least pregnancy maintenance levels of nutrition in the mid–late pregnancy period and, second, that there is no advantage from offering twin-bearing ewes a level of nutrition above their pregnancy maintenance requirements in mid–late pregnancy.
Collapse
|
62
|
Rooke JA, Houdijk JGM, McIlvaney K, Ashworth CJ, Dwyer CM. Differential effects of maternal undernutrition between days 1 and 90 of pregnancy on ewe and lamb performance and lamb parasitism in hill or lowland breeds1. J Anim Sci 2010; 88:3833-42. [DOI: 10.2527/jas.2010-2991] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
63
|
Almeida AM, Campos A, Francisco R, Van Harten S, Cardoso LA, Coelho AV. Proteomic investigation of the effects of weight loss in the gastrocnemius muscle of wild and NZW rabbits via 2D-electrophoresis and MALDI-TOF MS. Anim Genet 2010; 41:260-72. [DOI: 10.1111/j.1365-2052.2009.01994.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
64
|
Ontogenesis of muscle and adipose tissues and their interactions in ruminants and other species. Animal 2010; 4:1093-109. [DOI: 10.1017/s1751731110000601] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
65
|
Rhodes P, Craigon J, Gray C, Rhind SM, Loughna PT, Gardner DS. Adult-onset obesity reveals prenatal programming of glucose-insulin sensitivity in male sheep nutrient restricted during late gestation. PLoS One 2009; 4:e7393. [PMID: 19826474 PMCID: PMC2756957 DOI: 10.1371/journal.pone.0007393] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 09/06/2009] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Obesity invokes a range of metabolic disturbances, but the transition from a poor to excessive nutritional environment may exacerbate adult metabolic dysfunction. The current study investigated global maternal nutrient restriction during early or late gestation on glucose tolerance and insulin sensitivity in the adult offspring when lean and obese. METHODS/PRINCIPAL FINDINGS Pregnant sheep received adequate (1.0M; CE, n = 6) or energy restricted (0.7M) diet during early (1-65 days; LEE, n = 6) or late (65-128 days; LEL, n = 7) gestation (term approximately 147 days). Subsequent offspring remained on pasture until 1.5 years when all received glucose and insulin tolerance tests (GTT & ITT) and body composition determination by dual energy x-ray absorptiometry (DXA). All animals were then exposed to an obesogenic environment for 6-7 months and all protocols repeated. Prenatal dietary treatment had no effect on birth weight or on metabolic endpoints when animals were 'lean' (1.5 years). Obesity revealed generalised metabolic 'inflexibility' and insulin resistance; characterised by blunted excursions of plasma NEFA and increased insulin(AUC) (from 133 to 341 [s.e.d. 26] ng.ml(-1).120 mins) during a GTT, respectively. For LEL vs. CE, the peak in plasma insulin when obese was greater (7.8 vs. 4.7 [s.e.d. 1.1] ng.ml(-1)) and was exacerbated by offspring sex (i.e. 9.8 vs. 4.4 [s.e.d. 1.16] ng.ml(-1); LEL male vs. CE male, respectively). Acquisition of obesity also significantly influenced the plasma lipid and protein profile to suggest, overall, greater net lipogenesis and reduced protein metabolism. CONCLUSIONS This study indicates generalised metabolic dysfunction with adult-onset obesity which also exacerbates and 'reveals' programming of glucose-insulin sensitivity in male offspring prenatally exposed to maternal undernutrition during late gestation. Taken together, the data suggest that metabolic function appears little compromised in young prenatally 'programmed' animals so long as weight is adequately controlled. Nutritional excess in adulthood exacerbates any programmed phenotype, indicating greater vigilance over weight control is required for those individuals exposed to nutritional thrift during gestation.
Collapse
Affiliation(s)
- Philip Rhodes
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Jim Craigon
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
| | - Clint Gray
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Stuart M. Rhind
- Macaulay Land Use Research Institute, Craigiebuckler, Aberdeen, United Kingdom
| | - Paul T. Loughna
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - David S. Gardner
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| |
Collapse
|
66
|
Du M, Tong J, Zhao J, Underwood KR, Zhu M, Ford SP, Nathanielsz PW. Fetal programming of skeletal muscle development in ruminant animals. J Anim Sci 2009; 88:E51-60. [PMID: 19717774 DOI: 10.2527/jas.2009-2311] [Citation(s) in RCA: 324] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Enhancing skeletal muscle growth is crucial for animal agriculture because skeletal muscle provides meat for human consumption. An increasing body of evidence shows that the level of maternal nutrition alters fetal skeletal muscle development, with long-term effects on offspring growth and performance. Fetal skeletal muscle development mainly involves myogenesis (i.e., muscle cell development), but also involves adipogenesis (i.e., adipocyte development) and fibrogenesis (i.e., fibroblast development). These tissues in fetal muscle are mainly derived from mesenchymal stem cells (MSC). Shifting the commitment of MSC from myogenesis to adipogenesis increases intramuscular fat (i.e., marbling), improving the quality grade of meats. Strong experimental evidence indicates that Wingless and Int (Wnt)/beta-catenin signaling regulates MSC differentiation. Upregulation of Wnt/beta-catenin promotes myogenesis, and downregulation enhances adipogenesis. A lack of nutrients in early to midgestation reduces the formation of secondary muscle fibers in ruminant animals. Nutrient deficiency during mid- to late gestation decreases the number of intramuscular adipocytes and muscle fiber sizes. Knowledge of this regulatory mechanism will allow the development of strategies to enhance muscle growth and marbling in offspring, especially in the setting of nutrient deficiency.
Collapse
Affiliation(s)
- M Du
- Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA.
| | | | | | | | | | | | | |
Collapse
|
67
|
Gardner DS, Rhodes P. Developmental origins of obesity: programming of food intake or physical activity? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 646:83-93. [PMID: 19536666 DOI: 10.1007/978-1-4020-9173-5_9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mans ability to capture, harness and store energy most efficiently as fat in adipose tissue has been an evolutionary success story for the majority of human existence. Only over the last 30-40 years has our remarkable metabolic efficiency been revealed as our energy balance increasingly favours storage without regular periods of depletion. Historical records show us that while the composition of our diet has changed markedly over this time, our overall energy intake has significantly reduced. The inevitable conclusion therefore is that habitual physical activity and thus energy expenditure has reduced by a greater extent. Recent studies have illustrated how the finely tuned long-term control of energy intake and of energy expenditure are both developmentally plastic and susceptible to environmentally-induced change that may persist with that individual throughout their adult life, invariably rendering them more susceptible to greater adipose tissue deposition. The central role that lean body mass has upon the 'gating' of energy sensing and the importance of regular physical activity for its potential to reduce the burden of a 'thrifty phenotype' will be briefly discussed in the present review.
Collapse
Affiliation(s)
- David S Gardner
- Centre for Reproduction and Early Life, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK.
| | | |
Collapse
|
68
|
Brameld JM, Daniel ZCTR. In utero effects on livestock muscle development and body composition. ACTA ACUST UNITED AC 2008. [DOI: 10.1071/ea08017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review will focus on the evidence for in utero effects on development of skeletal muscle in farm and laboratory animals, particularly sheep and pigs. We will describe genetic and environmental factors that have been shown to alter the numbers of muscle fibres formed and outline our working hypothesis for the mechanism involved and the critical window during pregnancy when these effects are seen. We will then discuss the long-term consequences in terms of body composition. Although this review concentrates on skeletal muscle development, the mechanism we suggest might be equally applicable to other tissues in the body (e.g. the brain, kidneys or sex organs) and, therefore, impact on their physiological functions.
Collapse
|