51
|
Kadegowda AKG, Burns TA, Miller MC, Duckett SK. Cis-9, trans-11 conjugated linoleic acid is endogenously synthesized from palmitelaidic (C16:1 trans-9) acid in bovine adipocytes1. J Anim Sci 2013; 91:1614-23. [DOI: 10.2527/jas.2012-5590] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- A. K. G. Kadegowda
- Department of Animal and Veterinary Sciences, Clemson University, SC 29634-0311
| | - T. A. Burns
- Department of Animal and Veterinary Sciences, Clemson University, SC 29634-0311
| | - M. C. Miller
- Department of Animal and Veterinary Sciences, Clemson University, SC 29634-0311
| | - S. K. Duckett
- Department of Animal and Veterinary Sciences, Clemson University, SC 29634-0311
| |
Collapse
|
52
|
Key CN, Perkins SD, Bratcher CL, Kriese-Anderson LA, Brandebourg TD. Grain feeding coordinately alters expression patterns of transcription factor and metabolic genes in subcutaneous adipose tissue of crossbred heifers. J Anim Sci 2013; 91:2616-27. [PMID: 23482578 DOI: 10.2527/jas.2012-5846] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ability to improve meat quality and production efficiency in cattle is limited by an inability to enhance marbling and simultaneously limit undesirable adipose tissue accretion. The objective of this study was to examine expression of regulatory genes in subcutaneous (SCF) adipose tissue of heifers in response to increasing days on feed (DOF) and finishing strategy. Crossbred heifers (n = 24) were allotted as follows: Group 1 = 0 d, Group 2 = 99 d on winter annual ryegrass (grass; Lolium multiflorum Lam.), Group 3 = 218 g on grass, Group 4 = 99 d on grass followed by 119 d on grain. Adipose tissue samples were collected at time of harvest and frozen. Carcass characteristics were measured 24 h postharvest. As expected, HCW (P < 0.0001), ribeye area (REA; P < 0.0002), backfat (BF; P < 0.0001), KPH (P < 0.0001), and marbling score (P < 0.0009) increased with DOF though frame score was not different (P < 0.95). Average daily gain decreased with DOF (P < 0.0001). Yield grade increased (P < 0.0014) but cook loss percentage decreased (P < 0.001) with DOF without changes in 24-h pH (P < 0.31). Interestingly, Warner-Bratzler shear force (WBS) was decreased with DOF (P < 0.0089). Meanwhile, BF (P < 0.01) and KPH (P < 0.05) were greater, whereas marbling values trended greater in grain versus grass-finished heifers. Neither ADG (P < 0.89), HCW (P < 0.26), frame score (P < 0.85), nor REA (P < 0.38) were different between these groups. Grain finishing increased yield grade (P < 0.001) but did not affect 24-h pH (P < 0.88), cook loss percentage (P < 0.98), or WBS (P < 0.44) compared with grass-finished heifers. The expression of PPARγ, bone morphogenic protein 2 (BMP2), and SMAD family member 1 (SMAD1) mRNA was upregulated in response to DOF and grain finishing, whereas sterol regulatory element binding protein 1c (SREBP-1c), sonic hedgehog (SHH), chicken ovalbumin protein transcription factor 1 (COUP-TF1), chicken ovalbumin protein transcription factor 2 (COUP-TF2), and preadipocyte factor-1 (PREF-1) mRNA was decreased in response to DOF and grain finishing. These changes were associated with increased expression of lipoprotein lipase (LPL), stearoyl-coenzyme A desaturase (SCD), and fatty acid synthase (FAS) mRNA. In summary, increasing DOF was associated with improved meat quality whereas gene expression studies suggest several novel genes are associated with subcutaneous adipose tissue development in growing and finishing cattle.
Collapse
Affiliation(s)
- C N Key
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA
| | | | | | | | | |
Collapse
|
53
|
Costa ASH, Silva MP, Alfaia CPM, Pires VMR, Fontes CMGA, Bessa RJB, Prates JAM. Genetic background and diet impact beef fatty acid composition and stearoyl-CoA desaturase mRNA expression. Lipids 2013; 48:369-81. [PMID: 23467818 DOI: 10.1007/s11745-013-3776-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 02/13/2013] [Indexed: 12/16/2022]
Abstract
The intramuscular fat composition of ruminant meats influences the quality of the final product, which explains the increasing interest in assessing the fatty acid profile of meat from different production systems. In this study, it was hypothesized that there are breed- and diet-induced variations on lipid metabolism in the muscle, which may be, at least partially, modulated by the stearoyl-CoA desaturase (SCD) gene expression levels. Forty purebred young bulls from two phylogenetically distant autochthonous cattle breeds, Alentejana and Barrosã (n = 20 for each breed), were assigned to two different diets (low vs. high silage) and slaughtered at 18 months of age. Meat fatty acid composition, including the detailed conjugated linoleic acid (CLA) isomeric profile, was determined along with the SCD mRNA levels. Meat from Barrosã bulls fed the low silage diet was richer in monounsaturated fatty acids, CLA and trans fatty acids, when compared to that from Alentejana bulls. The meat content in polyunsaturated fatty acids was similar across experimental groups. Moderate positive correlations between the SCD mRNA levels and the products of this enzyme activity were found, although they were not reflected on the calculated desaturase indices. Overall, these findings highlight the importance of taking into account the genetic background while devising feeding strategies to manipulate beef fatty acid composition.
Collapse
Affiliation(s)
- Ana S H Costa
- CIISA, Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Av. da Universidade Técnica, Pólo Universitário do Alto da Ajuda, 1300-477, Lisboa, Portugal
| | | | | | | | | | | | | |
Collapse
|
54
|
Duckett SK, Neel JPS, Lewis RM, Fontenot JP, Clapham WM. Effects of forage species or concentrate finishing on animal performance, carcass and meat quality1,2. J Anim Sci 2013; 91:1454-67. [DOI: 10.2527/jas.2012-5914] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- S. K. Duckett
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634
| | - J. P. S. Neel
- USDA-ARS-Appalachian Farming Systems Research Center, Beaver, WV 25813
| | - R. M. Lewis
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg 24061
| | - J. P. Fontenot
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg 24061
| | - W. M. Clapham
- USDA-ARS-Appalachian Farming Systems Research Center, Beaver, WV 25813
| |
Collapse
|
55
|
De Jager N, Hudson NJ, Reverter A, Barnard R, Cafe LM, Greenwood PL, Dalrymple BP. Gene expression phenotypes for lipid metabolism and intramuscular fat in skeletal muscle of cattle. J Anim Sci 2013; 91:1112-28. [PMID: 23296809 DOI: 10.2527/jas.2012-5409] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene expression phenotypes were evaluated for intramuscular fat (IMF) in bovine skeletal muscle as an alternative to traditional estimates of IMF%. Gene expression data from a time course of LM development in high- and low-marbling Bos taurus cattle crosses were compared to identify genes involved in intramuscular adipocyte lipid metabolism with developmentally similar gene expression profiles. Three sets of genes were identified: triacylglyceride (TAG) synthesis and storage, fatty acid (FA) synthesis, and PPARγ-related genes. In an independent analysis in the LM of 48 Bos indicus cattle, TAG and FA gene sets were enriched in the top 100 genes of which expression was most correlated with IMF% (P = 1.2 × 10(-24) and 3.5 × 10(-9), respectively). In general, genes encoding enzymes involved in the synthesis of FA and TAG in the intramuscular adipocytes were present in the top 100 genes. In B. indicus, effects of a steroid hormone growth promotant (HGP), 2 experimental sites [New South Wales (NSW) and Western Australia (WA)], and 3 tenderness genotypes on the expression levels of genes in the TAG gene set and the correlation of gene expression with IMF% were investigated. Although correlation between expression of 12 individual TAG genes and IMF% was observed in HGP-treated animals in both experimental sites (mean r = 0.43), correlation was not observed for untreated animals at the NSW site (mean r = -0.07, P < 3 × 10(-6)). However, TAG genes showed an average 1.6-fold (P < 0.0004) reduction in expression in the LM of HGP-treated cattle relative to untreated cattle, an effect consistent across both experimental sites. Cattle possessing the favored tenderness calpain 1 and 3 and calpastatin alleles exhibited a greater (P = 0.008) reduction in expression in NSW (1.8-fold reduction, P = 0.0002) compared with WA (1.2-fold reduction, P = 0.03). Tenderness genotype had no impact (P > 0.05) on the correlation of TAG genes with IMF%. In general, the interactions among genotype, treatment and location, and TAG gene set gene expression were consistent with the interactions among the same factors and IMF% detected using 255 animals, of which the 48 in this study were a subset. Thus, the TAG gene set constitutes a gene expression phenotype able to predict effects of different genotypes and treatments on IMF% using much smaller groups than current approaches, even in animals with very low IMF%.
Collapse
Affiliation(s)
- N De Jager
- Australian Cooperative Research Centre for Beef Genetic Technologies (Beef CRC), Armidale, NSW 2351, Australia
| | | | | | | | | | | | | |
Collapse
|
56
|
Buchanan JW, Garmyn AJ, Hilton GG, VanOverbeke DL, Duan Q, Beitz DC, Mateescu RG. Comparison of gene expression and fatty acid profiles in concentrate and forage finished beef1. J Anim Sci 2013; 91:1-9. [DOI: 10.2527/jas.2012-5154] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- J. W. Buchanan
- Department of Animal Science, Oklahoma State University, Stillwater 74078
| | - A. J. Garmyn
- Department of Animal Science, Texas Tech University, Lubbock 79409
| | - G. G. Hilton
- Department of Animal Science, Oklahoma State University, Stillwater 74078
| | - D. L. VanOverbeke
- Department of Animal Science, Oklahoma State University, Stillwater 74078
| | - Q. Duan
- Department of Genetics, University of North Carolina, Chapel Hill 27599
| | - D. C. Beitz
- Department of Animal Science, Iowa State University, Ames 50011
| | - R. G. Mateescu
- Department of Animal Science, Oklahoma State University, Stillwater 74078
| |
Collapse
|
57
|
Pratt SL, Burns TA, Owens MD, Duckett SK. Isolation of total RNA and detection procedures for miRNA present in bovine-cultured adipocytes and adipose tissues. Methods Mol Biol 2013; 936:181-94. [PMID: 23007509 DOI: 10.1007/978-1-62703-083-0_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Micro-ribonucleic acids (miRNA) regulate gene expression posttranscriptionally by altering translation of protein(s) encoded by specific messenger RNA. Therefore the ability to detect and quantify the expression levels of specific miRNA present within a cell or tissue is necessary to thoroughly examine cellular physiology and gene expression. Here we describe procedures that allow for the isolation and quantification of miRNA in bovine adipocytes and adipose tissue.
Collapse
Affiliation(s)
- Scott L Pratt
- Animal and Veterinary Science Department, Clemson University, Clemson, SC, USA.
| | | | | | | |
Collapse
|
58
|
Corazzin M, Bovolenta S, Saccà E, Bianchi G, Piasentier E. Effect of linseed addition on the expression of some lipid metabolism genes in the adipose tissue of young Italian Simmental and Holstein bulls1. J Anim Sci 2013; 91:405-12. [DOI: 10.2527/jas.2011-5057] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- M. Corazzin
- Department of Agricultural and Environmental Science, University of Udine, 33100 Udine, Italy
| | - S. Bovolenta
- Department of Agricultural and Environmental Science, University of Udine, 33100 Udine, Italy
| | - E. Saccà
- Department of Agricultural and Environmental Science, University of Udine, 33100 Udine, Italy
| | - G. Bianchi
- ERSA, Agency for Rural Development, Autonomous Region of Friuli Venezia Giulia, 33100 Udine, Italy
| | - E. Piasentier
- Department of Agricultural and Environmental Science, University of Udine, 33100 Udine, Italy
| |
Collapse
|
59
|
Fatty acid composition and interrelationships among eight retail cuts of grass-feed beef. Meat Sci 2012; 93:371-7. [PMID: 23273439 DOI: 10.1016/j.meatsci.2012.09.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 09/17/2012] [Accepted: 09/19/2012] [Indexed: 11/23/2022]
Abstract
The aim of this research was to evaluate: 1) fatty acid (FA) profile of eight retail cuts (eye of round, ribeye, top round, striploin, tenderloin, top-sirloin, underblade, ground beef) from grass-fed steers, 2) the association between striploin (longissimus muscle) FA profile and that from the other retail cuts, and 3) the changes in FA profile associated with retail cut total FA content. All of the retail cuts, except underblade and ground beef, would be considered lean (<10 g) based on total FA content. Total saturated fatty acids were positively correlated to total FA content; whereas, negative correlations were observed with total FA content and total monounsaturated and polyunsaturated fatty acids. No correlation was observed between total FA and CLA cis-9, trans-11. Striploin trans-11 C18:1 and CLA cis-9, trans-11 proportions, and n-6:n-3 ratio were positive and highly correlated with those in the other retail cuts.
Collapse
|
60
|
Burns TA, Kadegowda AKG, Duckett SK, Pratt SL, Jenkins TC. Palmitoleic (16:1 cis-9) and cis-vaccenic (18:1 cis-11) acid alter lipogenesis in bovine adipocyte cultures. Lipids 2012; 47:1143-53. [PMID: 23077002 DOI: 10.1007/s11745-012-3723-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 09/17/2012] [Indexed: 12/29/2022]
Abstract
Our objectives were to: (1) confirm elongation products of palmitoleic acid (16:1 cis-9) elongation in vitro using stable isotopes and (2) evaluate if exogenous supplementation of palmitoleic acid, elongation products, or both are responsible for decreased desaturation and lipogenesis rates observed with palmitoleic acid supplementation in bovine adipocytes. Stromal vascular cultures were isolated from adipose tissue of two beef carcasses, allowed to reach confluence, held for 2 days, and differentiated with a standard hormone cocktail (day 0). On day 2, secondary differentiation media containing 1 of 4 fatty acid treatments [0 μM fatty acid (control), or 150 μM palmitic (16:0), palmitoleic, or cis-vaccenic (18:1 cis-11)] was added for 4 days. On day 6, cells were incubated with [(13)C] 16:1, [(13)C] 2, or [(13)C] 18:0 to estimate elongation, lipogenic, and desaturation rates using gas chromatography-mass spectrometry. Enrichment of [(13)C] 18:1 cis-11 confirmed 18:1 cis-11 is an elongation product of 16:1. Additionally, [(13)C] label was seen in 20:1 cis-13 and cis-9, cis-11 CLA. Synthesis of [(13)C] 16:0 from [(13)C] 2 was reduced (P < 0.05) in palmitoleic acid and cis-vaccenic acid-treated compared with control cells following 36 h incubation. By 12 h of [(13)C] 18:0 incubation, cells supplemented with palmitoleic acid had reduced (P < 0.05) [(13)C] 18:1 cis-9 compared with all other treatments. Gene expression and fatty acid results support isotopic data for lipogenesis and desaturation. Therefore, palmitoleic acid is actively elongated in vitro and its elongation product, cis-vaccenic acid, can also reduce lipogenesis. However, inhibition of desaturation can be directly attributed to palmitoleic acid and not its elongation products, 18:1 cis-11 or 20:1 cis-13.
Collapse
Affiliation(s)
- T A Burns
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634-0311, USA
| | | | | | | | | |
Collapse
|
61
|
Burns TA, Duckett SK, Pratt SL, Jenkins TC. Supplemental palmitoleic (C16:1 cis-9) acid reduces lipogenesis and desaturation in bovine adipocyte cultures1. J Anim Sci 2012; 90:3433-41. [DOI: 10.2527/jas.2011-4972] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- T. A. Burns
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634-0311
| | - S. K. Duckett
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634-0311
| | - S. L. Pratt
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634-0311
| | - T. C. Jenkins
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634-0311
| |
Collapse
|
62
|
Smith SB, Go GW, Johnson BJ, Chung KY, Choi SH, Sawyer JE, Silvey DT, Gilmore LA, Ghahramany G, Kim KH. Adipogenic gene expression and fatty acid composition in subcutaneous adipose tissue depots of Angus steers between 9 and 16 months of age. J Anim Sci 2012; 90:2505-14. [PMID: 22307484 DOI: 10.2527/jas.2011-4602] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have demonstrated that among carcass adipose tissue depots, brisket subcutaneous adipose tissue contains the greatest concentration of MUFA and lowest concentration of SFA. Therefore, we hypothesized that brisket subcutaneous adipose tissue depots would exhibit greater adipogenic gene expression over time than other major subcutaneous adipose tissue depots. Four Angus steers, each at 9, 12, 14, and 16 mo of age, were harvested and fresh subcutaneous adipose tissue samples were collected from over the brisket, chuck, rib, loin, sirloin, round, flank, and plate. Relative gene expression for C/EBPβ, PPARγ, carnitine palmitoyltransferase-1 beta (CPT-1β), stearoyl-coenzyme A desaturase (SCD), AMP-activated protein kinase alpha (AMPKα), and G-coupled protein receptor 43 (GPR43) was analyzed by quantitative real-time PCR. Expression of C/EBPβ, PPARγ, and CPT-1β was greatest at 12 to 14 mo of age (all P < 0.0001) and declined to very low abundance by 16 mo of age in all depots. Expression of PPARγ and CPT-1β was greater (P < 0.03) in flank, rib, and sirloin subcutaneous adipose tissues than in brisket and round adipose tissues. The expression of the SCD gene did not differ among the 4 age groups (P = 0.95). The palmitoleic:stearic acid ratio (an estimate of SCD activity) was greater (P < 0.001) in the subcutaneous adipose tissues from brisket, plate, and round than in the loin, rib, and sirloin. Conversely, subcutaneous adipose tissue from the loin, rib, and sirloin had greater (P < 0.001) SCD gene expression than the brisket, plate, and round. In general, subcutaneous adipose tissues with the highest concentration of MUFA and least SFA consistently exhibited the least SCD gene expression and adipogenic gene expression. We conclude that MUFA in the brisket and other depots with large SCD indices were deposited before 9 mo of age, during a time when the subcutaneous adipocytes were highly differentiated.
Collapse
Affiliation(s)
- S B Smith
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Long NM, Rule DC, Zhu MJ, Nathanielsz PW, Ford SP. Maternal obesity upregulates fatty acid and glucose transporters and increases expression of enzymes mediating fatty acid biosynthesis in fetal adipose tissue depots. J Anim Sci 2012; 90:2201-10. [PMID: 22266999 DOI: 10.2527/jas.2011-4343] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Maternal nutrient restriction leads to alteration in fetal adipose tissue, and offspring from obese mothers have an increased risk of developing obesity. We hypothesized that maternal obesity increases fetal adipogenesis. Multiparous ewes (Columbia/Rambouillet cross 3 to 5 yr of age) carrying twins were assigned to a diet of 100% (Control; CON; n = 4) or 150% (Obese; OB, n = 7) of NRC maintenance requirements from 60 d before conception until necropsy on d 135 of gestation. Maternal and fetal plasma were collected and stored at -80°C for glucose and hormone analyses. Fetal measurements were made at necropsy, and perirenal, pericardial, and subcutaneous adipose tissues were collected from 7 male twin fetuses per group and snap frozen at -80°C. Protein and mRNA expression of fatty acid translocase [cluster of differentiation (CD) 36], fatty acid transport proteins (FATP) 1 and 4, insulin-sensitive glucose transporter (GLUT-4), fatty acid synthase (FASN), and acetyl-coA carboxylase (ACC) was evaluated. Fetal weight was similar, but fetal carcass weight (FCW) was reduced (P < 0.05) in OB versus CON fetuses. Pericardial and perirenal adipose tissue weights were increased (P < 0.05) as a percentage of FCW in OB versus CON fetuses, as was subcutaneous fat thickness (P < 0.001). Average adipocyte diameter was greater (P < 0.01) in the perirenal fat and the pericardial fat (P = 0.06) in OB fetuses compared with CON fetuses. Maternal plasma showed no difference (P > 0.05) in glucose or other hormones, fetal plasma glucose was similar (P = 0.42), and cortisol, IGF-1, and thyroxine were reduced (P ≤ 0.05) in OB fetuses compared with CON fetuses. Protein and mRNA expression of CD 36, FATP 1 and 4, and GLUT-4 were increased (P ≤ 0.05) in all fetal adipose depots in OB versus CON fetuses. The mRNA expression of FASN and ACC was increased (P < 0.05) in OB vs. CON fetuses in all 3 fetal adipose tissue depots. Fatty acid concentrations were increased (P = 0.01) in the perirenal depot of OB versus CON fetuses, and specific fatty acid concentrations were altered (P < 0.05) in subcutaneous and pericardial adipose tissue because of maternal obesity. In conclusion, maternal obesity was associated with increased fetal adiposity, increased fatty acid and glucose transporters, and increased expression of enzymes mediating fatty acid biosynthesis in adipose depots. These alterations, if maintained into the postnatal period, could predispose the offspring to later obesity and metabolic disease.
Collapse
Affiliation(s)
- N M Long
- The Center for the Study of Fetal Programming, Laramie, WY 82071, USA
| | | | | | | | | |
Collapse
|
64
|
Dugan M, Aldai N, Aalhus J, Rolland D, Kramer J. Review:Trans-forming beef to provide healthier fatty acid profiles. CANADIAN JOURNAL OF ANIMAL SCIENCE 2011. [DOI: 10.4141/cjas2011-044] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Dugan, M. E. R., Aldai, N., Aalhus, J. L., Rolland, D. C. and Kramer, J. K. G. 2011. Review: Trans- forming beef to provide healthier fatty acid profiles. Can. J. Anim. Sci. 91: 545–556.Trans fatty acids are found naturally in foods, particularly in those derived from ruminant animals, such as beef and dairy cattle. Over the past few decades, human consumption of trans fatty acids has increased, but this has been mainly from products containing partially hydrogenated vegetable oils. The correlation of trans fatty acid consumption with diseases such as coronary heart disease has been cause for concern, and led to recommendations to reduce their consumption. Trans fatty acids, however, have differing effects on human health. Therefore, in foods produced from ruminant animals, it is important to know their trans fatty acid composition, and how to enrich or deplete fatty acids that have positive or negative health effects. This review will cover the analysis of trans fatty acids in beef, their origin, how to manipulate their concentrations, and give a brief overview of their health effects.
Collapse
Affiliation(s)
- Michael Dugan
- Lacombe Research Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada T4L 1W1
| | - Noelia Aldai
- Lacombe Research Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada T4L 1W1
| | - Jennifer Aalhus
- Lacombe Research Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada T4L 1W1
| | - David Rolland
- Lacombe Research Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada T4L 1W1
| | - John Kramer
- Lacombe Research Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada T4L 1W1
| |
Collapse
|
65
|
Brooks MA, Choi CW, Lunt DK, Kawachi H, Smith SB. Subcutaneous and intramuscular adipose tissue stearoyl-coenzyme A desaturase gene expression and fatty acid composition in calf- and yearling-fed Angus steers. J Anim Sci 2011; 89:2556-70. [PMID: 21454869 DOI: 10.2527/jas.2010-3369] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We proposed that stearoyl-CoA desaturase (SCD) activity dictates fatty acid composition of adipose tissue and muscle in beef cattle, regardless of ruminal or hepatic fatty acid hydrogenation or desaturation. Twelve Angus steers were assigned to a calf-fed (CF) group and slaughtered at weaning (8 mo of age; n=4), 12 mo of age (n=4), or 16 mo of age (n=4). Twelve steers were assigned to a yearling-fed (YF) group and slaughtered at 12 mo of age (n=4), 16 mo of age (n=4), and 17.5 mo of age (n=4; 525 kg, market weight). Data were analyzed based on time on the corn-based finishing diet, with terminal age as a covariate, and orthogonal polynomial contrasts were tested on the main effects of treatment group and time on the finishing diet. Fatty acids from duodenal digesta, plasma, liver, LM, and subcutaneous and intramuscular adipose tissue were measured, and SCD gene expression was measured in intramuscular and subcutaneous adipose tissues. In duodenal digesta, palmitic and linoleic acids increased by 100% over the sampling period, α-linolenic acid decreased over the sampling period, and trans-vaccenic acid was greater in YF than in CF steers (all P < 0.01). The proportion of α-linolenic acid decreased over time in all tissues, including liver. The SCD index (ratio of SCD fatty acid products to SCD fatty acid substrates) increased over time in LM and in intramuscular and subcutaneous adipose tissues. The SCD:glyceraldehyde 3-phosphate dehydrogenase mRNA ratio was virtually undetectable at the initial sampling periods in subcutaneous adipose tissue of YF and CF steers, and it increased over time (P < 0.01). The SCD index and SCD:glyceraldehyde 3-phosphate dehydrogenase ratio were greater in intramuscular adipose tissue of CF steers than in that of YF steers. The SCD index did not change over time in liver and decreased over time in duodenal digesta. We conclude that, unlike essential fatty acids, the SFA and MUFA composition of adipose tissue is regulated by adipose tissue fatty acid desaturation, with little contribution from hepatic or duodenal fatty acids.
Collapse
Affiliation(s)
- M A Brooks
- Department of Animal Science, Texas Agricultural Experiment Station, Texas A&M University, College Station 77843, USA
| | | | | | | | | |
Collapse
|
66
|
Joseph SJ, Pratt SL, Pavan E, Rekaya R, Duckett SK. Omega-6 fat supplementation alters lipogenic gene expression in bovine subcutaneous adipose tissue. GENE REGULATION AND SYSTEMS BIOLOGY 2010; 4:91-101. [PMID: 21072324 PMCID: PMC2976073 DOI: 10.4137/grsb.s5831] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In contrast to rodents, adipose tissue serves as the major site of lipogenesis and storage reservoir for excess dietary energy in cattle. Research in rodents shows that adding corn oil (57% C18:2 n-6) to the diet alters lipogenesis enhancing deposition of omega-6 fatty acids. This study examines changes in lipogenic gene expression of subcutaneous adipose tissue from eighteen steers fed increasing levels of dietary corn oil [0 (NONE), 0.31 kg/d (MED) and 0.62 kg/d (HI)] using two platforms, qPCR and microarray. The results show that MED level of oil supplementation up-regulates gene expression of key lipogenic enzymes but that as oil supplementation reaches HI level mRNA encoding lipogenic enzymes responsible for de novo synthesis and desaturation are down-regulated. Changes in specific lipogenic mRNA levels are correlated with changes in tissue fatty acid composition where de novo and desatured fatty acids were reduced with the highest level of oil supplementation.
Collapse
|
67
|
Joseph SJ, Robbins KR, Pavan E, Pratt SL, Duckett SK, Rekaya R. Effect of diet supplementation on the expression of bovine genes associated with Fatty Acid synthesis and metabolism. Bioinform Biol Insights 2010; 4:19-31. [PMID: 20448844 PMCID: PMC2865165 DOI: 10.4137/bbi.s4168] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Conjugated linoleic acids (CLA) are of important nutritional and health benefit to human. Food products of animal origin are their major dietary source and their concentration increases with high concentrate diets fed to animals. To examine the effects of diet supplementation on the expression of genes related to lipid metabolism, 28 Angus steers were fed either pasture only, pasture with soybean hulls and corn oil, pasture with corn grain, or high concentrate diet. At slaughter, samples of subcutaneous adipose tissue were collected, from which RNA was extracted. Relative abundance of gene expression was measured using Affymetrix GeneChip Bovine Genome array. An ANOVA model nested within gene was used to analyze the background adjusted, normalized average difference of probe-level intensities. To control experiment wise error, a false discovery rate of 0.01 was imposed on all contrasts. Expression of several genes involved in the synthesis of enzymes related to fatty acid metabolism and lipogenesis such as stearoyl-CoA desaturase (SCD), fatty acid synthetase (FASN), lipoprotein lipase (LPL), fatty-acyl elongase (LCE) along with several trancription factors and co-activators involved in lipogenesis were found to be differentially expressed. Confirmatory RT-qPCR was done to validate the microarray results, which showed satisfactory correspondence between the two platforms. Results show that changes in diet by increasing dietary energy intake by supplementing high concentrate diet have effects on the transcription of genes encoding enzymes involved in fat metabolism which in turn has effects on fatty acid content in the carcass tissue as well as carcass quality. Corn supplementation either as oil or grain appeared to significantly alter the expression of genes directly associated with fatty acid synthesis.
Collapse
|
68
|
Daley CA, Abbott A, Doyle PS, Nader GA, Larson S. A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef. Nutr J 2010; 9:10. [PMID: 20219103 PMCID: PMC2846864 DOI: 10.1186/1475-2891-9-10] [Citation(s) in RCA: 403] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 03/10/2010] [Indexed: 11/10/2022] Open
Abstract
Growing consumer interest in grass-fed beef products has raised a number of questions with regard to the perceived differences in nutritional quality between grass-fed and grain-fed cattle. Research spanning three decades suggests that grass-based diets can significantly improve the fatty acid (FA) composition and antioxidant content of beef, albeit with variable impacts on overall palatability. Grass-based diets have been shown to enhance total conjugated linoleic acid (CLA) (C18:2) isomers, trans vaccenic acid (TVA) (C18:1 t11), a precursor to CLA, and omega-3 (n-3) FAs on a g/g fat basis. While the overall concentration of total SFAs is not different between feeding regimens, grass-finished beef tends toward a higher proportion of cholesterol neutral stearic FA (C18:0), and less cholesterol-elevating SFAs such as myristic (C14:0) and palmitic (C16:0) FAs. Several studies suggest that grass-based diets elevate precursors for Vitamin A and E, as well as cancer fighting antioxidants such as glutathione (GT) and superoxide dismutase (SOD) activity as compared to grain-fed contemporaries. Fat conscious consumers will also prefer the overall lower fat content of a grass-fed beef product. However, consumers should be aware that the differences in FA content will also give grass-fed beef a distinct grass flavor and unique cooking qualities that should be considered when making the transition from grain-fed beef. In addition, the fat from grass-finished beef may have a yellowish appearance from the elevated carotenoid content (precursor to Vitamin A). It is also noted that grain-fed beef consumers may achieve similar intakes of both n-3 and CLA through the consumption of higher fat grain-fed portions.
Collapse
Affiliation(s)
- Cynthia A Daley
- College of Agriculture, California State University, Chico, CA, USA
| | - Amber Abbott
- College of Agriculture, California State University, Chico, CA, USA
| | - Patrick S Doyle
- College of Agriculture, California State University, Chico, CA, USA
| | - Glenn A Nader
- University of California Cooperative Extension Service, Davis, CA, USA
| | - Stephanie Larson
- University of California Cooperative Extension Service, Davis, CA, USA
| |
Collapse
|
69
|
Duckett SK, Neel JPS, Fontenot JP, Clapham WM. Effects of winter stocker growth rate and finishing system on: III. Tissue proximate, fatty acid, vitamin, and cholesterol content. J Anim Sci 2009; 87:2961-70. [PMID: 19502506 DOI: 10.2527/jas.2009-1850] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Angus-cross steers (n = 198; 270 kg of BW; 8 mo) were used in a 3-yr study to assess the effects of winter stocker growth rate and finishing system on LM proximate, fatty acid, cholesterol, vitamin, and mineral composition. During the winter months (December to April), steers were randomly allotted to 3 stocker growth rates: low (0.23 kg/d), medium (0.45 kg/d), or high (0.68 kg/d). At the completion of the stockering phase, steers were allotted randomly within each stocker growth rate to a high concentrate (CONC) or pasture (PAST) finishing system and finished to an equal time endpoint. Winter stocker growth rate did not alter (P > 0.05) proximate, cholesterol, or vitamin content of the LM. All interactions among winter stocker growth rate and finishing system were nonsignificant, indicating that supplementation systems during winter stocker period did not influence beef composition after finishing on PAST or CONC. Finishing steers on CONC decreased (P < 0.001) moisture content of the LM and increased (P < 0.001) lipid content of the LM. Protein, ash, and cholesterol content of the LM did not differ (P > 0.05) between finishing systems. alpha-Tocopherol and beta-carotene content of the LM were 288 and 54% greater, respectively, for PAST-finished cattle than CONC. B-vitamins, thiamine and riboflavin, were also present in greater (P = 0.001) concentrations for PAST than CONC. Calcium, Mg, and K contents of the LM were greater (P < 0.05) for PAST than CONC. Total fatty acid content of the LM was 49% less for PAST than CONC. Myristoleic, palmitoleic, and oleic acid concentrations were all less (P = 0.001) for PAST than CONC. Trans-10 octadecenoic acid percentage in LM was 97% greater (P = 0.001) for CONC than PAST; conversely, trans-11 vaccenic acid percentage in the LM was 90% greater (P = 0.001) for PAST than CONC. Conjugated linoleic acid, cis-9, trans-11 isomer, percentage was greater (P = 0.001) by 117% for PAST than CONC. Linoleic acid (C18:2) concentration did not differ (P > 0.05) among PAST and CONC. Concentrations of all n-3 fatty acids (linolenic acid, eicosapentaenoic, docosapentaenoic, docosahexaenoic) were greater (P = 0.01) for PAST than CONC. Total n-6 PUFA percentages were unchanged (P > 0.05) among finishing systems. The ratio of n-6 to n-3 fatty acids was 4.84 for CONC and 1.65 for PAST. Beef from CONC finished has a greater total, saturated, and monounsaturated fat content; in contrast, beef from PAST finished has less total, saturated, and monounsaturated fat content with greater contents of n-3 fatty acids and a decreased n-6 to n-3 ratio. Beef from PAST finished also has greater contents of B-vitamins and antioxidants (vitamin E and beta-carotene).
Collapse
|