51
|
Tracking neuroinflammation in Alzheimer's disease: the role of positron emission tomography imaging. J Neuroinflammation 2014; 11:120. [PMID: 25005532 PMCID: PMC4099095 DOI: 10.1186/1742-2094-11-120] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 06/20/2014] [Indexed: 12/02/2022] Open
Abstract
Alzheimer’s disease (AD) has been reconceptualized as a dynamic pathophysiological process, where the accumulation of amyloid-beta (Aβ) is thought to trigger a cascade of neurodegenerative events resulting in cognitive impairment and, eventually, dementia. In addition to Aβ pathology, various lines of research have implicated neuroinflammation as an important participant in AD pathophysiology. Currently, neuroinflammation can be measured in vivo using positron emission tomography (PET) with ligands targeting diverse biological processes such as microglial activation, reactive astrocytes and phospholipase A2 activity. In terms of therapeutic strategies, despite a strong rationale and epidemiological studies suggesting that the use of non-steroidal anti-inflammatory drugs (NSAIDs) may reduce the prevalence of AD, clinical trials conducted to date have proven inconclusive. In this respect, it has been hypothesized that NSAIDs may only prove protective if administered early on in the disease course, prior to the accumulation of significant AD pathology. In order to test various hypotheses pertaining to the exact role of neuroinflammation in AD, studies in asymptomatic carriers of mutations deterministic for early-onset familial AD may prove of use. In this respect, PET ligands for neuroinflammation may act as surrogate markers of disease progression, allowing for the development of more integrative models of AD, as well as for the measuring of target engagement in the context of clinical trials using NSAIDs. In this review, we address the biological basis of neuroinflammatory changes in AD, underscore therapeutic strategies using anti-inflammatory compounds, and shed light on the possibility of tracking neuroinflammation in vivo using PET imaging ligands.
Collapse
|
52
|
Kinetic modeling without accounting for the vascular component impairs the quantification of [(11)C]PBR28 brain PET data. J Cereb Blood Flow Metab 2014; 34:1060-9. [PMID: 24667911 PMCID: PMC4050251 DOI: 10.1038/jcbfm.2014.55] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/13/2014] [Accepted: 03/03/2014] [Indexed: 11/08/2022]
Abstract
The positron emission tomography radioligand [(11)C]PBR28 targets translocator protein (18 kDa) (TSPO) and is a potential marker of neuroinflammation. [(11)C]PBR28 binding is commonly quantified using a two-tissue compartment model and an arterial input function. Previous studies with [(11)C]-(R)-PK11195 demonstrated a slow irreversible binding component to the TSPO proteins localized in the endothelium of brain vessels, such as venous sinuses and arteries. However, the impact of this component on the quantification of [(11)C]PBR28 data has never been investigated. In this work we propose a novel kinetic model for [(11)C]PBR28. This model hypothesizes the existence of an additional irreversible component from the blood to the endothelium. The model was tested on a data set of 19 healthy subjects. A simulation was also performed to quantify the error generated by the standard two-tissue compartmental model when the presence of the irreversible component is not taken into account. Our results show that when the vascular component is included in the model the estimates that include the vascular component (2TCM-1K) are more than three-fold smaller, have a higher time stability and are better correlated to brain mRNA TSPO expression than those that do not include the model (2TCM).
Collapse
|
53
|
Reitz C, Mayeux R. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 2014; 88:640-51. [PMID: 24398425 DOI: 10.1016/j.bcp.2013.12.024] [Citation(s) in RCA: 786] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/20/2013] [Accepted: 12/20/2013] [Indexed: 12/20/2022]
Abstract
The global prevalence of dementia is as high as 24 million, and has been predicted to quadruple by the year 2050. In the US alone, Alzheimer disease (AD) - the most frequent cause of dementia characterized by a progressive decline in cognitive function in particular the memory domain - causes estimated health-care costs of $ 172 billion per year. Key neuropathological hallmarks of the AD brain are diffuse and neuritic extracellular amyloid plaques - often surrounded by dystrophic neurites - and intracellular neurofibrillary tangles. These pathological changes are frequently accompanied by reactive microgliosis and loss of neurons, white matter and synapses. The etiological mechanisms underlying these neuropathological changes remain unclear, but are probably caused by both environmental and genetic factors. In this review article, we provide an overview of the epidemiology of AD, review the biomarkers that may be used for risk assessment and in diagnosis, and give suggestions for future research.
Collapse
Affiliation(s)
- Christiane Reitz
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, United States; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, United States; Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Richard Mayeux
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, United States; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, United States; Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, United States; Department of Epidemiology, Joseph P. Mailman School of Public Health, Columbia University, New York, NY, United States; Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| |
Collapse
|
54
|
Su Z, Herholz K, Gerhard A, Roncaroli F, Du Plessis D, Jackson A, Turkheimer F, Hinz R. [¹¹C]-(R)PK11195 tracer kinetics in the brain of glioma patients and a comparison of two referencing approaches. Eur J Nucl Med Mol Imaging 2013; 40:1406-19. [PMID: 23715902 PMCID: PMC3738844 DOI: 10.1007/s00259-013-2447-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 04/30/2013] [Indexed: 12/22/2022]
Abstract
PURPOSE Translocator protein (TSPO) is a biomarker of neuroinflammation that can be imaged by PET using [¹¹C]-(R)PK11195. We sought to characterize the [¹¹C]-(R)PK11195 kinetics in gliomas of different histotypes and grades, and to compare two reference tissue input functions (supervised cluster analysis versus cerebellar grey matter) for the estimation of [¹¹C]-(R)PK11195 binding in gliomas and surrounding brain structures. METHODS Twenty-three glioma patients and ten age-matched controls underwent structural MRI and dynamic [¹¹C]-(R)PK11195 PET scans. Tissue time-activity curves (TACs) were extracted from tumour regions as well as grey matter (GM) and white matter (WM) of the brains. Parametric maps of binding potential (BPND) were generated with the simplified reference tissue model using the two input functions, and were compared with each other. TSPO expression was assessed in tumour tissue sections by immunohistochemistry. RESULTS Three types of regional kinetics were observed in individual tumour TACs: GM-like kinetics (n=6, clearance of the tracer similar to that in cerebellar GM), WM-like kinetics (n=8, clearance of the tracer similar to that in cerebral WM) and a form of mixed kinetics (n=9, intermediate rate of clearance). Such kinetic patterns differed between low-grade astrocytomas (WM-like kinetics) and oligodendrogliomas (GM-like and mixed kinetics), but were independent of tumour grade. There was good agreement between parametric maps of BPND derived from the two input functions in all controls and 10 of 23 glioma patients. In 13 of the 23 patients, BPND values derived from the supervised cluster input were systematically smaller than those using the cerebellar input. Immunohistochemistry confirmed that TSPO expression increased with tumour grade. CONCLUSION The three types of [¹¹C]-(R)PK11195 kinetics in gliomas are determined in part by tracer delivery, and indicated that kinetic analysis is a valuable tool in the study of gliomas with the potential for in vivo discrimination between low-grade astrocytomas and oligodendrogliomas. Supervised cluster and cerebellar input functions produced consistent BPND estimates in approximately half of the gliomas investigated, but had a systematic difference in the remainder. The cerebellar input is preferred based on theoretical and practical considerations.
Collapse
Affiliation(s)
- Zhangjie Su
- Wolfson Molecular Imaging Centre, University of Manchester, 27 Palatine Road, Manchester, UK.
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Alzheimer's disease biomarkers: correspondence between human studies and animal models. Neurobiol Dis 2013; 56:116-30. [PMID: 23631871 DOI: 10.1016/j.nbd.2013.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/11/2013] [Accepted: 04/18/2013] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease (AD) represents an escalating global threat as life expectancy and disease prevalence continue to increase. There is a considerable need for earlier diagnoses to improve clinical outcomes. Fluid biomarkers measured from cerebrospinal fluid (CSF) and blood, or imaging biomarkers have considerable potential to assist in the diagnosis and management of AD. An additional important utility of biomarkers is in novel therapeutic development and clinical trials to assess efficacy and side effects of therapeutic interventions. Because many biomarkers are initially examined in animal models, the extent to which markers translate from animals to humans is an important issue. The current review highlights many existing and pipeline biomarker approaches, focusing on the degree of correspondence between AD patients and animal models. The review also highlights the need for greater translational correspondence between human and animal biomarkers.
Collapse
|
56
|
Politis M, Giannetti P, Su P, Turkheimer F, Keihaninejad S, Wu K, Waldman A, Malik O, Matthews PM, Reynolds R, Nicholas R, Piccini P. Increased PK11195 PET binding in the cortex of patients with MS correlates with disability. Neurology 2012; 79:523-30. [PMID: 22764258 PMCID: PMC3413767 DOI: 10.1212/wnl.0b013e3182635645] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 12/29/2011] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Activated microglia are thought to play a major role in cortical gray matter (GM) demyelination in multiple sclerosis (MS). Our objective was to evaluate microglial activation in cortical GM of patients with MS in vivo and to explore its relationship to measures of disability. METHODS Using PET and optimized modeling and segmentation procedures, we investigated cortical (11)C-PK11195 (PK11195) binding in patients with relapsing-remitting MS (RRMS), patients with secondary progressive MS (SPMS), and healthy controls. Disability was assessed with the Expanded Disability Status Scale (EDSS) and Multiple Sclerosis Impact Scale (MSIS-29). RESULTS Patients with MS showed increased cortical GM PK11195 binding relative to controls, which was multifocal and highest in the postcentral, middle frontal, anterior orbital, fusiform, and parahippocampal gyri. Patients with SPMS also showed additional increases in precentral, superior parietal, lingual and anterior superior, medial and inferior temporal gyri. Total cortical GM PK11195 binding correlated with EDSS scores, with a stronger correlation for the subgroup of patients with SPMS. In patients with SPMS, PK11195 binding also correlated with MSIS-29 scores. No correlation with disability measures was seen for PK11195 binding in white matter. Higher EDSS scores correlated with higher levels of GM PK11195 binding in the postcentral gyrus for patients with RRMS and in precentral gyrus for those with SPMS. CONCLUSIONS Microglial activation in cortical GM of patients with MS can be assessed in vivo. The distribution is not uniform and shows a relationship to clinical disability. We speculate that the increased PK11195 binding corresponds to enhanced microglial activation described in postmortem SPMS cortical GM.
Collapse
Affiliation(s)
- Marios Politis
- Centre for Neuroscience, Hammersmith Hospital, Imperial College London, London.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Yaqub M, van Berckel BNM, Schuitemaker A, Hinz R, Turkheimer FE, Tomasi G, Lammertsma AA, Boellaard R. Optimization of supervised cluster analysis for extracting reference tissue input curves in (R)-[(11)C]PK11195 brain PET studies. J Cereb Blood Flow Metab 2012; 32:1600-8. [PMID: 22588187 PMCID: PMC3421099 DOI: 10.1038/jcbfm.2012.59] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/28/2012] [Accepted: 04/07/2012] [Indexed: 11/20/2022]
Abstract
Performance of two supervised cluster analysis (SVCA) algorithms for extracting reference tissue curves was evaluated to improve quantification of dynamic (R)-[(11)C]PK11195 brain positron emission tomography (PET) studies. Reference tissues were extracted from images using both a manually defined cerebellum and SVCA algorithms based on either four (SVCA4) or six (SVCA6) kinetic classes. Data from controls, mild cognitive impairment patients, and patients with Alzheimer's disease were analyzed using various kinetic models including plasma input, the simplified reference tissue model (RPM) and RPM with vascular correction (RPMV(b)). In all subject groups, SVCA-based reference tissue curves showed lower blood volume fractions (V(b)) and volume of distributions than those based on cerebellum time-activity curve. Probably resulting from the presence of specific signal from the vessel walls that contains in normal condition a significant concentration of the 18 kDa translocation protein. Best contrast between subject groups was seen using SVCA4-based reference tissues as the result of a lower number of kinetic classes and the prior removal of extracerebral tissues. In addition, incorporation of V(b) in RPM improved both parametric images and binding potential contrast between groups. Incorporation of V(b) within RPM, together with SVCA4, appears to be the method of choice for analyzing cerebral (R)-[(11)C]PK11195 neurodegeneration studies.
Collapse
Affiliation(s)
- Maqsood Yaqub
- Department of Nuclear Medicine and PET Research, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Jacobs AH, Tavitian B. Noninvasive molecular imaging of neuroinflammation. J Cereb Blood Flow Metab 2012; 32:1393-415. [PMID: 22549622 PMCID: PMC3390799 DOI: 10.1038/jcbfm.2012.53] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 03/05/2012] [Accepted: 03/23/2012] [Indexed: 12/23/2022]
Abstract
Inflammation is a highly dynamic and complex adaptive process to preserve and restore tissue homeostasis. Originally viewed as an immune-privileged organ, the central nervous system (CNS) is now recognized to have a constant interplay with the innate and the adaptive immune systems, where resident microglia and infiltrating immune cells from the periphery have important roles. Common diseases of the CNS, such as stroke, multiple sclerosis (MS), and neurodegeneration, elicit a neuroinflammatory response with the goal to limit the extent of the disease and to support repair and regeneration. However, various disease mechanisms lead to neuroinflammation (NI) contributing to the disease process itself. Molecular imaging is the method of choice to try to decipher key aspects of the dynamic interplay of various inducers, sensors, transducers, and effectors of the orchestrated inflammatory response in vivo in animal models and patients. Here, we review the basic principles of NI with emphasis on microglia and common neurologic disease mechanisms, the molecular targets which are being used and explored for imaging, and molecular imaging of NI in frequent neurologic diseases, such as stroke, MS, neurodegeneration, epilepsy, encephalitis, and gliomas.
Collapse
Affiliation(s)
- Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI) at the Westfalian Wilhelms-University of Münster (WWU), Münster, Germany.
| | | |
Collapse
|
59
|
Normandin MD, Koeppe RA, Morris ED. Selection of weighting factors for quantification of PET radioligand binding using simplified reference tissue models with noisy input functions. Phys Med Biol 2012; 57:609-29. [PMID: 22241524 PMCID: PMC3361066 DOI: 10.1088/0031-9155/57/3/609] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Input function noise contributes to model-predicted values and should be accounted for during parameter estimation. This problem has been examined in the context of PET data analysis using a noisy image-derived arterial input function. Huesman and Mazoyer (1987 Phys. Med. Biol 32 1569-79) incorporated the effect of error in the measured input function into the objective function and observed a subsequent improvement in the accuracy of parameters estimated from a kinetic model of cardiac blood flow. Such a treatment has not been applied to the reference region models commonly used to analyze dynamic positron emission tomography data with receptor-ligand tracers. Here, we propose a strategy for selection of weighting factors that accounts for noise in the reference region input function and test the method on two common formulations of the simplified reference tissue model (SRTM). We present a simulation study which demonstrates that the proposed weighting approach improves the accuracy of estimated binding potential at high noise levels and when the reference tissue and target regions of interest are of comparable size. In the second simulation experiment, we show that using a small, homogeneous reference tissue with our weighting technique may have advantages over input functions derived from a larger (and thus less noisy), heterogeneous region with conventional weighting. A comparative analysis of clinical [(11)C]flumazenil data found a small but significant increase in estimated binding potential when using the proposed weighting method, consistent with the finding of reduced negative bias in our simulation study. The weighting strategy described here accounts for noise in the reference region input function and may improve the performance of the SRTM in applications where data are noisy and the reference region is relatively small. This technique may offer similar benefits to other models using reference region inputs, particularly those derived from the SRTM.
Collapse
Affiliation(s)
- M D Normandin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| | | | | |
Collapse
|
60
|
Guo Q, Owen DR, Rabiner EA, Turkheimer FE, Gunn RN. Identifying improved TSPO PET imaging probes through biomathematics: the impact of multiple TSPO binding sites in vivo. Neuroimage 2012; 60:902-10. [PMID: 22251896 PMCID: PMC3314937 DOI: 10.1016/j.neuroimage.2011.12.078] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 12/07/2011] [Accepted: 12/24/2011] [Indexed: 11/01/2022] Open
Abstract
To date, ¹¹C-(R)-PK11195 has been the most widely used TSPO PET imaging probe, although it suffers from high non-specific binding and low signal to noise. A significant number of 2nd generation TSPO radioligands have been developed with higher affinity and/or lower non-specific binding, however there is substantial inter-subject variation in their affinity for the TSPO. TSPO from human tissue samples binds 2nd generation TSPO radioligands with either high affinity (high affinity binders, HABs), or low affinity (LABs) or expresses both HAB and LAB binding sites (mixed affinity binders, MABs). The expression of these different TSPO binding sites in human is encoded by the rs6971 polymorphism in the TSPO gene. Here, we use a predictive biomathematical model to estimate the in vivo performances of three of these 2nd generation radioligands (¹⁸F-PBR111, ¹¹C-PBR28, ¹¹C-DPA713) and ¹¹C-(R)-PK11195 in humans. The biomathematical model only relies on in silico, in vitro and genetic data (polymorphism frequencies in different ethnic groups) to predict the radioactivity time course in vivo. In particular, we provide estimates of the performances of these ligands in within-subject (e.g. longitudinal studies) and between-subject (e.g. disease characterisation) PET studies, with and without knowledge of the TSPO binding class. This enables an assessment of the different radioligands prior to radiolabelling or acquisition of any in vivo data. The within-subject performance was characterised in terms of the reproducibility of the in vivo binding potential (%COV[BP(ND)]) for each separate TSPO binding class in normal and diseased states (50% to 400% increase in TSPO density), whilst the between-subject performance was characterised in terms of the number of subjects required to distinguish between different populations. The results indicated that the within-subject variability for ¹⁸F-PBR111, ¹¹C-PBR28 and ¹¹C-DPA713 (0.9% to 2.2%) was significantly lower than ¹¹C-(R)-PK11195 (16% to 36%) for HABs and MABs in both normal and diseased states. For between-subject studies, sample sizes required to detect 50% differences in TSPO density with the 2nd generation tracers are approximately half that required with ¹¹C-(R)-PK11195 when binding class information is known a priori. As binding class can be identified using a simple genetic test or from peripheral blood assays, the combination of binding class information with 2nd generation TSPO imaging data should provide superior tools to investigate inflammatory processes in humans in vivo.
Collapse
Affiliation(s)
- Qi Guo
- Division of Experimental Medicine, Imperial College London, Hammersmith Hospital, UK.
| | | | | | | | | |
Collapse
|
61
|
Lautner R, Mattsson N, Schöll M, Augutis K, Blennow K, Olsson B, Zetterberg H. Biomarkers for microglial activation in Alzheimer's disease. Int J Alzheimers Dis 2011; 2011:939426. [PMID: 22114747 PMCID: PMC3206374 DOI: 10.4061/2011/939426] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 09/01/2011] [Indexed: 01/21/2023] Open
Abstract
Intensive research over the last decades has provided increasing evidence for neuroinflammation as an integral part in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease (AD). Inflammatory responses in the central nervous system (CNS) are initiated by activated microglia, representing the first line of the innate immune defence of the brain. Therefore, biochemical markers of microglial activation may help us understand the underlying mechanisms of neuroinflammation in AD as well as the double-sided qualities of microglia, namely, neuroprotection and neurotoxicity. In this paper we summarize candidate biomarkers of microglial activation in AD along with a survey of recent neuroimaging techniques.
Collapse
Affiliation(s)
- Ronald Lautner
- Clinical Neurochemistry Laboratory, Department of Neurochemistry and Psychiatry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, 43180 Mölndal, Sweden
| | - Niklas Mattsson
- Clinical Neurochemistry Laboratory, Department of Neurochemistry and Psychiatry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, 43180 Mölndal, Sweden
| | - Michael Schöll
- Division of Alzheimer Neurobiology, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, 17177 Stockholm, Sweden
| | - Kristin Augutis
- Clinical Neurochemistry Laboratory, Department of Neurochemistry and Psychiatry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, 43180 Mölndal, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Department of Neurochemistry and Psychiatry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, 43180 Mölndal, Sweden
| | - Bob Olsson
- Clinical Neurochemistry Laboratory, Department of Neurochemistry and Psychiatry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, 43180 Mölndal, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Department of Neurochemistry and Psychiatry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, 43180 Mölndal, Sweden
| |
Collapse
|
62
|
Vallabhajosula S. Positron emission tomography radiopharmaceuticals for imaging brain Beta-amyloid. Semin Nucl Med 2011; 41:283-99. [PMID: 21624562 DOI: 10.1053/j.semnuclmed.2011.02.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is defined histologically by the presence of extracellular β-amyloid (Aβ) plaques and intraneuronal neurofibrillary tangles in the cerebral cortex. The diagnosis of dementia, along with the prediction of who will develop dementia, has been assisted by magnetic resonance imaging and positron emission tomography (PET) by using [(18)F]fluorodeoxyglucose (FDG). These techniques, however, are not specific for AD. Based on the chemistry of histologic staining dyes, several Aβ-specific positron-emitting radiotracers have been developed to image neuropathology of AD. Among these, [(11)C]PiB is the most studied Aβ-binding PET radiopharmaceutical in the world. The histologic and biochemical specificity of PiB binding across different regions of the AD brain was demonstrated by showing a direct correlation between Aβ-containing amyloid plaques and in vivo [(11)C]PiB retention measured by PET imaging. Because (11)C is not ideal for commercialization, several (18)F-labeled tracers have been developed. At this time, [(18)F]3'-F-PiB (Flutemetamol), (18)F-AV-45 (Florbetapir), and (18)F-AV-1 (Florbetaben) are undergoing extensive phase II and III clinical trials. This article provides a brief review of the amyloid biology and chemistry of Aβ-specific (11)C and (18)F-PET radiopharmaceuticals. Clinical trials have clearly documented that PET radiopharmaceuticals capable of assessing Aβ content in vivo in the brains of AD subjects and subjects with mild cognitive impairment will be important as diagnostic agents to detect in vivo amyloid brain pathology. In addition, PET amyloid imaging will also help test the amyloid cascade hypothesis of AD and as an aid to assess the efficacy of antiamyloid therapeutics currently under development in clinical trials.
Collapse
Affiliation(s)
- Shankar Vallabhajosula
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Weill Cornell Medical College of Cornell University and New York Presbyterian Hospital, NY, USA.
| |
Collapse
|
63
|
Gulyás B, Vas Á, Tóth M, Takano A, Varrone A, Cselényi Z, Schain M, Mattsson P, Halldin C. Age and disease related changes in the translocator protein (TSPO) system in the human brain: Positron emission tomography measurements with [11C]vinpocetine. Neuroimage 2011; 56:1111-21. [DOI: 10.1016/j.neuroimage.2011.02.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 02/02/2011] [Accepted: 02/05/2011] [Indexed: 01/06/2023] Open
|
64
|
Imaging Brain Microglial Activation Using Positron Emission Tomography and Translocator Protein-Specific Radioligands. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 101:19-39. [DOI: 10.1016/b978-0-12-387718-5.00002-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
65
|
Global-two-stage filtering of clinical PET parametric maps: application to [(11)C]-(R)-PK11195. Neuroimage 2010; 55:942-53. [PMID: 21195193 DOI: 10.1016/j.neuroimage.2010.12.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 12/13/2010] [Accepted: 12/21/2010] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION In Positron Emission Tomography (PET) quantification of physiological parameters at the voxel level may result in unreliable estimates due to the high noise of voxel time activity curves. Global-Two-Stage (GTS), an estimation technique belonging to the group of "population approaches", can be used to tackle this problem. GTS was previously tested on simulated PET data and yielded substantial improvements when compared to standard estimation approaches such as Weighted NonLinear Least Squares (WNLLS) and Basis Function Method (BFM). In this work GTS performance is assessed in a clinical context using the neuroinflammation marker [(11)C]-(R)-PK11195 applied to a cohort of Huntington's disease (HD) patients with and without symptoms. MATERIALS AND METHODS Parametric maps of binding potential (BP(ND)) of 12 normal controls (NC), 9 symptomatic and 9 presymptomatic HD patients were generated by applying a modified reference tissue model that accounts for tracer vascular activity in both reference and target tissues (SRTMV). GTS was then applied to SRTMV maps and its performance compared with that of SRTMV. Three smoothed versions of SRTMV, obtained by filtering the original SRTMV maps with Gaussian filters of 3 mm, 5 mm and 7 mm Full Width Half Maximum (FWHM), were also included in the comparison. Since striatal degeneration is the hallmark of HD, sensitivity was assessed for all methods by computing the mean of z-scores in caudate, putamen and globus pallidus in the voxel-by-voxel statistical comparison of BP(ND) between HD and NC. RESULTS Application of GTS to parametric maps brought a substantial qualitative improvement to SRTMV maps to the extent that anatomical structures often became visible. In addition, most parameter estimates that were outside the physiological range with SRTMV were corrected by GTS. GTS yielded a 2.3-fold increase in sensitivity with respect to SRTMV for the symptomatic cohort (mean of striatal z-scores of 0.76 for SRTMV and 1.79 for GTS) and an even more substantial increase for the presymptomatic cohort (mean of striatal z-scores of 0.34 for SRTMV and 0.96 for GTS). The sensitivity of GTS was similar to the one obtained with a filter of 7 mm FWHM applied to the initial SRTMV maps but GTS images were not characterized by the notable loss of resolution typical of smoothed maps. GTS, additionally, does not require to change/define settings according to the tracer and level of noise, whereas the choice of the FWHM value of the Gaussian filter normally employed in the smoothing procedure is typically arbitrary. CONCLUSIONS GTS is a powerful and robust tool for improving the quality of parametric maps in PET. The method is particularly appealing in that it can be applied to any tracer and estimation method, provided that initial estimates of the parameter vector and of its covariance are available. Although the benefits of GTS are far from being exhaustively assessed, the significant improvements obtained both on real and simulated data suggest that it could become an important tool for dynamic PET in the future.
Collapse
|
66
|
Lamare F, Hinz R, Gaemperli O, Pugliese F, Mason JC, Spinks T, Camici PG, Rimoldi OE. Detection and quantification of large-vessel inflammation with 11C-(R)-PK11195 PET/CT. J Nucl Med 2010; 52:33-9. [PMID: 21149475 DOI: 10.2967/jnumed.110.079038] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED We investigated whether PET/CT angiography using 11C-(R)-PK11195, a selective ligand for the translocator protein (18 kDa) expressed in activated macrophages, could allow imaging and quantification of arterial wall inflammation in patients with large-vessel vasculitis. METHODS Seven patients with systemic inflammatory disorders (3 symptomatic patients with clinical suspicion of active vasculitis and 4 asymptomatic patients) underwent PET with 11C-(R)-PK11195 and CT angiography to colocalize arterial wall uptake of 11C-(R)-PK11195. Tissue regions of interest were defined in bone marrow, lung parenchyma, wall of the ascending aorta, aortic arch, and descending aorta. Blood-derived and image-derived input functions (IFs) were generated. A reversible 1-tissue compartment with 2 kinetic rate constants and a fractional blood volume term were used to fit the time-activity curves to calculate total volume of distribution (VT). The correlation between VT and standardized uptake values was assessed. RESULTS VT was significantly higher in symptomatic than in asymptomatic patients using both image-derived total plasma IF (0.55±0.15 vs. 0.27±0.12, P=0.009) and image-derived parent plasma IF (1.40±0.50 vs. 0.58±0.25, P=0.018). A good correlation was observed between VT and standardized uptake value (R=0.79; P=0.03). CONCLUSION 11C-(R)-PK11195 imaging allows visualization of macrophage infiltration in inflamed arterial walls. Tracer uptake can be quantified with image-derived IF without the need for metabolite corrections and evaluated semiquantitatively with standardized uptake values.
Collapse
Affiliation(s)
- Frederic Lamare
- MRC Clinical Sciences Centre and National Heart and Lung Institute, Imperial College, Hammersmith Campus, and GE Imanet, Hammersmith Hospital, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Kadir A, Nordberg A. Target-specific PET probes for neurodegenerative disorders related to dementia. J Nucl Med 2010; 51:1418-30. [PMID: 20810758 DOI: 10.2967/jnumed.110.077164] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Dementia is a highly prevalent problem causing considerable disability and mortality and exacting great costs to individuals, their families, and society. The 4 most common neurodegenerative disorders that cause dementia-Alzheimer disease, frontotemporal dementia, dementia with Lewy bodies, and dementia in Parkinson disease-have different underlying etiologies and pathogenetic mechanisms. There is a great need for early diagnostic markers; functional brain imaging may therefore assist in the detection and differential diagnosis of dementia due to neurodegenerative diseases. Functional imaging such as PET allows in vivo imaging of functional brain activity indicating cerebral blood flow and cerebral glucose metabolism, and PET allows imaging of neurotransmitter activity, including that of the cholinergic, dopaminergic, and serotonergic systems. New PET neuroimaging tracers are being developed for detecting pathologic parameters such as amyloid plaque and microglial activity. The development of molecular imaging is important for early diagnosis of dementia, selection of patients for therapies, and evaluation of therapies.
Collapse
Affiliation(s)
- Ahmadul Kadir
- Division of Alzheimer Neurobiology, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | |
Collapse
|
68
|
Imaging of Vascular Inflammation With [11C]-PK11195 and Positron Emission Tomography/Computed Tomography Angiography. J Am Coll Cardiol 2010; 56:653-61. [DOI: 10.1016/j.jacc.2010.02.063] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 02/09/2010] [Indexed: 11/20/2022]
|
69
|
Simplified quantification of 5-HT2A receptors in the human brain with [11C]MDL 100,907 PET and non-invasive kinetic analyses. Neuroimage 2010; 50:984-93. [DOI: 10.1016/j.neuroimage.2010.01.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 01/08/2010] [Accepted: 01/09/2010] [Indexed: 11/24/2022] Open
|
70
|
Radiopharmaceuticals for positron emission tomography investigations of Alzheimer’s disease. Eur J Nucl Med Mol Imaging 2009; 37:1575-93. [DOI: 10.1007/s00259-009-1301-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Accepted: 10/09/2009] [Indexed: 12/11/2022]
|
71
|
In vivo imaging of synaptic function in the central nervous system. Behav Brain Res 2009; 204:1-31. [DOI: 10.1016/j.bbr.2009.06.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 05/27/2009] [Accepted: 06/02/2009] [Indexed: 01/07/2023]
|
72
|
Abstracts from the XXIVth International Symposium on Cerebral Blood Flow and Metabolism and the IXth International Conference on Quantification of Brain Function with PET. Chicago, Illinois, USA. June 29-July 3, 2009. J Cereb Blood Flow Metab 2009; 29 Suppl 1:S1-634. [PMID: 19784006 DOI: 10.1038/jcbfm.2009.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
73
|
Cosenza-Nashat M, Zhao ML, Suh HS, Morgan J, Natividad R, Morgello S, Lee SC. Expression of the translocator protein of 18 kDa by microglia, macrophages and astrocytes based on immunohistochemical localization in abnormal human brain. Neuropathol Appl Neurobiol 2008; 35:306-28. [PMID: 19077109 DOI: 10.1111/j.1365-2990.2008.01006.x] [Citation(s) in RCA: 350] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AIMS Microglia are involved in neurodegeneration, are prime targets for anti-inflammatory therapy and are potential biomarkers of disease progression. For example, positron emission tomography imaging employing radioligands for the mitochondrial translocator protein of 18 kDa (TSPO, formerly known as the peripheral benzodiazepine receptor) is being scrutinized to detect neuroinflammation in various diseases. TSPO is presumably present in activated microglia, but may be present in other neural cells. METHODS We sought to elucidate the protein expression in normal human central nervous system, several neurological diseases (HIV encephalitis, Alzheimer's disease, multiple sclerosis and stroke) and simian immunodeficiency virus encephalitis by performing immunohistochemistry with two anti-TSPO antibodies. RESULTS Although the overall parenchymal staining was minimal in normal brain, endothelial and smooth muscle cells, subpial glia, intravascular monocytes and ependymal cells were TSPO-positive. In disease states, elevated TSPO was present in parenchymal microglia, macrophages and some hypertrophic astrocytes, but the distribution of TSPO varied depending on the disease, disease stage and proximity to the lesion or relation to infection. Staining with the two antibodies correlated well in white matter, but one antibody also stained cortical neurones. Quantitative analysis demonstrated a significant increase in TSPO in the white matter of HIV encephalitis compared with brains without encephalitis. TSPO expression was also increased in simian immunodeficiency virus encephalitis. CONCLUSIONS This report provides the first comprehensive immunohistochemical analysis of the expression of TSPO. The results are useful for informing the usage of positron emission tomography as an imaging modality and have an impact on the potential use of TSPO as an anti-inflammatory pharmacological target.
Collapse
Affiliation(s)
- M Cosenza-Nashat
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | | | | | | | |
Collapse
|