51
|
Sharma SK, Glaser JM, Edwards KJ, Sarbisheh EK, Salih AK, Lewis JS, Price EW. A Systematic Evaluation of Antibody Modification and 89Zr-Radiolabeling for Optimized Immuno-PET. Bioconjug Chem 2021; 32:1177-1191. [PMID: 32197571 PMCID: PMC9423892 DOI: 10.1021/acs.bioconjchem.0c00087] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Immuno-PET using desferrioxamine (DFO)-conjugated zirconium-89 ([89Zr]Zr4+)-labeled antibodies is a powerful tool used for preclinical and clinical molecular imaging. However, a comprehensive study evaluating the variables involved in DFO-conjugation and 89Zr-radiolabeling of antibodies and their impact on the in vitro and in vivo behavior of the resulting radioimmunoconjugates has not been adequately performed. Here, we synthesized different DFO-conjugates of the HER2-targeting antibody (Ab)-trastuzumab, dubbed T5, T10, T20, T60, and T200-to indicate the molar equivalents of DFO used for bioconjugation. Next we radiolabeled the immunoconjugates with ([89Zr]Zr4+) under a comprehensive set of reaction conditions including different buffers (PBS, chelexed-PBS, TRIS/HCl, HEPES; ± radioprotectants), different reaction volumes (0.1-1 mL), variable amounts of DFO-conjugated Ab (5, 25, 50 μg), and radioactivity (0.2-1.0 mCi; 7.4-37 MBq). We evaluated the effects of these variables on radiochemical yield (RCY), molar activity (Am)/specific activity (As), immunoreactive fraction, and ultimately the in vivo biodistribution profile and tumor targeting ability of the trastuzumab radioimmunoconjugates. We show that increasing the degree of DFO conjugation to trastuzumab increased the RCY (∼90%) and Am/As (∼194 MBq/nmol; 35 mCi/mg) but decreased the HER2-binding affinity (3.5×-4.6×) and the immunoreactive fraction of trastuzumab down to 50-64%, which translated to dramatically inferior in vivo performance of the radioimmunoconjugate. Cell-based immunoreactivity assays and standard binding affinity analyses using surface plasmon resonance (SPR) did not predict the poor in vivo performance of the most extreme T200 conjugate. However, SPR-based concentration free calibration analysis yielded active antibody concentration and was predictive of the in vivo trends. Positron emission tomography (PET) imaging and biodistribution studies in a HER2-positive xenograft model revealed activity concentrations of 38.7 ± 3.8 %ID/g in the tumor and 6.3 ± 4.1 %ID/g in the liver for ([89Zr]Zr4+)-T5 (∼1.4 ± 0.5 DFOs/Ab) at 120 h after injection of the radioimmunoconjugates. On the other hand, ([89Zr]Zr4+)-T200 (10.9 ± 0.7 DFOs/Ab) yielded 16.2 ± 3.2 %ID/g in the tumor versus 27.5 ± 4.1 %ID/g in the liver. Collectively, our findings suggest that synthesizing trastuzumab immunoconjugates bearing 1-3 DFOs per Ab (T5 and T10) combined with radiolabeling performed in low reaction volumes using Chelex treated PBS or HEPEs without a radioprotectant provided radioimmunoconjugates having high Am/As (97 MBq/nmol; 17.5 ± 2.2 mCi/mg), highly preserved immunoreactive fractions (86-93%), and favorable in vivo biodistribution profile with excellent tumor uptake.
Collapse
Affiliation(s)
- Sai Kiran Sharma
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jonathan M. Glaser
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Kimberly J. Edwards
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Akam K. Salih
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK, S7N-5C9, Canada
| | - Jason S. Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, 10065, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Radiology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Eric W. Price
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK, S7N-5C9, Canada
| |
Collapse
|
52
|
Qiu L, Tan H, Lin Q, Si Z, Mao W, Wang T, Fu Z, Cheng D, Shi H. A Pretargeted Imaging Strategy for Immune Checkpoint Ligand PD-L1 Expression in Tumor Based on Bioorthogonal Diels-Alder Click Chemistry. Mol Imaging Biol 2021; 22:842-853. [PMID: 31741201 DOI: 10.1007/s11307-019-01441-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE The use of antibodies as tracers requires labeling with isotopes with long half-lives due to their slow pharmacokinetics, which creates prohibitively high radiation dose to non-target organs. Pretargeted methodology could avoid the high radiation exposure due to the slow pharmacokinetics of antibodies. In this investigation, we reported the development of a novel pretargeted single photon emission computed tomography (SPECT) imaging strategy (atezolizumab-TCO/[99mTc]HYNIC-PEG11-Tz) for evaluating immune checkpoint ligand PD-L1 expression in tumor based on bioorthogonal Diels-Alder click chemistry. PROCEDURES The radioligand [99mTc]HYNIC-PEG11-Tz was achieved by the synthesis of a 6-hydrazinonicotinc acid (HYNIC) modified 1,2,4,5-tetrazine (Tz) and subsequently radiolabeled with technetium-99m (Tc-99m). The stability of [99mTc]HYNIC-PEG11-Tz was evaluated in vitro, and its blood pharmacokinetic test was performed in vivo. Atezolizumab was modified with trans-cyclooctene (TCO). The [99mTc]HYNIC-PEG11-Tz and atezolizumab-TCO interaction was tested in vitro. Pretargeted H1975 cell immunoreactivity binding and saturation binding assays were evaluated. Pretargeted biodistribution and SPECT imaging experiments were performed in H1975 and A549 tumor-bearing modal mice to evaluate the PD-L1 expression level. RESULTS [99mTc]HYNIC-PEG11-Tz was successfully radiosynthesized with a specific activity of 9.25 MBq/μg and a radiochemical purity above 95 % as confirmed by reversed-phase HPLC (RP-HPLC). [99mTc]HYNIC-PEG11-Tz showed favorable stability in NS, PBS, and FBS and rapid blood clearance in mice. The atezolizumab was modified with TCO-NHS ester to produce a conjugate with an average 6.4 TCO moieties as confirmed by liquid chromatograph-mass spectrometer (LC-MS). Size exclusion HPLC revealed almost complete reaction between atezolizumab-TCO and [99mTc]HYNIC-PEG11-Tz in vitro, with the 1:1 Tz-to-mAb reaction providing a conversion yield of 88.65 ± 1.22 %. Pretargeted cell immunoreactivity binding and saturation binding assays showed high affinity to H1975 cells. After allowing 48 h for accumulation of atezolizumab-TCO in H1975 tumor, pretargeted in vivo biodistribution revealed high uptake of the radiotracer in the tumor with a tumor-to-muscle ratio of 27.51 and tumor-to-blood ratio of 1.91. Pretargeted SPECT imaging delineated the H1975 tumor clearly. Pretargeted biodistribution and SPECT imaging in control groups demonstrated a significantly reduced tracer accumulation in the A549 tumor. CONCLUSIONS We have developed a HYNIC-modified Tz derivative, and the HYNIC-PEG11-Tz was labeled with Tc-99m with a high specific activity and radiochemical purity. [99mTc]HYNIC-PEG11-Tz reacted rapidly and almost completely towards atezolizumab-TCO in vitro with the 1:1 Tz-to-mAb reaction. SPECT imaging using the pretargeted strategy (atezolizumab-TCO/[99mTc]HYNIC-PEG11-Tz) demonstrated high-contrast images for high PD-L1 expression H1975 tumor and a low background accumulation of the probe. The pretargeted imaging strategy is a powerful tool for evaluating PD-L1 expression in xenograft mice tumor models and a potential candidate for translational clinical application.
Collapse
Affiliation(s)
- Lin Qiu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Hui Tan
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Qingyu Lin
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Zhan Si
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Wujian Mao
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Tingting Wang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Zhequan Fu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China.
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
53
|
McDonagh AW, McNeil BL, Patrick BO, Ramogida CF. Synthesis and Evaluation of Bifunctional [2.2.2]-Cryptands for Nuclear Medicine Applications. Inorg Chem 2021; 60:10030-10037. [PMID: 34159785 DOI: 10.1021/acs.inorgchem.1c01274] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
For the first time, synthesis of bifunctional [2.2.2]-cryptands (CRYPT) and demonstration of radiolabeling with lead(II) (Pb2+) isotopes are disclosed herein. The synthesis is convenient and high-yielding and gives access to three distinct bifunctional handles (azide (-N3), isothiocyanate (-NCS), and tetrazine (-Tz)) that can enable the construction of radioimmunoconjugates for targeted and pretargeted therapy. Proof-of-principle CRYPT radiolabeling was successful with lead-203 ([203Pb]Pb2+) and demonstrated complexation efficiency superior to that of DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) and efficiency comparable to that of the current industry standard TCMC (1,4,7,10-tetraaza-1,4,7,10-tetra-(2-carbamoylmethyl)-cyclododecane). In vitro human serum stability assays demonstrated excellent [203Pb]Pb-CRYPT stability over 72 h (91.7 ± 0.56%; n = 3). [203Pb]Pb-CRYPT-radioimmunoconjugates were synthesized from the corresponding CRYPT-immunoconjugate or by conjugating [203Pb]Pb-Tz-CRYPT to transcyclooctene modified trastuzumab (TCO-trastuzumab) via the inverse electron-demand Diels-Alder (IEEDA) reaction. This investigation reveals the potential for CRYPT ligands to become new industry standards for therapeutic and diagnostic radiometals in radiopharmaceutical elaboration.
Collapse
Affiliation(s)
- Anthony W McDonagh
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Brooke L McNeil
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.,Life Sciences Division, TRIUMF, Vancouver, BC V6T 2A3, Canada
| | - Brian O Patrick
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Caterina F Ramogida
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.,Life Sciences Division, TRIUMF, Vancouver, BC V6T 2A3, Canada
| |
Collapse
|
54
|
Hu Y, Zhang J, Miao Y, Wen X, Wang J, Sun Y, Chen Y, Lin J, Qiu L, Guo K, Chen H, Ye D. Enzyme‐Mediated In Situ Self‐Assembly Promotes In Vivo Bioorthogonal Reaction for Pretargeted Multimodality Imaging. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yuxuan Hu
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Junya Zhang
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yinxing Miao
- NHC Key Laboratory of Nuclear Medicine Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi 214063 China
| | - Xidan Wen
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jian Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211800 China
| | - Yidan Sun
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yinfei Chen
- NHC Key Laboratory of Nuclear Medicine Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi 214063 China
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi 214063 China
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi 214063 China
| | - Kai Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211800 China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
55
|
Sarrett SM, Keinänen O, Dayts EJ, Dewaele-Le Roi G, Rodriguez C, Carnazza KE, Zeglis BM. Inverse electron demand Diels-Alder click chemistry for pretargeted PET imaging and radioimmunotherapy. Nat Protoc 2021; 16:3348-3381. [PMID: 34127865 PMCID: PMC8917728 DOI: 10.1038/s41596-021-00540-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/22/2021] [Indexed: 11/08/2022]
Abstract
Radiolabeled antibodies have shown promise as tools for both the nuclear imaging and endoradiotherapy of cancer, but the protracted circulation time of radioimmunoconjugates can lead to high radiation doses to healthy tissues. To circumvent this issue, we have developed an approach to positron emission tomography (PET) imaging and radioimmunotherapy (RIT) predicated on radiolabeling the antibody after it has reached its target within the body. This in vivo pretargeting strategy is based on the rapid and bio-orthogonal inverse electron demand Diels-Alder reaction between tetrazine (Tz) and trans-cyclooctene (TCO). Pretargeted PET imaging and RIT using TCO-modified antibodies in conjunction with Tz-bearing radioligands produce high activity concentrations in target tissues as well as reduced radiation doses to healthy organs compared to directly labeled radioimmunoconjugates. Herein, we describe how to prepare a TCO-modified antibody (humanized A33-TCO) as well as how to synthesize two Tz-bearing radioligands: one labeled with the positron-emitting radiometal copper-64 ([64Cu]Cu-SarAr-Tz) and one labeled with the β-emitting radiolanthanide lutetium-177 ([177Lu]Lu-DOTA-PEG7-Tz). We also provide a detailed description of pretargeted PET and pretargeted RIT experiments in a murine model of human colorectal carcinoma. Proper training in both radiation safety and the handling of laboratory mice is required for the successful execution of this protocol.
Collapse
Affiliation(s)
- Samantha M Sarrett
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
- PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, NY, USA
| | - Outi Keinänen
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki, Finland
| | - Eric J Dayts
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
| | - Guillaume Dewaele-Le Roi
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, NY, USA
| | - Cindy Rodriguez
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, NY, USA
| | - Kathryn E Carnazza
- Brain and Mind Research Institute & Appel Institute for Alzheimer's Disease Research, Weill Cornell Medical College, New York, NY, USA
| | - Brian M Zeglis
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA.
- PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, NY, USA.
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, NY, USA.
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
56
|
D'Onofrio A, Silva F, Gano L, Karczmarczyk U, Mikołajczak R, Garnuszek P, Paulo A. Clickable Radiocomplexes With Trivalent Radiometals for Cancer Theranostics: In vitro and in vivo Studies. Front Med (Lausanne) 2021; 8:647379. [PMID: 34179038 PMCID: PMC8225959 DOI: 10.3389/fmed.2021.647379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/20/2021] [Indexed: 01/22/2023] Open
Abstract
Pre-targeting approaches based on the inverse-electron-demand Diels-Alder (iEDDA) reaction between strained trans-cyclooctenes (TCO) and electron-deficient tetrazines (Tz) have emerged in recent years as valid alternatives to classic targeted strategies to improve the diagnostic and therapeutic properties of radioactive probes. To explore these pre-targeting strategies based on in vivo click chemistry, a small family of clickable chelators was synthesized and radiolabelled with medically relevant trivalent radiometals. The structure of the clickable chelators was diversified to modulate the pharmacokinetics of the resulting [111In]In-radiocomplexes, as assessed upon injection in healthy mice. The derivative DOTA-Tz was chosen to pursue the studies upon radiolabelling with 90Y, yielding a radiocomplex with high specific activity, high radiochemical yields and suitable in vitro stability. The [90Y]Y-DOTA-Tz complex was evaluated in a prostate cancer PC3 xenograft by ex-vivo biodistribution studies and Cerenkov luminescence imaging (CLI). The results highlighted a quick elimination through the renal system and no relevant accumulation in non-target organs or non-specific tumor uptake. Furthermore, a clickable bombesin antagonist was injected in PC3 tumor-bearing mice followed by the radiocomplex [90Y]Y-DOTA-Tz, and the mice imaged by CLI at different post-injection times (p.i.). Analysis of the images 15 min and 1 h p.i. pointed out an encouraging quick tumor uptake with a fast washout, providing a preliminary proof of concept of the usefulness of the designed clickable complexes for pre-targeting strategies. To the best of our knowledge, the use of peptide antagonists for this purpose was not explored before. Further investigations are needed to optimize the pre-targeting approach based on this type of biomolecules and evaluate its eventual advantages.
Collapse
Affiliation(s)
- Alice D'Onofrio
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Lisbon, Portugal
| | - Francisco Silva
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Lisbon, Portugal
| | - Lurdes Gano
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Lisbon, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Urszula Karczmarczyk
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, Otwock, Poland
| | - Renata Mikołajczak
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, Otwock, Poland
| | - Piotr Garnuszek
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, Otwock, Poland
| | - António Paulo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Lisbon, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
57
|
PET Imaging of CD8 via SMART for Monitoring the Immunotherapy Response. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6654262. [PMID: 34212037 PMCID: PMC8211506 DOI: 10.1155/2021/6654262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/01/2021] [Accepted: 05/19/2021] [Indexed: 11/18/2022]
Abstract
Imaging of CD8 receptors on T-cells by positron emission tomography (PET) has been considered a promising strategy for monitoring the treatment response to immunotherapy. In this study, a trial of imaging CD8 with our newly developed sequential multiple-agent receptor targeting (SMART) technology was conducted. Mice bearing a subcutaneous colorectal CT26 tumor received three times different immunotherapy treatments (PD1 or CTLA4 or combined). On either day 7 or day 14 after the first time treatment, the PET imaging study was performed with sequentially administered TCO-modified anti-CD8 antibody and 64Cu-labeled MeTz-NOTA-RGD. However, no positive response was detected, probably due to (1) inappropriate selection of biomarkers for the SMART strategy, (2) limited TCO modification on the anti-CD8 antibody, and (3) inadequate response of the CT26 tumor to the selected immunotherapies. Therefore, the potential of applying SMART in imaging CD8 was not demonstrated in this study, and further optimization will be necessary before it can be applied in imaging CD8.
Collapse
|
58
|
Allott L, Chen C, Braga M, Leung SFJ, Wang N, Barnes C, Brickute D, Carroll L, Aboagye EO. Detecting hypoxia in vitro using 18F-pretargeted IEDDA "click" chemistry in live cells. RSC Adv 2021; 11:20335-20341. [PMID: 34178309 PMCID: PMC8182949 DOI: 10.1039/d1ra02482e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We have exemplified a pretargeted approach to interrogate hypoxia in live cells using radioactive bioorthogonal inverse electron demand Diels–Alder (IEDDA) “click” chemistry. Our novel 18F-tetrazine probe ([18F]FB-Tz) and 2-nitroimidazole-based TCO targeting molecule (8) showed statistically significant (P < 0.0001) uptake in hypoxic cells (ca. 90 %ID per mg) vs. normoxic cells (<10 %ID per mg) in a 60 min incubation of [18F]FB-Tz. This is the first time that an intracellularly targeted small-molecule for IEDDA “click” has been used in conjunction with a radioactive reporter molecule in live cells and may be a useful tool with far-reaching applicability for a variety of applications. Bioorthogonal IEDDA “click” can interrogate intracellular hypoxia using a radioactive reporter molecule.![]()
Collapse
Affiliation(s)
- Louis Allott
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Du Cane Road London W12 0NN UK .,Positron Emission Tomography Research Centre, Faculty of Health Sciences, University of Hull Cottingham Road Kingston upon Hull HU6 7RX UK
| | - Cen Chen
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Du Cane Road London W12 0NN UK
| | - Marta Braga
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Du Cane Road London W12 0NN UK
| | - Sau Fung Jacob Leung
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Du Cane Road London W12 0NN UK
| | - Ning Wang
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Du Cane Road London W12 0NN UK
| | - Chris Barnes
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Du Cane Road London W12 0NN UK
| | - Diana Brickute
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Du Cane Road London W12 0NN UK
| | - Laurence Carroll
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Du Cane Road London W12 0NN UK .,Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions Baltimore Maryland USA
| | - Eric O Aboagye
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Du Cane Road London W12 0NN UK
| |
Collapse
|
59
|
A Pretargeting Strategy Enabled by Bioorthogonal Reactions Towards Advanced Nuclear Medicines: Application and Perspective. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1179-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
60
|
Scinto SL, Bilodeau DA, Hincapie R, Lee W, Nguyen SS, Xu M, am Ende CW, Finn MG, Lang K, Lin Q, Pezacki JP, Prescher JA, Robillard MS, Fox JM. Bioorthogonal chemistry. NATURE REVIEWS. METHODS PRIMERS 2021; 1:30. [PMID: 34585143 PMCID: PMC8469592 DOI: 10.1038/s43586-021-00028-z] [Citation(s) in RCA: 256] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/05/2021] [Indexed: 12/11/2022]
Abstract
Bioorthogonal chemistry represents a class of high-yielding chemical reactions that proceed rapidly and selectively in biological environments without side reactions towards endogenous functional groups. Rooted in the principles of physical organic chemistry, bioorthogonal reactions are intrinsically selective transformations not commonly found in biology. Key reactions include native chemical ligation and the Staudinger ligation, copper-catalysed azide-alkyne cycloaddition, strain-promoted [3 + 2] reactions, tetrazine ligation, metal-catalysed coupling reactions, oxime and hydrazone ligations as well as photoinducible bioorthogonal reactions. Bioorthogonal chemistry has significant overlap with the broader field of 'click chemistry' - high-yielding reactions that are wide in scope and simple to perform, as recently exemplified by sulfuryl fluoride exchange chemistry. The underlying mechanisms of these transformations and their optimal conditions are described in this Primer, followed by discussion of how bioorthogonal chemistry has become essential to the fields of biomedical imaging, medicinal chemistry, protein synthesis, polymer science, materials science and surface science. The applications of bioorthogonal chemistry are diverse and include genetic code expansion and metabolic engineering, drug target identification, antibody-drug conjugation and drug delivery. This Primer describes standards for reproducibility and data deposition, outlines how current limitations are driving new research directions and discusses new opportunities for applying bioorthogonal chemistry to emerging problems in biology and biomedicine.
Collapse
Affiliation(s)
- Samuel L. Scinto
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Didier A. Bilodeau
- Department of Chemistry and Biomolecular Science, University of Ottawa, Ottawa, Ontario, Canada
- These authors contributed equally: Didier A. Bilodeau, Robert Hincapie, Wankyu Lee, Sean S. Nguyen, Minghao Xu
| | - Robert Hincapie
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- These authors contributed equally: Didier A. Bilodeau, Robert Hincapie, Wankyu Lee, Sean S. Nguyen, Minghao Xu
| | - Wankyu Lee
- Pfizer Worldwide Research and Development, Cambridge, MA, USA
- These authors contributed equally: Didier A. Bilodeau, Robert Hincapie, Wankyu Lee, Sean S. Nguyen, Minghao Xu
| | - Sean S. Nguyen
- Department of Chemistry, University of California, Irvine, CA, USA
- These authors contributed equally: Didier A. Bilodeau, Robert Hincapie, Wankyu Lee, Sean S. Nguyen, Minghao Xu
| | - Minghao Xu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- These authors contributed equally: Didier A. Bilodeau, Robert Hincapie, Wankyu Lee, Sean S. Nguyen, Minghao Xu
| | | | - M. G. Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kathrin Lang
- Department of Chemistry, Technical University of Munich, Garching, Germany
- Laboratory of Organic Chemistry, ETH Zurich, Zurich, Switzerland
| | - Qing Lin
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY, USA
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Jennifer A. Prescher
- Department of Chemistry, University of California, Irvine, CA, USA
- Molecular Biology & Biochemistry, University of California, Irvine, CA, USA
| | | | - Joseph M. Fox
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| |
Collapse
|
61
|
Stéen EJ, Jørgensen JT, Denk C, Battisti UM, Nørregaard K, Edem PE, Bratteby K, Shalgunov V, Wilkovitsch M, Svatunek D, Poulie CBM, Hvass L, Simón M, Wanek T, Rossin R, Robillard M, Kristensen JL, Mikula H, Kjaer A, Herth MM. Lipophilicity and Click Reactivity Determine the Performance of Bioorthogonal Tetrazine Tools in Pretargeted In Vivo Chemistry. ACS Pharmacol Transl Sci 2021; 4:824-833. [PMID: 33860205 PMCID: PMC8033778 DOI: 10.1021/acsptsci.1c00007] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Indexed: 12/12/2022]
Abstract
The development of highly selective and fast biocompatible reactions for ligation and cleavage has paved the way for new diagnostic and therapeutic applications of pretargeted in vivo chemistry. The concept of bioorthogonal pretargeting has attracted considerable interest, in particular for the targeted delivery of radionuclides and drugs. In nuclear medicine, pretargeting can provide increased target-to-background ratios at early time-points compared to traditional approaches. This reduces the radiation burden to healthy tissue and, depending on the selected radionuclide, enables better imaging contrast or higher therapeutic efficiency. Moreover, bioorthogonally triggered cleavage of pretargeted antibody-drug conjugates represents an emerging strategy to achieve controlled release and locally increased drug concentrations. The toolbox of bioorthogonal reactions has significantly expanded in the past decade, with the tetrazine ligation being the fastest and one of the most versatile in vivo chemistries. Progress in the field, however, relies heavily on the development and evaluation of (radio)labeled compounds, preventing the use of compound libraries for systematic studies. The rational design of tetrazine probes and triggers has thus been impeded by the limited understanding of the impact of structural parameters on the in vivo ligation performance. In this work, we describe the development of a pretargeted blocking assay that allows for the investigation of the in vivo fate of a structurally diverse library of 45 unlabeled tetrazines and their capability to reach and react with pretargeted trans-cyclooctene (TCO)-modified antibodies in tumor-bearing mice. This study enabled us to assess the correlation of click reactivity and lipophilicity of tetrazines with their in vivo performance. In particular, high rate constants (>50 000 M-1 s-1) for the reaction with TCO and low calculated logD 7.4 values (below -3) of the tetrazine were identified as strong indicators for successful pretargeting. Radiolabeling gave access to a set of selected 18F-labeled tetrazines, including highly reactive scaffolds, which were used in pretargeted PET imaging studies to confirm the results from the blocking study. These insights thus enable the rational design of tetrazine probes for in vivo application and will thereby assist the clinical translation of bioorthogonal pretargeting.
Collapse
Affiliation(s)
- E. Johanna
L. Stéen
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Department
of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej
9, 2100 Copenhagen, Denmark
| | - Jesper T. Jørgensen
- Department
of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej
9, 2100 Copenhagen, Denmark
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Christoph Denk
- Institute
of Applied Synthetic Chemistry, Technische
Universität Wien (TU Wien), Getreidemarkt 9, 1060 Vienna, Austria
| | - Umberto M. Battisti
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Kamilla Nørregaard
- Department
of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej
9, 2100 Copenhagen, Denmark
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Patricia E. Edem
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Klas Bratteby
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Department
of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej
9, 2100 Copenhagen, Denmark
- Department
of Radiation Physics, Skåne University
Hospital, Barngatan 3, 22242 Lund, Sweden
| | - Vladimir Shalgunov
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Martin Wilkovitsch
- Institute
of Applied Synthetic Chemistry, Technische
Universität Wien (TU Wien), Getreidemarkt 9, 1060 Vienna, Austria
| | - Dennis Svatunek
- Institute
of Applied Synthetic Chemistry, Technische
Universität Wien (TU Wien), Getreidemarkt 9, 1060 Vienna, Austria
| | - Christian B. M. Poulie
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Lars Hvass
- Department
of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej
9, 2100 Copenhagen, Denmark
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Marina Simón
- Department
of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej
9, 2100 Copenhagen, Denmark
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Thomas Wanek
- Preclinical
Molecular Imaging, AIT Austrian Institute
of Technology GmbH, 2444 Seibersdorf, Austria
| | - Raffaella Rossin
- Tagworks
Pharmaceuticals, Geert
Grooteplein 10, 6525 GA Nijmegen, Netherlands
| | - Marc Robillard
- Tagworks
Pharmaceuticals, Geert
Grooteplein 10, 6525 GA Nijmegen, Netherlands
| | - Jesper L. Kristensen
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Hannes Mikula
- Institute
of Applied Synthetic Chemistry, Technische
Universität Wien (TU Wien), Getreidemarkt 9, 1060 Vienna, Austria
| | - Andreas Kjaer
- Department
of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej
9, 2100 Copenhagen, Denmark
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Matthias M. Herth
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Department
of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej
9, 2100 Copenhagen, Denmark
| |
Collapse
|
62
|
Feiner IVJ, Pulagam KR, Uribe KB, Passannante R, Simó C, Zamacola K, Gómez-Vallejo V, Herrero-Álvarez N, Cossío U, Baz Z, Caffarel MM, Lawrie CH, Vugts DJ, Rejc L, Llop J. Pre-targeting with ultra-small nanoparticles: boron carbon dots as drug candidates for boron neutron capture therapy. J Mater Chem B 2021; 9:410-420. [PMID: 33367431 DOI: 10.1039/d0tb01880e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Boron neutron capture therapy (BNCT) is a promising cancer treatment exploiting the neutron capture capacity and subsequent fission reaction of boron-10. The emergence of nanotechnology has encouraged the development of nanocarriers capable of accumulating boron atoms preferentially in tumour cells. However, a long circulation time, required for high tumour accumulation, is usually accompanied by accumulation of the nanosystem in organs such as the liver and the spleen, which may cause off-target side effects. This could be overcome by using small-sized boron carriers via a pre-targeting strategy. Here, we report the preparation, characterisation and in vivo evaluation of tetrazine-functionalised boron-rich carbon dots, which show very fast clearance and low tumour uptake after intravenous administration in a mouse HER2 (human epidermal growth factor receptor 2)-positive tumour model. Enhanced tumour accumulation was achieved when using a pretargeting approach, which was accomplished by a highly selective biorthogonal reaction at the tumour site with trans-cyclooctene-functionalised Trastuzumab.
Collapse
Affiliation(s)
- Irene V J Feiner
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain.
| | - Krishna R Pulagam
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain.
| | - Kepa B Uribe
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain.
| | - Rossana Passannante
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain.
| | - Cristina Simó
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain.
| | - Kepa Zamacola
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain.
| | - Vanessa Gómez-Vallejo
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain.
| | | | - Unai Cossío
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain.
| | - Zuriñe Baz
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain.
| | - María M Caffarel
- Biodonostia Health Research Institute, San Sebastian, Spain and IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Charles H Lawrie
- Biodonostia Health Research Institute, San Sebastian, Spain and IKERBASQUE, Basque Foundation for Science, Bilbao, Spain and Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Danielle J Vugts
- Amsterdam UMC, Vrije Universiteit Amsterdam, Dept. Radiology & Nuclear Medicine, The Netherlands
| | - Luka Rejc
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain. and University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain. and Centro de Investigación Biomédica en Red, Enfermedades Respiratorias - CIBERES, Madrid, Spain
| |
Collapse
|
63
|
Lee W, Sarkar S, Pal R, Kim JY, Park H, Huynh PT, Bhise A, Bobba KN, Kim KI, Ha YS, Soni N, Kim W, Lee K, Jung JM, Rajkumar S, Lee KC, Yoo J. Successful Application of CuAAC Click Reaction in Constructing 64Cu-Labeled Antibody Conjugates for Immuno-PET Imaging. ACS APPLIED BIO MATERIALS 2021; 4:2544-2557. [PMID: 35014372 DOI: 10.1021/acsabm.0c01555] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Immuno-positron emission tomography (immuno-PET) is a rapidly growing imaging technique in which antibodies are radiolabeled to monitor their in vivo behavior in real time. However, effecting the controlled conjugation of a chelate-bearing radioactive atom to a bulky antibody without affecting its immunoreactivity at a specific site is always challenging. The in vivo stability of the radiolabeled chelate is also a key issue for successful tumor imaging. To address these points, a facile ultra-stable radiolabeling platform is developed by using the propylene cross-bridged chelator (PCB-TE2A-alkyne), which can be instantly functionalized with various groups via the click reaction, thus enabling specific conjugation with antibodies as per choice. The PCB-TE2A-tetrazine derivative is selected to demonstrate the proposed strategy. The antibody trastuzumab is functionalized with the trans-cyclooctene (TCO) moiety in the presence or absence of the PEG linker. The complementary 64Cu-PCB-TE2A-tetrazine is synthesized via the click reaction and radiolabeled with 64Cu ions, which then reacts with the aforementioned TCO-modified antibody via a rapid biorthogonal ligation. The 64Cu-PCB-TE2A-trastuzumab conjugate is shown to exhibit excellent in vivo stability and to maintain a higher binding affinity toward HER2-positive cells. The tumor targeting feasibility of the radiolabeled antibody is evaluated in tumor models. Both 64Cu-PCB-TE2A-trastuzumab conjugates show high tumor uptakes in biodistribution studies and enable unambiguous tumor visualization with minimum background noise in PET imaging. Interestingly, the 64Cu-PCB-TE2A-PEG4-trastuzumab containing an additional PEG linker displays a much faster body clearance compared to its counterpart with less PEG linker, thus affording vivid tumor imaging with an unprecedentedly high tumor-to-background ratio.
Collapse
Affiliation(s)
- Woonghee Lee
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Swarbhanu Sarkar
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Rammyani Pal
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Jung Young Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul 01812, South Korea
| | - Hyun Park
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul 01812, South Korea
| | - Phuong Tu Huynh
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Abhinav Bhise
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Kondapa Naidu Bobba
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Kwang Il Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul 01812, South Korea
| | - Yeong Su Ha
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Nisarg Soni
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Wanook Kim
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Kiwoong Lee
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Jung-Min Jung
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Subramani Rajkumar
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Kyo Chul Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul 01812, South Korea
| | - Jeongsoo Yoo
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| |
Collapse
|
64
|
Computational studies on the Carboni-Lindsey reaction. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
65
|
Fernanda García M, Souza Junqueira M, Silva Mororó J, Camacho X, Paula Faria D, Godoi Carneiro C, Gallazzi F, Chammas R, Quinn T, Cabral P, Cerecetto H. Radio‐ and Fluorescent‐Labeling of Rituximab Based on the Inverse Electron Demand Diels‐Alder Reaction. ChemistrySelect 2021. [DOI: 10.1002/slct.202100042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- María Fernanda García
- Centro de Investigaciones Nucleares, Facultad de Ciencias Universidad de la República Mataojo 2055 11400 Montevideo Uruguay
| | - Mara Souza Junqueira
- Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo Faculdade de Medicina Universidade de São Paulo São Paulo Brazil
| | - Janio Silva Mororó
- Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo Faculdade de Medicina Universidade de São Paulo São Paulo Brazil
| | - Ximena Camacho
- Centro de Investigaciones Nucleares, Facultad de Ciencias Universidad de la República Mataojo 2055 11400 Montevideo Uruguay
| | - Daniele Paula Faria
- Laboratório de Medicina Nuclear (LIM43), Faculdade de Medicina Universidade de São Paulo São Paulo Brazil
| | - Camila Godoi Carneiro
- Laboratório de Medicina Nuclear (LIM43), Faculdade de Medicina Universidade de São Paulo São Paulo Brazil
| | - Fabio Gallazzi
- Molecular Interactions Core and Department of Biochemistry University of Missouri Columbia MO 65211 USA
| | - Roger Chammas
- Laboratório de Medicina Nuclear (LIM43), Faculdade de Medicina Universidade de São Paulo São Paulo Brazil
| | - Thomas Quinn
- Molecular Interactions Core and Department of Biochemistry University of Missouri Columbia MO 65211 USA
| | - Pablo Cabral
- Centro de Investigaciones Nucleares, Facultad de Ciencias Universidad de la República Mataojo 2055 11400 Montevideo Uruguay
| | - Hugo Cerecetto
- Centro de Investigaciones Nucleares, Facultad de Ciencias Universidad de la República Mataojo 2055 11400 Montevideo Uruguay
| |
Collapse
|
66
|
Qiu L, Lin Q, Si Z, Tan H, Liu G, Zhou J, Wang T, Chen Y, Huang Y, Yu T, Jin M, Cheng D, Shi H. A Pretargeted Imaging Strategy for EGFR-Positive Colorectal Carcinoma via Modulation of Tz-Radioligand Pharmacokinetics. Mol Imaging Biol 2021; 23:38-51. [PMID: 32914391 DOI: 10.1007/s11307-020-01539-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 11/27/2022]
Abstract
PURPOSE Previously, we successfully developed a pretargeted imaging strategy (atezolizumab-TCO/[99mTc]HYNIC-PEG11-Tz) for evaluating programmed cell death ligand-1 (PD-L1) expression in xenograft mice. However, the surplus unclicked [99mTc]HYNIC-PEG11-Tz is cleared somewhat sluggishly through the intestines, which is not ideal for colorectal cancer (CRC) imaging. To shift the excretion of the Tz-radioligand to the renal system, we developed a novel Tz-radioligand by adding a polypeptide linker between HYNIC and PEG11. PROCEDURES Pretargeted molecular probes [99mTc]HYNIC-polypeptide-PEG11-Tz and cetuximab-TCO were synthesized. [99mTc]HYNIC-polypeptide-PEG11-Tz was evaluated for in vitro stability and in vivo blood pharmacokinetics. In vitro ligation reactivity of [99mTc]HYNIC-polypeptide-PEG11-Tz towards cetuximab-TCO was also tested. Biodistribution assay and imaging of [99mTc]HYNIC-polypeptide-PEG11-Tz were performed to observe its excretion pathway. Pretargeted biodistribution was measured at three different accumulation intervals to determine the optimal pretargeted interval time. Pretargeted (cetuximab-TCO 48 h/[99mTc]HYNIC-PEG11-Tz 6 h) and (cetuximab-TCO 48 h/[99mTc]HYNIC-Polypeptide-PEG11-Tz 6 h) imagings were compared to examine the effect of the excretion pathway on tumor imaging. RESULTS [99mTc]HYNIC-polypeptide-PEG11-Tz showed favorable in vitro stability and rapid blood clearance in mice. SEC-HPLC revealed almost complete reaction between cetuximab-TCO and [99mTc]HYNIC-polypeptide-PEG11-Tz in vitro, with the 8:1 Tz-to-mAb reaction providing a conversion yield of 87.83 ± 3.27 %. Biodistribution and imaging analyses showed that the Tz-radioligand was cleared through the kidneys. After 24, 48, and 72 h of accumulation in HCT116 tumor, the tumor-to-blood ratio of cetuximab-TCO was 0.83 ± 0.13, 1.40 ± 0.31, and 1.15 ± 0.21, respectively. Both pretargeted (cetuximab-TCO 48 h/[99mTc]HYNIC-PEG11-Tz 6 h) and (cetuximab-TCO 48 h/[99mTc]HYNIC-polypeptide-PEG11-Tz 6 h) clearly delineated HCT116 tumor. Pretargeted imaging strategy using cetuximab-TCO/[99mTc]HYNIC-polypeptide-PEG11-Tz could be used for diagnosing CRC, as the surplus unclicked [99mTc]HYNIC-polypeptide-PEG11-Tz was cleared through the urinary system, leading to low abdominal uptake background. CONCLUSION Our novel pretargeted imaging strategy (cetuximab-TCO/[99mTc]HYNIC-polypeptide-PEG11-Tz) was useful for imaging CRC, broadening the application scope of pretargeted imaging strategy. The pretargeted imaging strategy clearly delineated HCT116 tumor, showing that its use could be extended to selection of internalizing antibodies.
Collapse
Affiliation(s)
- Lin Qiu
- Department of Nuclear Medicine, Zhongshan Hospital Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Qingyu Lin
- Department of Nuclear Medicine, Zhongshan Hospital Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Zhan Si
- Department of Nuclear Medicine, Zhongshan Hospital Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Hui Tan
- Department of Nuclear Medicine, Zhongshan Hospital Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Guobing Liu
- Department of Nuclear Medicine, Zhongshan Hospital Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Jun Zhou
- Department of Nuclear Medicine, Zhongshan Hospital Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Tingting Wang
- Department of Nuclear Medicine, Zhongshan Hospital Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | | | - Tao Yu
- WuXi AppTec, Shanghai, China
| | - Mingzhi Jin
- WuXi Biologics (Shanghai) Co., Ltd, Shanghai, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China.
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
67
|
Mukai H, Watanabe Y. Review: PET imaging with macro- and middle-sized molecular probes. Nucl Med Biol 2021; 92:156-170. [PMID: 32660789 DOI: 10.1016/j.nucmedbio.2020.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022]
Abstract
Recent progress in radiolabeling of macro- and middle-sized molecular probes has been extending possibilities to use PET molecular imaging for dynamic application to drug development and therapeutic evaluation. Theranostics concept also accelerated the use of macro- and middle-sized molecular probes for sharpening the contrast of proper target recognition even the cellular types/subtypes and proper selection of the patients who should be treated by the same molecules recognition. Here, brief summary of the present status of immuno-PET, and then further development of advanced technologies related to immuno-PET, peptidic PET probes, and nucleic acids PET probes are described.
Collapse
Affiliation(s)
- Hidefumi Mukai
- Laboratory for Molecular Delivery and Imaging Technology, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
68
|
Abousaway O, Rakhshandehroo T, Van den Abbeele AD, Kircher MF, Rashidian M. Noninvasive Imaging of Cancer Immunotherapy. Nanotheranostics 2021; 5:90-112. [PMID: 33391977 PMCID: PMC7738948 DOI: 10.7150/ntno.50860] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy has revolutionized the treatment of several malignancies. Notwithstanding the encouraging results, many patients do not respond to treatments. Evaluation of the efficacy of treatments is challenging and robust methods to predict the response to treatment are not yet available. The outcome of immunotherapy results from changes that treatment evokes in the tumor immune landscape. Therefore, a better understanding of the dynamics of immune cells that infiltrate into the tumor microenvironment may fundamentally help in addressing this challenge and provide tools to assess or even predict the response. Noninvasive imaging approaches, such as PET and SPECT that provide whole-body images are currently seen as the most promising tools that can shed light on the events happening in tumors in response to treatment. Such tools can provide critical information that can be used to make informed clinical decisions. Here, we review recent developments in the field of noninvasive cancer imaging with a focus on immunotherapeutics and nuclear imaging technologies and will discuss how the field can move forward to address the challenges that remain unresolved.
Collapse
Affiliation(s)
- Omar Abousaway
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
| | - Taha Rakhshandehroo
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
| | - Annick D. Van den Abbeele
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02215, USA
| | - Moritz F. Kircher
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02215, USA
| | - Mohammad Rashidian
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
| |
Collapse
|
69
|
Antibody-Based Molecular Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
70
|
Ferreira VFC, Oliveira BL, D'Onofrio A, Farinha CM, Gano L, Paulo A, Bernardes GJL, Mendes F. In Vivo Pretargeting Based on Cysteine-Selective Antibody Modification with IEDDA Bioorthogonal Handles for Click Chemistry. Bioconjug Chem 2020; 32:121-132. [PMID: 33295756 DOI: 10.1021/acs.bioconjchem.0c00551] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pretargeted imaging has emerged as an effective multistep strategy aiming to improve imaging contrast and reduce patient radiation exposure through decoupling of the radioactivity from the targeting vector. The inverse electron-demand Diels-Alder (IEDDA) reaction between a trans-cyclooctene (TCO)-conjugated antibody and a labeled tetrazine holds great promise for pretargeted imaging applications due to its bioorthogonality, rapid kinetics under mild conditions, and formation of stable products. Herein, we describe the use of functionalized carbonylacrylic reagents for site-specific incorporation of TCO onto a human epidermal growth factor receptor 2 (HER2) antibody (THIOMAB) containing an engineered unpaired cysteine residue, generating homogeneous conjugates. Precise labeling of THIOMAB-TCO with a fluorescent or radiolabeled tetrazine revealed the potential of the TCO-functionalized antibody for imaging the HER2 after pretargeting in a cellular context in a HER2 positive breast cancer cell line. Control studies with MDA-MD-231 cells, which do not express HER2, further confirmed the target specificity of the modified antibody. THIOMAB-TCO was also evaluated in vivo after pretargeting and subsequent administration of an 111In-labeled tetrazine. Biodistribution studies in breast cancer tumor-bearing mice showed a significant activity accumulation on HER2+ tumors, which was 2.6-fold higher than in HER2- tumors. Additionally, biodistribution studies with THIOMAB without the TCO handle also resulted in a decreased uptake of 111In-DOTA-Tz on HER2+ tumors. Altogether, these results clearly indicate the occurrence of the click reaction at the tumor site, i.e., pretargeting of SK-BR-3 HER2-expressing cells with THIOMAB-TCO and reaction through the TCO moiety present in the antibody. The combined advantages of site-selectivity and stability of TCO tagged-antibodies could allow application of biorthogonal chemistry strategies for pretargeting imaging with minimal side-reactions and background.
Collapse
Affiliation(s)
- Vera F C Ferreira
- Center for Nuclear Sciences and Technologies (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - Bruno L Oliveira
- Instituto de Medicina Molecular João Lobo Antunes (iMM-JLA), Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Alice D'Onofrio
- Center for Nuclear Sciences and Technologies (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - Carlos M Farinha
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Lurdes Gano
- Center for Nuclear Sciences and Technologies (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal.,Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - António Paulo
- Center for Nuclear Sciences and Technologies (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal.,Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - Gonçalo J L Bernardes
- Instituto de Medicina Molecular João Lobo Antunes (iMM-JLA), Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal.,Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Filipa Mendes
- Center for Nuclear Sciences and Technologies (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal.,Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| |
Collapse
|
71
|
Adrover JM, Pellico J, Fernández-Barahona I, Martín-Salamanca S, Ruiz-Cabello J, Hidalgo A, Herranz F. Thrombo-tag, an in vivo formed nanotracer for the detection of thrombi in mice by fast pre-targeted molecular imaging. NANOSCALE 2020; 12:22978-22987. [PMID: 33053000 DOI: 10.1039/d0nr04538a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Radioisotope-labelled nanoparticles permit novel applications in molecular imaging, while recent developments in imaging have enabled direct visualization of biological processes. While this holds true for pathological processes that are stable in time, such as cancer, imaging approaches are limited for phenomena that take place in the range of minutes, such as thrombotic events. Here, we take advantage of bioorthogonal chemistry to demonstrate the concept of nanoparticle-based fast pre-targeted imaging. Using a newly designed nanoparticle that targets platelets we show the applicability of this approach developing thrombo-tag, an in vivo produced nanoparticle that labels thrombi. We show that thrombo-tag allows specific labelling of platelets that accumulate in the injured pulmonary vasculature, or that aggregate in brains of mice suffering thrombotic processes. The fast kinetics and high specificity features of thrombo-tag may critically expand the application of molecular imaging to the most prevalent and debilitating diseases in the clinics.
Collapse
Affiliation(s)
- José M Adrover
- Area of Cell and Developmental Biology, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
72
|
Abstract
Genetic code expansion is one of the most powerful technologies in protein engineering. In addition to the 20 canonical amino acids, the expanded genetic code is supplemented by unnatural amino acids, which have artificial side chains that can be introduced into target proteins in vitro and in vivo. A wide range of chemical groups have been incorporated co-translationally into proteins in single cells and multicellular organisms by using genetic code expansion. Incorporated unnatural amino acids have been used for novel structure-function relationship studies, bioorthogonal labelling of proteins in cellulo for microscopy and in vivo for tissue-specific proteomics, the introduction of post-translational modifications and optical control of protein function, to name a few examples. In this Minireview, the development of genetic code expansion technology is briefly introduced, then its applications in neurobiology are discussed, with a focus on studies using mammalian cells and mice as model organisms.
Collapse
Affiliation(s)
- Ivana Nikić‐Spiegel
- Werner Reichardt Centre for Integrative NeuroscienceUniversity of TübingenOtfried-Müller-Strasse 2572076TübingenGermany
| |
Collapse
|
73
|
Wilkovitsch M, Haider M, Sohr B, Herrmann B, Klubnick J, Weissleder R, Carlson JCT, Mikula H. A Cleavable C 2-Symmetric trans-Cyclooctene Enables Fast and Complete Bioorthogonal Disassembly of Molecular Probes. J Am Chem Soc 2020; 142:19132-19141. [PMID: 33119297 PMCID: PMC7662912 DOI: 10.1021/jacs.0c07922] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Indexed: 12/15/2022]
Abstract
Bioorthogonal chemistry is bridging the divide between static chemical connectivity and the dynamic physiologic regulation of molecular state, enabling in situ transformations that drive multiple technologies. In spite of maturing mechanistic understanding and new bioorthogonal bond-cleavage reactions, the broader goal of molecular ON/OFF control has been limited by the inability of existing systems to achieve both fast (i.e., seconds to minutes, not hours) and complete (i.e., >99%) cleavage. To attain the stringent performance characteristics needed for high fidelity molecular inactivation, we have designed and synthesized a new C2-symmetric trans-cyclooctene linker (C2TCO) that exhibits excellent biological stability and can be rapidly and completely cleaved with functionalized alkyl-, aryl-, and H-tetrazines, irrespective of click orientation. By incorporation of C2TCO into fluorescent molecular probes, we demonstrate highly efficient extracellular and intracellular bioorthogonal disassembly via omnidirectional tetrazine-triggered cleavage.
Collapse
Affiliation(s)
- Martin Wilkovitsch
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Maximilian Haider
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Barbara Sohr
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Barbara Herrmann
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Jenna Klubnick
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
| | - Ralph Weissleder
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
- Department
of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jonathan C. T. Carlson
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
- Cancer
Center, Massachusetts General Hospital and
Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Hannes Mikula
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
74
|
Slikboer SR, Pitchumony TS, Banevicius L, Mercanti N, Edem PE, Valliant JF. Imidazole fused phenanthroline (PIP) ligands for the preparation of multimodal Re(I) and 99mTc(I) probes. Dalton Trans 2020; 49:14826-14836. [PMID: 33034336 DOI: 10.1039/d0dt02829k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A small library of [2 + 1] 99mTc(i) complexes based on phenyl-imidazole-fused phenanthroline (PIP) ligands were synthesized and evaluated as multimodal molecular imaging probes. Using either a two-step or a one-pot synthesis method, 99mTc-PIP complexes containing N-methylimidazole as the monodentate ligand were prepared and isolated in good (54 to 89%) radiochemical yield, with the exception of one derivative bearing a strongly electron-withdrawing substituent. The stability of the [2 + 1] complexes was assessed in saline and in cysteine and histidine challenge studies, showing 6 hours stability, making them suitable for in vivo studies. In parallel, the Re(i) analogues were prepared as reference standards to verify the structure of the 99mTc complexes. The optical properties were consistent with other previously reported [2 + 1] type Re(i) complexes that have been used as cellular dyes and sensors. To facilitate the development of targeted derivatives, a tetrazine-PIP ligand was also synthesized. The 99mTc complex of the tetrazine PIP ligand effectively coupled to compounds containing a trans-cyclooctene (TCO) group including a TCO-albumin derivative, which was prepared as a model targeting molecule. An added benefit of the Re-PIP-Tz construct is that the emission from the metal complex was quenched by the presence of the tetrazine. Following the addition of TCO, there was a 70-fold increase in fluorescence emission, which can in future be leveraged during in vitro studies to reduce background signal.
Collapse
Affiliation(s)
- Samantha R Slikboer
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4 M1, Canada.
| | | | | | | | | | | |
Collapse
|
75
|
Hai W, Bao X, Sun K, Li B, Peng J, Xu Y. The Labeling, Visualization, and Quantification of Hyaluronan Distribution in Tumor-Bearing Mouse Using PET and MR Imaging. Pharm Res 2020; 37:237. [PMID: 33151373 DOI: 10.1007/s11095-020-02957-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/15/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE Hyaluronan (HA) based biomaterials are widely used as tissue scaffolds, drug formulations, as well as targeting ligands and imaging probes for diagnosis and drug delivery. However, because of the presence of abundant endogenous HA presented in various tissues in vivo, the pharmacokinetic behavior and biodistribution patterns of exogenously administered HAs have not been well characterized. METHODS The HA backbone was modified with Diethylenetriamine (DTPA) to enable the chelation of gadolinium (Gd) and aluminum (Al) ions. Series of PET and MR imaging were taken after the injection of HA-DTPA-Gd and HA-DTPA-Al18F while using18F-FDG and Magnevist(DTPA-Gd) as controls. The Tomographic images were analyzed and quantified to reveal the distribution and locations of HA in tumor-bearing mice. RESULTS The labeled HAs had good stability in plasma. They retained binding affinity towards CD44s on tumor cell surface. The injected HAs distributed widely in various organs, but were found to be cleared quickly except inside tumor tissues where the signals were higher and persisted longer. CONCLUSION Medical imaging tools, including MR and PET, can be highly valuable for examining biomaterial distribution non-invasively. The HA tumor accumulation properties may be explored for the development of active targeting drug carriers and molecular probes.
Collapse
Affiliation(s)
- Wangxi Hai
- School of Pharmacy, Shanghai Jiao Tong University, No.800, Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Xiao Bao
- School of Pharmacy, Shanghai Jiao Tong University, No.800, Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Kang Sun
- School of Pharmacy, Shanghai Jiao Tong University, No.800, Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinliang Peng
- School of Pharmacy, Shanghai Jiao Tong University, No.800, Dongchuan Rd., Shanghai, 200240, People's Republic of China.
| | - Yuhong Xu
- School of Pharmacy and Chemistry, Dali University, Xia Guan, Dali, Yunnan, 6710000, People's Republic of China.
| |
Collapse
|
76
|
Abstract
Over the past decade, theranostic imaging has emerged as a powerful clinical tool in oncology for identifying patients likely to respond to targeted therapies and for monitoring the response of patients to treatment. Herein, we report a theranostic approach to pretargeted radioimmunotherapy (PRIT) based on a pair of radioisotopes of copper: positron-emitting copper-64 (64Cu, t 1/2 = 12.7 h) and beta particle-emitting copper-67 (67Cu, t 1/2 = 61.8 h). This strategy is predicated on the in vivo ligation between a trans-cyclooctene (TCO)-bearing antibody and a tetrazine (Tz)-based radioligand via the rapid and bioorthogonal inverse electron-demand Diels-Alder reaction. Longitudinal therapy studies were conducted in a murine model of human colorectal carcinoma using an immunoconjugate of the huA33 antibody modified with TCO (huA33-TCO) and a 67Cu-labeled Tz radioligand ([67Cu]Cu-MeCOSar-Tz). The injection of huA33-TCO followed 72 h later by the administration of 18.5, 37.0, or 55.5 MBq of [67Cu]Cu-MeCOSar-Tz produced a dose-dependent therapeutic response, with the median survival time increasing from 68 d for the lowest dose to >200 d for the highest. Furthermore, we observed that mice that received the highest dose of [67Cu]Cu-MeCOSar-Tz in a fractionated manner exhibited improved hematological values without sacrificing therapeutic efficacy. Dual radionuclide experiments in which a single administration of huA33-TCO was followed by separate injections of [64Cu]Cu-MeCOSar-Tz and [67Cu]Cu-MeCOSar-Tz revealed that the positron emission tomography images produced by the former accurately predicted the efficacy of the latter. In these experiments, a correlation was observed between the tumoral uptake of [64Cu]Cu-MeCOSar-Tz and the subsequent therapeutic response to [67Cu]Cu-MeCOSar-Tz.
Collapse
|
77
|
Slikboer S, Naperstkow Z, Janzen N, Faraday A, Soenjaya Y, Le Floc'h J, Al-Karmi S, Swann R, Wyszatko K, Demore CEM, Foster S, Valliant JF. Tetrazine-Derived Near-Infrared Dye as a Facile Reagent for Developing Targeted Photoacoustic Imaging Agents. Mol Pharm 2020; 17:3369-3377. [PMID: 32697098 DOI: 10.1021/acs.molpharmaceut.0c00441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A new photoacoustic (PA) dye was developed as a simple-to-use reagent for creating targeted PA imaging agents. The lead molecule was prepared via an efficient two-step synthesis from an inexpensive commercially available starting material. With the dye's innate albumin-binding properties, the resulting tetrazine-derived dye is capable of localizing to tumor and exhibits a biological half-life of a few hours, allowing for an optimized distribution profile. The presence of tetrazine in turn makes it possible to link the albumin-binding optoacoustic signaling agent to a wide range of targeting molecules. To demonstrate the utility and ease of use of the platform, a novel PA probe for imaging calcium accretion was generated using a single-step bioorthogonal coupling reaction where high-resolution PA images of the knee joint in mice were obtained as early as 1 h post injection. Whole-body distribution was subsequently determined by labeling the probe with 99mTc and performing tissue counting following necropsy. These studies, along with tumor imaging and in vitro albumin binding studies, revealed that the core PA contrast agent can be imaged in vivo and can be easily linked to targeting molecules for organ-specific uptake.
Collapse
Affiliation(s)
- Samantha Slikboer
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street, Hamilton, Ontario L8S 4M1, Canada
| | - Zoya Naperstkow
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street, Hamilton, Ontario L8S 4M1, Canada
| | - Nancy Janzen
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street, Hamilton, Ontario L8S 4M1, Canada
| | - Amber Faraday
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street, Hamilton, Ontario L8S 4M1, Canada
| | - Yohannes Soenjaya
- Department of Medical Biophysics University of Toronto, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Johann Le Floc'h
- Department of Medical Biophysics University of Toronto, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Salma Al-Karmi
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street, Hamilton, Ontario L8S 4M1, Canada
| | - Rowan Swann
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street, Hamilton, Ontario L8S 4M1, Canada
| | - Kevin Wyszatko
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street, Hamilton, Ontario L8S 4M1, Canada
| | - Christine E M Demore
- Department of Medical Biophysics University of Toronto, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Stuart Foster
- Department of Medical Biophysics University of Toronto, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - John F Valliant
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
78
|
Longo B, Zanato C, Piras M, Dall'Angelo S, Windhorst AD, Vugts DJ, Baldassarre M, Zanda M. Design, Synthesis, Conjugation, and Reactivity of Novel trans,trans-1,5-Cyclooctadiene-Derived Bioorthogonal Linkers. Bioconjug Chem 2020; 31:2201-2210. [PMID: 32786505 DOI: 10.1021/acs.bioconjchem.0c00375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The tetrazine/trans-cyclooctene (TCO) inverse electron-demand Diels-Alder (IEDDA) reaction is the fastest bioorthogonal "click" ligation process reported to date. In this context, TCO reagents have found widespread applications; however, their availability and structural diversity is still somewhat limited due to challenges connected with their synthesis and structural modification. To address this issue, we developed a novel strategy for the conjugation of TCO derivatives to a biomolecule, which allows for the creation of greater structural diversity from a single precursor molecule, i.e., trans,trans-1,5-cyclooctadiene [(E,E)-COD] 1, whose preparation requires standard laboratory equipment and readily available reagents. This two-step strategy relies on the use of new bifunctional TCO linkers (5a-11a) for IEDDA reactions, which can be synthesized via 1,3-dipolar cycloaddition of (E,E)-COD 1 with different azido spacers (5-11) carrying an electrophilic function (NHS-ester, N-succinimidyl carbonate, p-nitrophenyl-carbonate, maleimide) in the ω-position. Following bioconjugation of these electrophilic linkers to the nucleophilic residue (cysteine or lysine) of a protein (step 1), the resulting TCO-decorated constructs can be subjected to a IEDDA reaction with tetrazines functionalized with fluorescent or near-infrared (NIR) tags (step 2). We successfully used this strategy to label bovine serum albumin with the TCO linker 8a and subsequently reacted it in a cell lysate with the fluorescein-isothiocyanate (FITC)-derived tetrazine 12. The same strategy was then used to label the bacterial wall of Gram-positive Staphylococcus aureus, showing the potential of these linkers for live-cell imaging. Finally, we determined the impact of structural differences of the linkers upon the stability of the bioorthogonal constructs. The compounds for stability studies were prepared by conjugation of TCO linkers 6a, 8a, and 10a to mAbs, such as Rituximab and Obinutuzumab, and subsequent labeling with a reactive Cy3-functionalized tetrazine.
Collapse
Affiliation(s)
- Beatrice Longo
- Institute of Medical Sciences, Foresterhill, University of Aberdeen, AB252ZD Aberdeen, United Kingdom.,Centre for Sensing and Imaging Science, School of Science, Loughborough University, LB11 3TU Loughborough, United Kingdom
| | - Chiara Zanato
- Institute of Medical Sciences, Foresterhill, University of Aberdeen, AB252ZD Aberdeen, United Kingdom
| | - Monica Piras
- Institute of Medical Sciences, Foresterhill, University of Aberdeen, AB252ZD Aberdeen, United Kingdom
| | - Sergio Dall'Angelo
- Institute of Medical Sciences, Foresterhill, University of Aberdeen, AB252ZD Aberdeen, United Kingdom
| | - Albert D Windhorst
- Amsterdam UMC, Vrije Universiteit, dept. Radiology and Nuclear Medicine, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Danielle J Vugts
- Amsterdam UMC, Vrije Universiteit, dept. Radiology and Nuclear Medicine, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Massimiliano Baldassarre
- Institute of Medical Sciences, Foresterhill, University of Aberdeen, AB252ZD Aberdeen, United Kingdom
| | - Matteo Zanda
- Institute of Medical Sciences, Foresterhill, University of Aberdeen, AB252ZD Aberdeen, United Kingdom.,Centre for Sensing and Imaging Science, School of Science, Loughborough University, LB11 3TU Loughborough, United Kingdom.,CNR-SCITEC, via Mancinelli 7, 20131 Milan, Italy
| |
Collapse
|
79
|
Fletcher NL, Kempe K, Thurecht KJ. Next-Generation Polymeric Nanomedicines for Oncology: Perspectives and Future Directions. Macromol Rapid Commun 2020; 41:e2000319. [PMID: 32767396 DOI: 10.1002/marc.202000319] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/15/2020] [Indexed: 12/19/2022]
Abstract
Precision polymers as advanced nanomedicines represent an appealing approach for the treatment of otherwise untreatable malignancies. By taking advantage of unique nanomaterial properties and implementing judicious design strategies, polymeric nanomedicines are able to be produced that overcome many barriers to effective treatment. Current key research focus areas anticipated to produce the greatest impact in polymer applications in nanomedicine for oncology include new strategies to achieve "active" targeting, polymeric pro-drug activation, and combinatorial polymer drug delivery approaches in combination with enhanced understanding of complex bio-nano interactions. These approaches, both in isolation or combination, form the next generation of precision nanomedicines with significant anticipated future health outcomes. Of necessity, these approaches will combine an intimate understanding of biological interactions with advanced materials design. This perspectives piece aims to highlight emerging opportunities that promise to be game changers in the nanomedicine oncology field. Discussed herein are current and next generation polymeric nanomedicines with a focus towards structures that are, or could, undergo clinical translation as well as highlight key advances in the field.
Collapse
Affiliation(s)
- Nicholas L Fletcher
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology (AIBN), ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Kristian Kempe
- Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology (AIBN), ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| |
Collapse
|
80
|
Herrmann K, Schwaiger M, Lewis JS, Solomon SB, McNeil BJ, Baumann M, Gambhir SS, Hricak H, Weissleder R. Radiotheranostics: a roadmap for future development. Lancet Oncol 2020; 21:e146-e156. [PMID: 32135118 DOI: 10.1016/s1470-2045(19)30821-6] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Radiotheranostics, injectable radiopharmaceuticals with antitumour effects, have seen rapid development over the past decade. Although some formulations are already approved for human use, more radiopharmaceuticals will enter clinical practice in the next 5 years, potentially introducing new therapeutic choices for patients. Despite these advances, several challenges remain, including logistics, supply chain, regulatory issues, and education and training. By highlighting active developments in the field, this Review aims to alert practitioners to the value of radiotheranostics and to outline a roadmap for future development. Multidisciplinary approaches in clinical trial design and therapeutic administration will become essential to the continued progress of this evolving therapeutic approach.
Collapse
Affiliation(s)
- Ken Herrmann
- Clinic for Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Markus Schwaiger
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Stephen B Solomon
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Barbara J McNeil
- Department of Radiology, Brigham and Women's Hospital, and Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
| | | | - Sanjiv S Gambhir
- Department of Radiology and Molecular Imaging Program, Stanford University, Stanford, CA, USA
| | - Hedvig Hricak
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Ralph Weissleder
- Department of Radiology, and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
81
|
Béquignat JB, Ty N, Rondon A, Taiariol L, Degoul F, Canitrot D, Quintana M, Navarro-Teulon I, Miot-Noirault E, Boucheix C, Chezal JM, Moreau E. Optimization of IEDDA bioorthogonal system: Efficient process to improve trans-cyclooctene/tetrazine interaction. Eur J Med Chem 2020; 203:112574. [PMID: 32683167 DOI: 10.1016/j.ejmech.2020.112574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 10/23/2022]
Abstract
The antibody pretargeting approach for radioimmunotherapy (RIT) using inverse electron demand Diels-Alder cycloaddition (IEDDA) constitutes an emerging theranostic approach for solid cancers. However, IEDDA pretargeting has not reached clinical trial. The major limitation of the IEDDA strategy depends largely on trans-cyclooctene (TCO) stability. Indeed, TCO may isomerize into the more stable but unreactive cis-cyclooctene (CCO), leading to a drastic decrease of IEDDA efficiency. We have thus developed both efficient and reproducible synthetic pathways and analytical follow up for (PEGylated) TCO derivatives, providing high TCO isomeric purity for antibody modification. We have set up an original process to limit the isomerization of TCO to CCO before the mAbs' functionalization to allow high TCO/tetrazine cycloaddition.
Collapse
Affiliation(s)
- Jean-Baptiste Béquignat
- Université Clermont Auvergne, Imagerie Moléculaire et Stratégies Théranostiques, BP 184, F-63005, Clermont-Ferrand, France; Inserm, U 1240, F-63000, Clermont-Ferrand, France; Centre Jean Perrin, F-63011, Clermont-Ferrand, France
| | - Nancy Ty
- Université Clermont Auvergne, Imagerie Moléculaire et Stratégies Théranostiques, BP 184, F-63005, Clermont-Ferrand, France; Inserm, U 1240, F-63000, Clermont-Ferrand, France; Centre Jean Perrin, F-63011, Clermont-Ferrand, France
| | - Aurélie Rondon
- Université Clermont Auvergne, Imagerie Moléculaire et Stratégies Théranostiques, BP 184, F-63005, Clermont-Ferrand, France; Inserm, U 1240, F-63000, Clermont-Ferrand, France; Centre Jean Perrin, F-63011, Clermont-Ferrand, France; Institut de Recherche en Cancérologie (IRCM), U1194 - Université Montpellier - ICM, Radiobiology and Targeted Radiotherapy, 34298, Montpellier Cedex 5, France
| | - Ludivine Taiariol
- Université Clermont Auvergne, Imagerie Moléculaire et Stratégies Théranostiques, BP 184, F-63005, Clermont-Ferrand, France; Inserm, U 1240, F-63000, Clermont-Ferrand, France; Centre Jean Perrin, F-63011, Clermont-Ferrand, France
| | - Françoise Degoul
- Université Clermont Auvergne, Imagerie Moléculaire et Stratégies Théranostiques, BP 184, F-63005, Clermont-Ferrand, France; Inserm, U 1240, F-63000, Clermont-Ferrand, France; Centre Jean Perrin, F-63011, Clermont-Ferrand, France
| | - Damien Canitrot
- Université Clermont Auvergne, Imagerie Moléculaire et Stratégies Théranostiques, BP 184, F-63005, Clermont-Ferrand, France; Inserm, U 1240, F-63000, Clermont-Ferrand, France; Centre Jean Perrin, F-63011, Clermont-Ferrand, France
| | - Mercedes Quintana
- Université Clermont Auvergne, Imagerie Moléculaire et Stratégies Théranostiques, BP 184, F-63005, Clermont-Ferrand, France; Inserm, U 1240, F-63000, Clermont-Ferrand, France; Centre Jean Perrin, F-63011, Clermont-Ferrand, France
| | - Isabelle Navarro-Teulon
- Institut de Recherche en Cancérologie (IRCM), U1194 - Université Montpellier - ICM, Radiobiology and Targeted Radiotherapy, 34298, Montpellier Cedex 5, France
| | - Elisabeth Miot-Noirault
- Université Clermont Auvergne, Imagerie Moléculaire et Stratégies Théranostiques, BP 184, F-63005, Clermont-Ferrand, France; Inserm, U 1240, F-63000, Clermont-Ferrand, France; Centre Jean Perrin, F-63011, Clermont-Ferrand, France
| | | | - Jean-Michel Chezal
- Université Clermont Auvergne, Imagerie Moléculaire et Stratégies Théranostiques, BP 184, F-63005, Clermont-Ferrand, France; Inserm, U 1240, F-63000, Clermont-Ferrand, France; Centre Jean Perrin, F-63011, Clermont-Ferrand, France
| | - Emmanuel Moreau
- Université Clermont Auvergne, Imagerie Moléculaire et Stratégies Théranostiques, BP 184, F-63005, Clermont-Ferrand, France; Inserm, U 1240, F-63000, Clermont-Ferrand, France; Centre Jean Perrin, F-63011, Clermont-Ferrand, France.
| |
Collapse
|
82
|
Dewulf J, Adhikari K, Vangestel C, Wyngaert TVD, Elvas F. Development of Antibody Immuno-PET/SPECT Radiopharmaceuticals for Imaging of Oncological Disorders-An Update. Cancers (Basel) 2020; 12:E1868. [PMID: 32664521 PMCID: PMC7408676 DOI: 10.3390/cancers12071868] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 01/12/2023] Open
Abstract
Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are molecular imaging strategies that typically use radioactively labeled ligands to selectively visualize molecular targets. The nanomolar sensitivity of PET and SPECT combined with the high specificity and affinity of monoclonal antibodies have shown great potential in oncology imaging. Over the past decades a wide range of radio-isotopes have been developed into immuno-SPECT/PET imaging agents, made possible by novel conjugation strategies (e.g., site-specific labeling, click chemistry) and optimization and development of novel radiochemistry procedures. In addition, new strategies such as pretargeting and the use of antibody fragments have entered the field of immuno-PET/SPECT expanding the range of imaging applications. Non-invasive imaging techniques revealing tumor antigen biodistribution, expression and heterogeneity have the potential to contribute to disease diagnosis, therapy selection, patient stratification and therapy response prediction achieving personalized treatments for each patient and therefore assisting in clinical decision making.
Collapse
Affiliation(s)
- Jonatan Dewulf
- Molecular Imaging Center Antwerp, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (J.D.); (C.V.); (T.V.D.W.)
- Department of Nuclear Medicine, Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
| | - Karuna Adhikari
- Faculty of Pharmaceutical Biomedical and Veterinary Sciences, Medicinal Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium;
| | - Christel Vangestel
- Molecular Imaging Center Antwerp, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (J.D.); (C.V.); (T.V.D.W.)
- Department of Nuclear Medicine, Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
| | - Tim Van Den Wyngaert
- Molecular Imaging Center Antwerp, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (J.D.); (C.V.); (T.V.D.W.)
- Department of Nuclear Medicine, Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
| | - Filipe Elvas
- Molecular Imaging Center Antwerp, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (J.D.); (C.V.); (T.V.D.W.)
- Department of Nuclear Medicine, Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
| |
Collapse
|
83
|
Goos JACM, Davydova M, Dilling TR, Cho A, Cornejo MA, Gupta A, Price WS, Puttick S, Whittaker MR, Quinn JF, Davis TP, Lewis JS. Design and preclinical evaluation of nanostars for the passive pretargeting of tumor tissue. Nucl Med Biol 2020; 84-85:63-72. [PMID: 32135473 PMCID: PMC7253331 DOI: 10.1016/j.nucmedbio.2020.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/07/2020] [Accepted: 02/24/2020] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Pretargeting strategies that do not rely on the expression of molecular targets have expanded imaging and therapy options for cancer patients. Nanostars with designed multivalency and which highly accumulate in tumor tissue via the enhanced permeability and retention (EPR) effect may therefore be the ideal vectors for the development of a passive pretargeting approach. METHODS Nanostars were synthesized, consisting of 7-8 center-cross-linked arms that were modified with trans-cyclooctene (TCO) using poly(ethylene glycol) (PEG) linkers of 12 or 106 monomer units or without linker. The bioorthogonal click reaction with radiofluorinated 2,2'-(7-(2-(tetrazine-poly(ethyleneglycol)11-amino)-2-oxoethyl)-1,4,7-triazonane-1,4-diyl)diacetic acid ([18F]F-Tz-PEG11-NODA) or 2,2'-(7-(2-(tetrazine-amino)-2-oxoethyl)-1,4,7-triazonane-1,4-diyl)diacetic acid ([18F]F-Tz-NODA) was measured by ex vivo biodistribution studies and positron emission tomography (PET) in mice bearing tumors with high EPR characteristics. Bioorthogonal masking was performed using a tetrazine-functionalized dextran polymer (Tz-DP). RESULTS Highest tumor accumulation of [18F]F-Tz-PEG11-NODA was observed for nanostars functionalized with TCO without linker, with a tumor uptake of 3.2 ± 0.4%ID/g and a tumor-to-muscle ratio of 12.8 ± 4.2, tumor-to-large intestine ratio of 0.5 ± 0.3 and tumor-to-kidney ratio of 2.0 ± 0.3, being significantly higher than for nanostars functionalized with TCO-PEG12 (P < 0.05) or TCO-PEG106 (P < 0.05). Tumor uptake and tumor-to-tissue ratios did not improve upon bioorthogonal masking with Tz-DP or when using a smaller, more lipophilic tetrazine([18F]F-Tz-NODA). CONCLUSIONS A pretargeting strategy was developed based on the passive delivery of TCO-functionalized nanostars. Such a strategy would allow for the imaging and treatment of tumors with apparent EPR characteristics, with high radioactive tumor doses and minimal doses to off-target tissues.
Collapse
Affiliation(s)
- Jeroen A C M Goos
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, USA; ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia; Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden; MedTechLabs, Stockholm, Sweden.
| | - Maria Davydova
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Thomas R Dilling
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Andrew Cho
- Department of Biochemistry & Structural Biology, Weill Cornell Graduate School, New York, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, USA
| | - Mike A Cornejo
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Abhishek Gupta
- Nanoscale Organisation and Dynamics Group, Western Sydney University, Penrith, Australia
| | - William S Price
- Nanoscale Organisation and Dynamics Group, Western Sydney University, Penrith, Australia
| | - Simon Puttick
- Probing Biosystems Future Science Platform, Commonwealth Scientific and Industrial Research Organisation, Herston, Australia
| | - Michael R Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - John F Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia; Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Australia
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, USA; Department of Radiology, the Molecular Pharmacology Program and the Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, USA; Department of Radiology, Weill Cornell Medical College, New York, USA; Department Pharmacology, Weill Cornell Medical College, New York, USA
| |
Collapse
|
84
|
Zhang X, Ding B, Qu C, Li H, Sun Y, Gai Y, Chen H, Fang H, Qian K, Zhang Y, Cheng Z, Lan X. A thiopyrylium salt for PET/NIR-II tumor imaging and image-guided surgery. Mol Oncol 2020; 14:1089-1100. [PMID: 32191387 PMCID: PMC7191196 DOI: 10.1002/1878-0261.12674] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/17/2020] [Accepted: 03/17/2020] [Indexed: 12/26/2022] Open
Abstract
All tumor imaging modalities have resolution limits below which deeply situated small metastatic foci may not be identified. Moreover, incomplete lesion excision will affect the outcomes of the patients. Scintigraphy is adept in locating lesions, and second near-infrared window (NIR-II) imaging may allow precise real-time tumor delineation. To achieve complete excision of all lesions, multimodality imaging is a promising method for tumor identification and management. Here, a NIR-II thiopyrylium salt, XB1034, was first synthesized and bound to cetuximab and trans-cyclooctene (TCO) to produce XB1034-cetuximab-TCO. This probe provides excellent sensitivity and high temporal resolution NIR-II imaging in mice bearing tumors developed from human breast cancer cells MDA-MB-231. To enable PET imaging, 68 Ga-NETA-tetrazine is subsequently injected into the mice to undergo a bio-orthogonal reaction with the preinjected XB1034-cetuximab-TCO. PET images achieved in the tumor models using the pretargeting strategy are of much higher quality than those obtained using the direct radiolabeling method. Moreover, real-time NIR-II imaging allows accurate tumor excision and sentinel lymph node mapping. In conclusion, XB1034 is a promising molecular imaging probe for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Nuclear MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Molecular Imaging Program at StanfordBio‐X Program, and Department of RadiologyCanary Center at Stanford for Cancer Early DetectionStanford UniversityCAUSA
- Hubei Key Laboratory of Molecular ImagingWuhanChina
| | - Bingbing Ding
- Molecular Imaging Program at StanfordBio‐X Program, and Department of RadiologyCanary Center at Stanford for Cancer Early DetectionStanford UniversityCAUSA
| | - Chunrong Qu
- Molecular Imaging Program at StanfordBio‐X Program, and Department of RadiologyCanary Center at Stanford for Cancer Early DetectionStanford UniversityCAUSA
| | - Huiling Li
- Department of Nuclear MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Molecular ImagingWuhanChina
| | - Yu Sun
- Molecular Imaging Program at StanfordBio‐X Program, and Department of RadiologyCanary Center at Stanford for Cancer Early DetectionStanford UniversityCAUSA
| | - Yongkang Gai
- Department of Nuclear MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Molecular ImagingWuhanChina
| | - Hao Chen
- Molecular Imaging Program at StanfordBio‐X Program, and Department of RadiologyCanary Center at Stanford for Cancer Early DetectionStanford UniversityCAUSA
| | - Hanyi Fang
- Department of Nuclear MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Molecular ImagingWuhanChina
| | - Kun Qian
- Molecular Imaging Program at StanfordBio‐X Program, and Department of RadiologyCanary Center at Stanford for Cancer Early DetectionStanford UniversityCAUSA
| | - Yongxue Zhang
- Department of Nuclear MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Molecular ImagingWuhanChina
| | - Zhen Cheng
- Molecular Imaging Program at StanfordBio‐X Program, and Department of RadiologyCanary Center at Stanford for Cancer Early DetectionStanford UniversityCAUSA
| | - Xiaoli Lan
- Department of Nuclear MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Molecular ImagingWuhanChina
| |
Collapse
|
85
|
Abstract
Immuno-positron emission tomography (immunoPET) is a paradigm-shifting molecular imaging modality combining the superior targeting specificity of monoclonal antibody (mAb) and the inherent sensitivity of PET technique. A variety of radionuclides and mAbs have been exploited to develop immunoPET probes, which has been driven by the development and optimization of radiochemistry and conjugation strategies. In addition, tumor-targeting vectors with a short circulation time (e.g., Nanobody) or with an enhanced binding affinity (e.g., bispecific antibody) are being used to design novel immunoPET probes. Accordingly, several immunoPET probes, such as 89Zr-Df-pertuzumab and 89Zr-atezolizumab, have been successfully translated for clinical use. By noninvasively and dynamically revealing the expression of heterogeneous tumor antigens, immunoPET imaging is gradually changing the theranostic landscape of several types of malignancies. ImmunoPET is the method of choice for imaging specific tumor markers, immune cells, immune checkpoints, and inflammatory processes. Furthermore, the integration of immunoPET imaging in antibody drug development is of substantial significance because it provides pivotal information regarding antibody targeting abilities and distribution profiles. Herein, we present the latest immunoPET imaging strategies and their preclinical and clinical applications. We also emphasize current conjugation strategies that can be leveraged to develop next-generation immunoPET probes. Lastly, we discuss practical considerations to tune the development and translation of immunoPET imaging strategies.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
| | - Zachary T Rosenkrans
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705, United States
| |
Collapse
|
86
|
Chen Z, Chen M, Zhou K, Rao J. Pre‐targeted Imaging of Protease Activity through In Situ Assembly of Nanoparticles. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916352] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Zixin Chen
- Departments of Radiology and Chemistry Molecular Imaging Program at Stanford Stanford University School of Medicine Stanford CA 94305 USA
| | - Min Chen
- Departments of Radiology and Chemistry Molecular Imaging Program at Stanford Stanford University School of Medicine Stanford CA 94305 USA
| | - Kaixiang Zhou
- Departments of Radiology and Chemistry Molecular Imaging Program at Stanford Stanford University School of Medicine Stanford CA 94305 USA
| | - Jianghong Rao
- Departments of Radiology and Chemistry Molecular Imaging Program at Stanford Stanford University School of Medicine Stanford CA 94305 USA
| |
Collapse
|
87
|
Chen Z, Chen M, Zhou K, Rao J. Pre-targeted Imaging of Protease Activity through In Situ Assembly of Nanoparticles. Angew Chem Int Ed Engl 2020; 59:7864-7870. [PMID: 32056345 DOI: 10.1002/anie.201916352] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/11/2020] [Indexed: 02/06/2023]
Abstract
The pre-targeted imaging of enzyme activity has not been reported, likely owing to the lack of a mechanism to retain the injected substrate in the first step for subsequent labeling. Herein, we report the use of two bioorthogonal reactions-the condensation reaction of aromatic nitriles and aminothiols and the inverse-electron demand Diels-Alder reaction between tetrazine and trans-cyclooctene (TCO)-to develop a novel strategy for pre-targeted imaging of the activity of proteases. The substrate probe (TCO-C-SNAT4) can be selectively activated by an enzyme target (e.g. caspase-3/7), which triggers macrocyclization and subsequent in situ self-assembly into nanoaggregates retained at the target site. The tetrazine-imaging tag conjugate labels TCO in the nanoaggregates to generate selective signal retention for imaging in vitro, in cells, and in mice. Owing to the decoupling of enzyme activation and imaging tag immobilization, TCO-C-SNAT4 can be repeatedly injected to generate and accumulate more TCO-nanoaggregates for click labeling.
Collapse
Affiliation(s)
- Zixin Chen
- Departments of Radiology and Chemistry, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Min Chen
- Departments of Radiology and Chemistry, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kaixiang Zhou
- Departments of Radiology and Chemistry, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jianghong Rao
- Departments of Radiology and Chemistry, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
88
|
Ruivo E, Elvas F, Adhikari K, Vangestel C, Van Haesendonck G, Lemière F, Staelens S, Stroobants S, Van der Veken P, wyffels L, Augustyns K. Preclinical Evaluation of a Novel 18F-Labeled dTCO-Amide Derivative for Bioorthogonal Pretargeted Positron Emission Tomography Imaging. ACS OMEGA 2020; 5:4449-4456. [PMID: 32175492 PMCID: PMC7066555 DOI: 10.1021/acsomega.9b03584] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/31/2019] [Indexed: 06/07/2023]
Abstract
Pretargeted positron emission tomography (PET) imaging based on the bioorthogonal inverse-electron-demand Diels-Alder reaction between tetrazines (Tz) and trans-cyclooctenes (TCO) has emerged as a promising tool for solid tumor imaging, allowing the use of short-lived radionuclides in immune-PET applications. With this strategy, it became possible to achieve desirable target-to-background ratios and at the same time to decrease the radiation burden to nontargeted tissues because of the fast clearance of small PET probes. Here, we show the synthesis of novel 18F-labeled dTCO-amide probes for pretargeted immuno-PET imaging. The PET probes were evaluated regarding their stability, reactivity toward tetrazine, and pharmacokinetic profile. [ 18 F]MICA-213 showed an extremely fast kinetic rate (10,553 M-1 s-1 in 50:50 MeOH/water), good stability in saline and plasma up to 4 h at 37 °C with no isomerization observed, and the biodistribution in healthy mice revealed a mixed hepatobiliary and renal clearance with no defluorination and low background in other tissues. [ 18 F]MICA-213 was further used for in vivo pretargeted immune-PET imaging carried out in nude mice bearing LS174T colorectal tumors that were previously treated with a tetrazine-modified anti-TAG-72 monoclonal antibody (CC49). Pretargeted μPET imaging results showed clear visualization of the tumor tissue with a significantly higher uptake when compared to the control.
Collapse
Affiliation(s)
- Eduardo Ruivo
- Laboratory
of Medicinal Chemistry, University of Antwerp, Antwerp, Wilrijk 2610, Belgium
| | - Filipe Elvas
- Laboratory
of Medicinal Chemistry, University of Antwerp, Antwerp, Wilrijk 2610, Belgium
- Department
of Nuclear Medicine, University Hospital
Antwerp, Edegem 2650, Belgium
- Molecular
Imaging Center Antwerp, University of Antwerp, Antwerp, Wilrijk 2610, Belgium
| | - Karuna Adhikari
- Laboratory
of Medicinal Chemistry, University of Antwerp, Antwerp, Wilrijk 2610, Belgium
| | - Christel Vangestel
- Department
of Nuclear Medicine, University Hospital
Antwerp, Edegem 2650, Belgium
| | - Glenn Van Haesendonck
- Biomolecular
and Analytical Mass Spectrometry, University
of Antwerp, Antwerp 2020, Belgium
| | - Filip Lemière
- Biomolecular
and Analytical Mass Spectrometry, University
of Antwerp, Antwerp 2020, Belgium
| | - Steven Staelens
- Molecular
Imaging Center Antwerp, University of Antwerp, Antwerp, Wilrijk 2610, Belgium
| | - Sigrid Stroobants
- Department
of Nuclear Medicine, University Hospital
Antwerp, Edegem 2650, Belgium
- Molecular
Imaging Center Antwerp, University of Antwerp, Antwerp, Wilrijk 2610, Belgium
| | - Pieter Van der Veken
- Laboratory
of Medicinal Chemistry, University of Antwerp, Antwerp, Wilrijk 2610, Belgium
| | - Leonie wyffels
- Department
of Nuclear Medicine, University Hospital
Antwerp, Edegem 2650, Belgium
- Molecular
Imaging Center Antwerp, University of Antwerp, Antwerp, Wilrijk 2610, Belgium
| | - Koen Augustyns
- Laboratory
of Medicinal Chemistry, University of Antwerp, Antwerp, Wilrijk 2610, Belgium
| |
Collapse
|
89
|
Imberti C, Adumeau P, Blower JE, Al Salemee F, Baguña Torres J, Lewis JS, Zeglis BM, Terry SYA, Blower PJ. Manipulating the In Vivo Behaviour of 68Ga with Tris(Hydroxypyridinone) Chelators: Pretargeting and Blood Clearance. Int J Mol Sci 2020; 21:E1496. [PMID: 32098299 PMCID: PMC7073083 DOI: 10.3390/ijms21041496] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023] Open
Abstract
Pretargeting is widely explored in immunoPET as a strategy to reduce radiation exposure of non-target organs and allow the use of short-lived radionuclides that would not otherwise be compatible with the slow pharmacokinetic profiles of antibodies. Here we investigate a pretargeting strategy based on gallium-68 and the chelator THPMe as a high-affinity pair capable of combining in vivo. After confirming the ability of THPMe to bind 68Ga in vivo at low concentrations, the bifunctional THPMe-NCS was conjugated to a humanised huA33 antibody targeting the A33 glycoprotein. Imaging experiments performed in nude mice bearing A33-positive SW1222 colorectal cancer xenografts compared pretargeting (100 μg of THPMe-NCS-huA33, followed after 24 h by 8-10 MBq of 68Ga3+) with both a directly labelled radioimmunoconjugate (89Zr-DFO-NCS-huA33, 88 μg, 7 MBq) and a 68Ga-only negative control (8-10 MBq of 68Ga3+). Imaging was performed 25 h after antibody administration (1 h after 68Ga3+ administration for negative control). No difference between pretargeting and the negative control was observed, suggesting that pretargeting via metal chelation is not feasible using this model. However, significant accumulation of "unchelated" 68Ga3+ in the tumour was found (12.9 %ID/g) even without prior administration of THPMe-NCS-huA33, though tumour-to-background contrast was impaired by residual activity in the blood. Therefore, the 68Ga-only experiment was repeated using THPMe (20 μg, 1 h after 68Ga3+ administration) to clear circulating 68Ga3+, producing a three-fold improvement of the tumour-to-blood activity concentration ratio. Although preliminary, these results highlight the potential of THPMe as a 68Ga clearing agent in imaging applications with gallium citrate.
Collapse
Affiliation(s)
- Cinzia Imberti
- School of Biomedical Engineering and Imaging Sciences, King’s College London, Fourth Floor Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK
| | - Pierre Adumeau
- Department of Chemistry, Hunter College, City University of New York, New York, NY 10021, USA
| | - Julia E. Blower
- School of Biomedical Engineering and Imaging Sciences, King’s College London, Fourth Floor Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK
| | - Fahad Al Salemee
- School of Biomedical Engineering and Imaging Sciences, King’s College London, Fourth Floor Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK
| | - Julia Baguña Torres
- School of Biomedical Engineering and Imaging Sciences, King’s College London, Fourth Floor Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK
| | - Jason S. Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Brian M. Zeglis
- Department of Chemistry, Hunter College, City University of New York, New York, NY 10021, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Samantha Y. A. Terry
- School of Biomedical Engineering and Imaging Sciences, King’s College London, Fourth Floor Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK
| | - Philip J. Blower
- School of Biomedical Engineering and Imaging Sciences, King’s College London, Fourth Floor Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK
| |
Collapse
|
90
|
Stéen EJ, Jørgensen JT, Johann K, Nørregaard K, Sohr B, Svatunek D, Birke A, Shalgunov V, Edem PE, Rossin R, Seidl C, Schmid F, Robillard MS, Kristensen JL, Mikula H, Barz M, Kjær A, Herth MM. Trans-Cyclooctene-Functionalized PeptoBrushes with Improved Reaction Kinetics of the Tetrazine Ligation for Pretargeted Nuclear Imaging. ACS NANO 2020; 14:568-584. [PMID: 31820928 PMCID: PMC7075664 DOI: 10.1021/acsnano.9b06905] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/10/2019] [Indexed: 05/24/2023]
Abstract
Tumor targeting using agents with slow pharmacokinetics represents a major challenge in nuclear imaging and targeted radionuclide therapy as they most often result in low imaging contrast and high radiation dose to healthy tissue. To address this challenge, we developed a polymer-based targeting agent that can be used for pretargeted imaging and thus separates tumor accumulation from the imaging step in time. The developed targeting agent is based on polypeptide-graft-polypeptoid polymers (PeptoBrushes) functionalized with trans-cyclooctene (TCO). The complementary 111In-labeled imaging agent is a 1,2,4,5-tetrazine derivative, which can react with aforementioned TCO-modified PeptoBrushes in a rapid bioorthogonal ligation. A high degree of TCO loading (up to 30%) was achieved, without altering the physicochemical properties of the polymeric nanoparticle. The highest degree of TCO loading resulted in significantly increased reaction rates (77-fold enhancement) compared to those with small molecule TCO moieties when using lipophilic tetrazines. Based on computer simulations, we hypothesize that this increase is a result of hydrophobic effects and significant rearrangements within the polymer framework, in which hydrophobic patches of TCO moieties are formed. These patches attract lipophilic tetrazines, leading to increased reaction rates in the bioorthogonal ligation. The most reactive system was evaluated as a targeting agent for pretargeted imaging in tumor-bearing mice. After the setup was optimized, sufficient tumor-to-background ratios were achieved as early as 2 h after administration of the tetrazine imaging agent, which further improved at 22 h, enabling clear visualization of CT-26 tumors. These findings show the potential of PeptoBrushes to be used as a pretargeting agent when an optimized dose of polymer is used.
Collapse
Affiliation(s)
- E. Johanna
L. Stéen
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Department
of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Jesper T. Jørgensen
- Department
of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Kerstin Johann
- Institute
of Organic Chemistry, Johannes Gutenberg
University, Duesbergweg 10-14, D-55099 Mainz, Germany
| | - Kamilla Nørregaard
- Department
of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Barbara Sohr
- Institute
of Applied Synthetic Chemistry, Technische
Universität Wien (TU Wien), Getreidemarkt 9, 1060 Vienna, Austria
| | - Dennis Svatunek
- Institute
of Applied Synthetic Chemistry, Technische
Universität Wien (TU Wien), Getreidemarkt 9, 1060 Vienna, Austria
| | - Alexander Birke
- Institute
of Organic Chemistry, Johannes Gutenberg
University, Duesbergweg 10-14, D-55099 Mainz, Germany
| | - Vladimir Shalgunov
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Patricia E. Edem
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Department
of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Raffaella Rossin
- Tagworks
Pharmaceuticals, Geert
Grooteplein 10, 6525 GA Nijmegen, The Netherlands
| | - Christine Seidl
- Institute
of Organic Chemistry, Johannes Gutenberg
University, Duesbergweg 10-14, D-55099 Mainz, Germany
| | - Friederike Schmid
- Institute
of Physics, Johannes Gutenberg University, Staudingerweg 7-9, D-55099 Mainz, Germany
| | - Marc S. Robillard
- Tagworks
Pharmaceuticals, Geert
Grooteplein 10, 6525 GA Nijmegen, The Netherlands
| | - Jesper L. Kristensen
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Hannes Mikula
- Institute
of Applied Synthetic Chemistry, Technische
Universität Wien (TU Wien), Getreidemarkt 9, 1060 Vienna, Austria
| | - Matthias Barz
- Institute
of Organic Chemistry, Johannes Gutenberg
University, Duesbergweg 10-14, D-55099 Mainz, Germany
| | - Andreas Kjær
- Department
of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Matthias M. Herth
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Department
of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| |
Collapse
|
91
|
Edem PE, Jørgensen JT, Nørregaard K, Rossin R, Yazdani A, Valliant JF, Robillard M, Herth MM, Kjaer A. Evaluation of a 68Ga-Labeled DOTA-Tetrazine as a PET Alternative to 111In-SPECT Pretargeted Imaging. Molecules 2020; 25:molecules25030463. [PMID: 31979070 PMCID: PMC7036891 DOI: 10.3390/molecules25030463] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 01/22/2023] Open
Abstract
The bioorthogonal reaction between a tetrazine and strained trans-cyclooctene (TCO) has garnered success in pretargeted imaging. This reaction was first validated in nuclear imaging using an 111In-labeled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-linked bispyridyl tetrazine (Tz) ([111In]In-DOTA-PEG11-Tz) and a TCO functionalized CC49 antibody. Given the initial success of this Tz, it has been paired with TCO functionalized small molecules, diabodies, and affibodies for in vivo pretargeted studies. Furthermore, the single photon emission tomography (SPECT) radionuclide, 111In, has been replaced with the β-emitter, 177Lu and α-emitter, 212Pb, both yielding the opportunity for targeted radiotherapy. Despite use of the ‘universal chelator’, DOTA, there is yet to be an analogue suitable for positron emission tomography (PET) using a widely available radionuclide. Here, a 68Ga-labeled variant ([68Ga]Ga-DOTA-PEG11-Tz) was developed and evaluated using two different in vivo pretargeting systems (Aln-TCO and TCO-CC49). Small animal imaging and ex vivo biodistribution studies were performed and revealed target specific uptake of [68Ga]Ga-DOTA-PEG11-Tz in the bone (3.7 %ID/g, knee) in mice pretreated with Aln-TCO and tumor specific uptake (5.8 %ID/g) with TCO-CC49 in mice bearing LS174 xenografts. Given the results of this study, [68Ga]Ga-DOTA-PEG11-Tz can serve as an alternative to [111In]In-DOTA-PEG11-Tz.
Collapse
Affiliation(s)
- Patricia E. Edem
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; (P.E.E.); (J.T.J.); (K.N.)
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Jesper T. Jørgensen
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; (P.E.E.); (J.T.J.); (K.N.)
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Kamilla Nørregaard
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; (P.E.E.); (J.T.J.); (K.N.)
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Rafaella Rossin
- Tagworks Pharmaceuticals, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands; (R.R.); (M.R.)
| | - Abdolreza Yazdani
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St West, Hamilton, ON L8S 4M1, Canada; (A.Y.); (J.F.V.)
- Pharmaceutical Chemistry and Radiopharmacy Department, School of Pharmacy, Shahid Beheshti University of Medical Sciences, PO Box 14155–6153, Tehran, Iran
| | - John F. Valliant
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St West, Hamilton, ON L8S 4M1, Canada; (A.Y.); (J.F.V.)
| | - Marc Robillard
- Tagworks Pharmaceuticals, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands; (R.R.); (M.R.)
| | - Matthias M. Herth
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; (P.E.E.); (J.T.J.); (K.N.)
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
- Correspondence: (M.M.H.); (A.K.)
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; (P.E.E.); (J.T.J.); (K.N.)
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
- Correspondence: (M.M.H.); (A.K.)
| |
Collapse
|
92
|
Gamache RF, Zettlitz KA, Tsai WTK, Collins J, Wu AM, Murphy JM. Tri-functional platform for construction of modular antibody fragments for in vivo 18F-PET or NIRF molecular imaging. Chem Sci 2020; 11:1832-1838. [PMID: 34123276 PMCID: PMC8148382 DOI: 10.1039/c9sc05007h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Positron emission tomography (PET) molecular imaging is a powerful tool for interrogating physiological and biochemical processes to understand the biology of disease and advance therapeutic developments. Near-infrared fluorescence (NIRF) optical imaging has become increasingly popular for intraoperative staging to enable cellular resolution imaging of tumor margins during surgical resection. In addition, engineered antibody fragments have emerged as promising molecular imaging agents given their exquisite target selectivity, rapid systemic clearance and site-selective chemical modification. We report a tri-functional platform for construction of a modular antibody fragment that can rapidly be labeled with radionuclides or fluorophores for PET or NIRF molecular imaging of prostate stem cell antigen (PSCA). To provide a universal approach towards the targeted delivery of PET and optical imaging agents, we have developed a tri-functional platform (TFP) for the facile construction of modular, target-specific tracers.![]()
Collapse
Affiliation(s)
- Raymond F Gamache
- Department of Chemistry and Biochemistry, University of California Los Angeles CA 90095 USA
| | - Kirstin A Zettlitz
- Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California Los Angeles CA 90095 USA
| | - Wen-Ting K Tsai
- Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California Los Angeles CA 90095 USA
| | - Jeffrey Collins
- Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California Los Angeles CA 90095 USA
| | - Anna M Wu
- Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California Los Angeles CA 90095 USA
| | - Jennifer M Murphy
- Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California Los Angeles CA 90095 USA
| |
Collapse
|
93
|
Ruivo E, Adhikari K, Elvas F, Fissers J, Vangestel C, Staelens S, Stroobants S, Van der Veken P, Wyffels L, Augustyns K. Improved stability of a novel fluorine-18 labeled TCO analogue for pretargeted PET imaging. Nucl Med Biol 2019; 76-77:36-42. [PMID: 31707309 DOI: 10.1016/j.nucmedbio.2019.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/24/2019] [Accepted: 11/01/2019] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Biorthogonal pretargeted imaging using the inverse electron demand Diels Alder (IEDDA) reaction between tetrazine (Tz) and trans-cyclooctene (TCO) is one of the most attractive strategies in molecular imaging. It allows the use of short-lived radioisotopes such as fluorine-18 for imaging of long circulating vectors with improved imaging contrast and reduced radiation dose. Here we aim to develop a novel 18F-labeled trans-cyclooctene (TCO) with improved metabolic stability and assess its potential usefulness in a pretargeted PET imaging approach. METHODS We have synthetized a new TCO-analogue containing a 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) chelator, allowing radiolabeling by chelation with aluminum fluoride (Al[18F]F). Stability and pharmacokinetic profile of Al[18F]F-NOTA-TCO ([18F]MICA-205) were evaluated in healthy animals at different timepoints after injection of the radiotracer. To assess the potential use of this new PET tracer for tumor targeting, in vivo pretargeted PET imaging was performed in LS174T tumor-bearing mice pre-treated with a tetrazine-modified anti-TAG-72 monoclonal antibody (CC49). RESULTS The radiotracer was obtained with a radiochemical yield (RCY) of 12.8 ± 2.8% and a radiochemical purity (RCP) of ≥95%. It also showed a promising in vivo stability with 51.9 ± 5.16% of radiotracer remaining intact after 1 h. The biodistribution in healthy mice demonstrated mixed hepatobiliary and renal clearance, with a rapid blood clearance and low uptake in other tissues. The low bone uptake indicated lack of tracer defluorination. Interestingly, a pretargeted PET imaging experiment showed a significantly increased radiotracer uptake (0.67 ± 0.16%ID/g, p < 0.001) in the tumors of mice pre-treated with CC49-tetrazine compared to the CC49 alone (0.16 ± 0.08%ID/g). CONCLUSIONS [18F]MICA-205 represents a large improvement in in vivo metabolic stability compared to previous reported 18F-labeled TCOs, allowing a clear visualization of tumor tissue in a small-animal pretargeted PET imaging experiment. Despite the favorable in vivo stability and image contrast obtained with [18F]MICA-205, the development of next-generation derivatives with increased absolute tumor uptake is warranted for future pretargeting applications.
Collapse
Affiliation(s)
- Eduardo Ruivo
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium.
| | - Karuna Adhikari
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Filipe Elvas
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium; University Hospital Antwerp, Department of Nuclear Medicine, Edegem, Belgium; Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Jens Fissers
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Christel Vangestel
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Steven Staelens
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Sigrid Stroobants
- University Hospital Antwerp, Department of Nuclear Medicine, Edegem, Belgium; Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | | | - Leonie Wyffels
- University Hospital Antwerp, Department of Nuclear Medicine, Edegem, Belgium; Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
94
|
Lambert WD, Fang Y, Mahapatra S, Huang Z, am Ende CW, Fox JM. Installation of Minimal Tetrazines through Silver-Mediated Liebeskind-Srogl Coupling with Arylboronic Acids. J Am Chem Soc 2019; 141:17068-17074. [PMID: 31603679 PMCID: PMC6925384 DOI: 10.1021/jacs.9b08677] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Described is a general method for the installation of a minimal 6-methyltetrazin-3-yl group via the first example of a Ag-mediated Liebeskind-Srogl cross-coupling. The attachment of bioorthogonal tetrazines on complex molecules typically relies on linkers that can negatively impact the physiochemical properties of conjugates. Cross-coupling with arylboronic acids and a new reagent, 3-((p-biphenyl-4-ylmethyl)thio)-6-methyltetrazine (b-Tz), proceeds under mild, PdCl2(dppf)-catalyzed conditions to introduce minimal, linker-free tetrazine functionality. Safety considerations guided our design of b-Tz which can be prepared on decagram scale without handling hydrazine and without forming volatile, high-nitrogen tetrazine byproducts. Replacing conventional Cu(I) salts used in Liebeskind-Srogl cross-coupling with a Ag2O mediator resulted in higher yields across a broad library of aryl and heteroaryl boronic acids and provides improved access to a fluorogenic tetrazine-BODIPY conjugate. A covalent probe for MAGL incorporating 6-methyltetrazinyl functionality was synthesized in high yield and labeled endogenous MAGL in live cells. This new Ag-mediated cross-coupling method using b-Tz is anticipated to find additional applications for directly introducing the tetrazine subunit to complex substrates.
Collapse
Affiliation(s)
- William D. Lambert
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Yinzhi Fang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Subham Mahapatra
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, CT 06340, United States
| | - Zhen Huang
- Pfizer Worldwide Research and Development, 1 Portland St, Cambridge, MA 02139, United States
| | - Christopher W. am Ende
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, CT 06340, United States
| | - Joseph M. Fox
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
95
|
Recent Advances in Bioorthogonal Click Chemistry for Efficient Synthesis of Radiotracers and Radiopharmaceuticals. Molecules 2019; 24:molecules24193567. [PMID: 31581645 PMCID: PMC6803924 DOI: 10.3390/molecules24193567] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/23/2019] [Accepted: 09/27/2019] [Indexed: 12/17/2022] Open
Abstract
In recent years, several catalyst-free site-specific reactions have been investigated for the efficient conjugation of biomolecules, nanomaterials, and living cells. Representative functional group pairs for these reactions include the following: (1) azide and cyclooctyne for strain-promoted cycloaddition reaction, (2) tetrazine and trans-alkene for inverse-electron-demand-Diels–Alder reaction, and (3) electrophilic heterocycles and cysteine for rapid condensation/addition reaction. Due to their excellent specificities and high reaction rates, these conjugation methods have been utilized for the labeling of radioisotopes (e.g., radiohalogens, radiometals) to various target molecules. The radiolabeled products prepared by these methods have been applied to preclinical research, such as in vivo molecular imaging, pharmacokinetic studies, and radiation therapy of cancer cells. In this review, we explain the basics of these chemical reactions and introduce their recent applications in the field of radiopharmacy and chemical biology. In addition, we discuss the significance, current challenges, and prospects of using bioorthogonal conjugation reactions.
Collapse
|
96
|
Kramer S, Svatunek D, Alberg I, Gräfen B, Schmitt S, Braun L, van Onzen AHAM, Rossin R, Koynov K, Mikula H, Zentel R. HPMA-Based Nanoparticles for Fast, Bioorthogonal iEDDA Ligation. Biomacromolecules 2019; 20:3786-3797. [PMID: 31535846 PMCID: PMC6794642 DOI: 10.1021/acs.biomac.9b00868] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Fast
and bioorthogonally reacting nanoparticles are attractive
tools for biomedical applications such as tumor pretargeting. In this
study, we designed an amphiphilic block copolymer system based on
HPMA using different strategies to introduce the highly reactive click
units 1,2,4,5-tetrazines (Tz) either at the chain end (Tz-CTA) or
statistical into the hydrophobic block. This reactive group undergoes
a rapid, bioorthogonal inverse electron-demand Diels–Alder
reaction (iEDDA) with trans-cyclooctenes (TCO). Subsequently,
this polymer platform was used for the preparation of different Tz-covered
nanoparticles, such as micelles and colloids. Thereby it was found
that the reactivity of the polymeric micelles is comparable to that
of the low molar mass tetrazines. The core-cross-linked micelles can
be successfully conjugated at rather low concentrations to large biomacromolecules
like antibodies, not only in physiological buffer, but also in human
blood plasma, which was confirmed by fluorescence correlation spectroscopy
(FCS).
Collapse
Affiliation(s)
- Stefan Kramer
- Johannes Gutenberg University Mainz , Institute of Organic Chemistry , Duesbergweg 10-14 , 55128 Mainz , Germany
| | - Dennis Svatunek
- TU Wien , Institute of Applied Synthetic Chemistry , Getreidemarkt 9 , 1060 Vienna , Austria
| | - Irina Alberg
- Johannes Gutenberg University Mainz , Institute of Organic Chemistry , Duesbergweg 10-14 , 55128 Mainz , Germany
| | - Barbara Gräfen
- Johannes Gutenberg University Mainz , Institute of Organic Chemistry , Duesbergweg 10-14 , 55128 Mainz , Germany
| | - Sascha Schmitt
- Max Planck Institute for Polymer Research , Physics of Interfaces , Ackermannweg 10 , 55128 Mainz , Germany
| | - Lydia Braun
- Johannes Gutenberg University Mainz , Institute of Organic Chemistry , Duesbergweg 10-14 , 55128 Mainz , Germany
| | - Arthur H A M van Onzen
- Tagworks Pharmaceuticals BV, Radboud University Medical Center , Department of Nuclear Medicine and Radiology , 6500 HB Nijmegen , The Netherlands
| | - Raffaella Rossin
- Tagworks Pharmaceuticals BV, Radboud University Medical Center , Department of Nuclear Medicine and Radiology , 6500 HB Nijmegen , The Netherlands
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research , Physics of Interfaces , Ackermannweg 10 , 55128 Mainz , Germany
| | - Hannes Mikula
- TU Wien , Institute of Applied Synthetic Chemistry , Getreidemarkt 9 , 1060 Vienna , Austria
| | - Rudolf Zentel
- Johannes Gutenberg University Mainz , Institute of Organic Chemistry , Duesbergweg 10-14 , 55128 Mainz , Germany
| |
Collapse
|
97
|
Kim E, Koo H. Biomedical applications of copper-free click chemistry: in vitro, in vivo, and ex vivo. Chem Sci 2019; 10:7835-7851. [PMID: 31762967 PMCID: PMC6855312 DOI: 10.1039/c9sc03368h] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 07/28/2019] [Indexed: 12/18/2022] Open
Abstract
Recently, click chemistry has provided important advances in biomedical research fields. Particularly, copper-free click chemistry including strain-promoted azide-alkyne cycloaddition (SPAAC) and inverse-electron-demand Diels-Alder (iEDDA) reactions enable fast and specific chemical conjugation under aqueous conditions without the need for toxic catalysts. Click chemistry has resulted in a change of paradigm, showing that artificial chemical reactions can occur on cell surfaces, in cell cytosol, or within the body, which is not easy with most other chemical reactions. Click chemistry in vitro allows specific labelling of cellular target proteins and studying of drug target engagement with drug surrogates in live cells. Furthermore, cellular membrane lipids and proteins could be selectively labelled with click chemistry in vitro and cells could be adhered together using click chemistry. Click chemistry in vivo enables efficient and effective molecular imaging and drug delivery for diagnosis and therapy. Click chemistry ex vivo can be used to develop molecular tools to understand tissue development, diagnosis of diseases, and therapeutic monitoring. Overall, the results from research to date suggest that click chemistry has emerged as a valuable tool in biomedical fields as well as in organic chemistry.
Collapse
Affiliation(s)
- Eunha Kim
- Department of Molecular Science and Technology , Ajou University , Suwon 16499 , Republic of Korea
| | - Heebeom Koo
- Department of Medical Life Sciences , College of Medicine , The Catholic University of Korea , 222 Banpo-daero, Seocho-gu , Seoul , 06591 , Republic of Korea .
- Department of Biomedicine & Health Sciences , College of Medicine , The Catholic University of Korea , 222 Banpo-daero, Seocho-gu , Seoul , 06591 , Republic of Korea
- Catholic Photomedicine Research Institute , College of Medicine , The Catholic University of Korea , 222 Banpo-daero, Seocho-gu , Seoul , 06591 , Republic of Korea
| |
Collapse
|
98
|
Keinänen O, Brennan JM, Membreno R, Fung K, Gangangari K, Dayts EJ, Williams CJ, Zeglis BM. Dual Radionuclide Theranostic Pretargeting. Mol Pharm 2019; 16:4416-4421. [PMID: 31483993 DOI: 10.1021/acs.molpharmaceut.9b00746] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent years have played witness to the advent of nuclear theranostics: the synergistic use of "matched pair" radiopharmaceuticals for diagnostic imaging and targeted radiotherapy. In this investigation, we report the extension of this concept to in vivo pretargeting based on the rapid and bioorthogonal inverse electron demand Diels-Alder reaction between tetrazine (Tz) and trans-cyclooctene (TCO). We demonstrate that a single injection of a TCO-modified immunoconjugate can be used as a platform for pretargeted PET imaging and radiotherapy via the sequential administration of a pair of Tz-bearing radioligands labeled with the positron-emitting radiometal copper-64 (t1/2 ≈ 12.7 h) and the beta-emitting radiometal lutetium-177 (t1/2 ≈ 6.7 days). More specifically, a mouse model of human colorectal carcinoma received a dose of the A33 antigen-targeting immunoconjugate huA33-TCO, followed 24 and 48 h later by injections of [64Cu]Cu-SarAr-Tz and [177Lu]Lu-DOTA-PEG7-Tz, respectively. This approach produces high activity concentrations of both radioligands in tumor tissue (16.4 ± 2.7 %ID/g for [64Cu]Cu-SarAr-Tz at 48 h post-injection and 18.1 ± 2.1 %ID/g for [177Lu]Lu-DOTA-PEG7-Tz at 120 h post-injection) as well as promising tumor-to-healthy organ activity concentration ratios. Ultimately, we believe that this work could not only have important implications in nuclear theranostics-most excitingly with isotopologue-based radioligand pairs such as [64Cu]Cu-SarAr-Tz and [67Cu]Cu-SarAr-Tz-but also in the delivery of fractionated doses during pretargeted radioimmunotherapy.
Collapse
Affiliation(s)
- Outi Keinänen
- Department of Chemistry , Hunter College, City University of New York , New York , New York 10021 , United States
| | - James M Brennan
- Department of Chemistry , Hunter College, City University of New York , New York , New York 10021 , United States
| | - Rosemery Membreno
- Department of Chemistry , Hunter College, City University of New York , New York , New York 10021 , United States.,Ph.D. Program in Chemistry , The Graduate Center of the City University of New York , New York , New York 10016 , United States
| | - Kimberly Fung
- Department of Chemistry , Hunter College, City University of New York , New York , New York 10021 , United States.,Ph.D. Program in Chemistry , The Graduate Center of the City University of New York , New York , New York 10016 , United States
| | - Kishore Gangangari
- Department of Chemistry , Hunter College, City University of New York , New York , New York 10021 , United States.,Ph.D. Program in Chemistry , The Graduate Center of the City University of New York , New York , New York 10016 , United States
| | - Eric J Dayts
- Department of Chemistry , Hunter College, City University of New York , New York , New York 10021 , United States
| | - Carter J Williams
- Department of Chemistry , Hunter College, City University of New York , New York , New York 10021 , United States
| | - Brian M Zeglis
- Department of Chemistry , Hunter College, City University of New York , New York , New York 10021 , United States.,Ph.D. Program in Chemistry , The Graduate Center of the City University of New York , New York , New York 10016 , United States.,Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States.,Department of Radiology , Weill Cornell Medical College , New York , New York 10065 , United States
| |
Collapse
|
99
|
Pretargeted Nuclear Imaging and Radioimmunotherapy Based on the Inverse Electron-Demand Diels-Alder Reaction and Key Factors in the Pretargeted Synthetic Design. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:9182476. [PMID: 31531006 PMCID: PMC6732628 DOI: 10.1155/2019/9182476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/20/2019] [Accepted: 08/01/2019] [Indexed: 11/18/2022]
Abstract
The exceptional speed and biorthogonality of the inverse electron-demand Diels-Alder (IEDDA) click chemistry between 1,2,4,5-tetrazines and strained alkene dienophiles have made it promising in the realm of pretargeted imaging and therapy. During the past 10 years, the IEDDA-pretargeted strategies have been tested and have already proven capable of producing images with high tumor-to-background ratios and improving therapeutic effect. This review will focus on recent applications of click chemistry ligations in the pretargeted imaging studies of single photon emission computed tomography (SPECT), positron emission tomography (PET), and pretargeted radioimmunotherapy investigations. Additionally, the influence factors of stability, reactivity, and pharmacokinetic properties of TCO tag modified immunoconjugates and radiolabeled Tz derivatives were also summarized in this article, which should be carefully considered in the system design in order to develop a successful pretargeted methodology. We hope that this review will not only equip readers with a knowledge of pretargeted methodology based on IEDDA click chemistry but also inspire synthetic chemists and radiochemists to develop pretargeted radiopharmaceutical components in a more innovative way with various influence factors considered.
Collapse
|
100
|
Pandit-Taskar N. Targeted Radioimmunotherapy and Theranostics with Alpha Emitters. J Med Imaging Radiat Sci 2019; 50:S41-S44. [PMID: 31451417 DOI: 10.1016/j.jmir.2019.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 11/29/2022]
Abstract
Radiolabeled antibodies allow for selective targeting of the cancer cells within a tumor. Both beta- and alpha-emitting radioisotopes can be linked to the antibodies for delivery of radiation to the cells. The choice of the radionuclide would depend on the biological characteristics of the antibody including its biodistribution and biological half-life. Alpha-emitting isotopes deliver high energy to target sites within short range and therefore less radiation to adjacent normal tissues. Whole antibodies have long biological clearance times that may be limiting due to radiation levels to blood and marrow. Novel strategies, such as development of smaller antibody fragments such as minibodies and diabodies, which have faster biological clearance, engineered bispecific antibodies, and multistep targeting that uses pretargeting and bioorthogonal click chemistry methods, appear promising. Several novel targets are being investigated in early-phase studies. This review provides a brief summary and current status of radioimmunotargeted agents in oncology.
Collapse
Affiliation(s)
- Neeta Pandit-Taskar
- Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA.
| |
Collapse
|