51
|
Guidetti Vendruscolo R, Bittencourt Fagundes M, Jacob-Lopes E, Wagner R. Analytical strategies for using gas chromatography to control and optimize microalgae bioprocessing. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2019.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
52
|
Cultivation of microalgae Chlorella zofingiensis on municipal wastewater and biogas slurry towards bioenergy. J Biosci Bioeng 2018; 126:644-648. [DOI: 10.1016/j.jbiosc.2018.05.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/10/2018] [Accepted: 05/06/2018] [Indexed: 01/08/2023]
|
53
|
Villaseñor Camacho J, Fernández Marchante CM, Rodríguez Romero L. Analysis of a photobioreactor scaling up for tertiary wastewater treatment: denitrification, phosphorus removal, and microalgae production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:29279-29286. [PMID: 30121758 DOI: 10.1007/s11356-018-2890-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
The present work studies the removal of nutrients (nitrate and phosphate) from a synthetic wastewater simulating a secondary treatment effluent using the microalgae Chlorella vulgaris in autotrophic photobioreactors, together with an analysis of the critical points affecting the scaling-up process from laboratory to pilot scale. Laboratory experiments were done in open agitated 1-L photobioreactors under batch operation mode, while pilot-scale experiments were done using a 150-L closed tubular photobioreactor under continuous operation mode. In both scales, nitrate was the limiting substrate and the effect of its concentration on microalgae performance was studied. From laboratory experiments, an average microalgae productivity of 85 mgVSS L-1 day-1 and approximate maximum N-NO3- and P-PO43- removal rates of 8 mg N gVSS-1 day-1, and 2.6 mg P gVSS-1 day-1 were found. Regarding pilot scale, the average microalgae productivity slightly decreased (76 mgVSS L-1 day-1) while the approximate maximum N-NO3- and P-PO43- removal rates slightly were increased (11.7 mg N gVSS-1 day-1 and 3.04 mg P gVSS-1 day-1) with respect to the laboratory-scale results. The pilot-scale operation worked under lower levels of turbulence and higher dissolved oxygen concentration and light intensity than laboratory experiments; those parameters were difficult to control and they can be identified as the critical points in the differences found on both nutrient removal and microalgae production.
Collapse
Affiliation(s)
- José Villaseñor Camacho
- Chemical Engineering Department, Institute for Chemical and Environmental Technology (ITQUIMA), University of Castilla-La Mancha, Avenida Camilo José Cela S/N, 13071, Ciudad Real, Spain.
| | - Carmen María Fernández Marchante
- Chemical Engineering Department, Institute for Chemical and Environmental Technology (ITQUIMA), University of Castilla-La Mancha, Avenida Camilo José Cela S/N, 13071, Ciudad Real, Spain
| | - Luis Rodríguez Romero
- Chemical Engineering Department, School of Civil Engineering, University of Castilla-La Mancha, Avenida Camilo José Cela, 2, 13071, Ciudad Real, Spain
| |
Collapse
|
54
|
Evaluation of Pre-Chlorinated Wastewater Effluent for Microalgal Cultivation and Biodiesel Production. WATER 2018. [DOI: 10.3390/w10080977] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Microalgae are promising feedstock to produce biodiesel and other value added products. However, the water footprint for producing microalgal biodiesel is enormous and would put a strain on the water resources of water stressed countries like South Africa if freshwater is used without recycling. This study evaluates the utilization of pre-chlorinated wastewater as a cheap growth media for microalgal biomass propagation with the aim of producing biodiesel whilst simultaneously remediating the wastewater. Wastewater was collected from two wastewater treatment plants (WWTPs) in Durban, inoculated with Neochloris aquatica and Asterarcys quadricellulare and the growth kinetics monitored for a period of 8 days. The physicochemical parameters; including chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) were determined before microalgal cultivation and after harvesting. Total lipids were quantified gravimetrically after extraction by hexane/isopropanol (3:2 v/v). Biodiesel was produced by transesterification and characterised by gas chromatography. The total carbohydrate was extracted by acid hydrolysis and quantified by spectrophotometric method based on aldehyde functional group derivatization. Asterarcys quadricellulare utilized the wastewater for growth and reduced the COD of the wastewater effluent from the Umbilo WWTP by 12.4%. Total nitrogen (TN) and phosphorus (TP) were reduced by 48% and 50% respectively by Asterarcys quadricellulare cultivated in sterile wastewater while, Neochloris reduced the TP by 37% and TN by 29%. Although the highest biomass yield (460 mg dry weight) was obtained for Asterarcys, the highest amount of lipid (14.85 ± 1.63 mg L−1) and carbohydrate (14.84 ± 0.1 mg L−1) content were recorded in Neochloris aquatica. The dominant fatty acids in the microalgae were palmitic acid (C16:0), stearic acid (C18:0) and oleic acid (C18:1). The biodiesel produced was determined to be of good quality with high oxidation stability and low viscosity, and conformed to the American society for testing and materials (ASTM) guidelines.
Collapse
|
55
|
Luo Y, Le-Clech P, Henderson RK. Assessment of membrane photobioreactor (MPBR) performance parameters and operating conditions. WATER RESEARCH 2018; 138:169-180. [PMID: 29597119 DOI: 10.1016/j.watres.2018.03.050] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/18/2018] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
Membrane photobioreactor (MPBR) technology is an emerging algae-based wastewater treatment system. Given the limitations due to the general use of conventional analytical approaches in previous research, this study aims to provide a more comprehensive assessment of MPBR performance through advanced characterisation techniques. New performance parameters are also proposed, encompassing five important aspects of MPBR system efficiency (i.e. biomass concentration, composition, production, nutrient uptake and harvesting potential). Under initial standard operating conditions, performance parameters, such as cell count/MLSS ratio, cell viability, proportion of bacteria and biomass yield coefficient, were found to offer new insights into the operation of MPBR. These parameters were then used, for the first time, to systematically investigate MPBRs operated under different hydraulic retention times (HRTs) and solids retention times (SRTs). Applying shorter HRT and SRT was observed to increase cell viability and productivity (up to 0.25 × 107 cells/mL·d), as anticipated due to the higher nutrient loading. It was noted that the faster growing algal cells featured lower requirement for nutrients. On the other hand, extending HRT and SRT resulted in a more heterogeneous culture (lower cell count/MLSS ratio and higher proportion of bacteria), achieving a higher degree of autoflocculation and greater NO3-N and PO4-P removals of up to 79% and 78% respectively. The results demonstrate the trade-off between applying different HRTs and SRTs and the importance of fully characterising system performance to critically assess the advantages and limitations of chosen operating conditions.
Collapse
Affiliation(s)
- Yunlong Luo
- The BioMASS Lab, School of Chemical Engineering, UNSW Sydney, Australia; UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, UNSW Sydney, Australia
| | - Pierre Le-Clech
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, UNSW Sydney, Australia
| | - Rita K Henderson
- The BioMASS Lab, School of Chemical Engineering, UNSW Sydney, Australia; UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, UNSW Sydney, Australia.
| |
Collapse
|
56
|
Abinandan S, Subashchandrabose SR, Venkateswarlu K, Megharaj M. Nutrient removal and biomass production: advances in microalgal biotechnology for wastewater treatment. Crit Rev Biotechnol 2018; 38:1244-1260. [PMID: 29768936 DOI: 10.1080/07388551.2018.1472066] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Owing to certain drawbacks, such as energy-intensive operations in conventional modes of wastewater treatment (WWT), there has been an extensive search for alternative strategies in treatment technology. Biological modes for treating wastewaters are one of the finest technologies in terms of economy and efficiency. An integrated biological approach with chemical flocculation is being conventionally practiced in several-sewage and effluent treatment plants around the world. Overwhelming responsiveness to treat wastewaters especially by using microalgae is due to their simplest photosynthetic mechanism and ease of acclimation to various habitats. Microalgal technology, also known as phycoremediation, has been in use for WWT since 1950s. Various strategies for the cultivation of microalgae in WWT systems are evolving faster. However, the availability of innovative approaches for maximizing the treatment efficiency, coupled with biomass productivity, remains the major bottleneck for commercialization of microalgal technology. Investment costs and invasive parameters also delimit the use of microalgae in WWT. This review critically discusses the merits and demerits of microalgal cultivation strategies recently developed for maximum pollutant removal as well as biomass productivity. Also, the potential of algal biofilm technology in pollutant removal, and harvesting the microalgal biomass using different techniques have been highlighted. Finally, an economic assessment of the currently available methods has been made to validate microalgal cultivation in wastewater at the commercial level.
Collapse
Affiliation(s)
- Sudharsanam Abinandan
- a Global Centre for Environmental Remediation (GCER), Research and Innovation Division, Faculty of Science , University of Newcastle , Callaghan , Australia
| | - Suresh R Subashchandrabose
- a Global Centre for Environmental Remediation (GCER), Research and Innovation Division, Faculty of Science , University of Newcastle , Callaghan , Australia.,b Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE) , University of Newcastle , Callaghan , Australia
| | | | - Mallavarapu Megharaj
- a Global Centre for Environmental Remediation (GCER), Research and Innovation Division, Faculty of Science , University of Newcastle , Callaghan , Australia.,b Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE) , University of Newcastle , Callaghan , Australia
| |
Collapse
|
57
|
Fraga-García P, Kubbutat P, Brammen M, Schwaminger S, Berensmeier S. Bare Iron Oxide Nanoparticles for Magnetic Harvesting of Microalgae: From Interaction Behavior to Process Realization. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E292. [PMID: 29723963 PMCID: PMC5977306 DOI: 10.3390/nano8050292] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/18/2018] [Accepted: 04/27/2018] [Indexed: 12/27/2022]
Abstract
Microalgae continue to gain in importance as a bioresource, while their harvesting remains a major challenge at the moment. This study presents findings on microalgae separation using low-cost, easy-to-process bare iron oxide nanoparticles with the additional contribution of the upscaling demonstration of this simple, adhesion-based process. The high affinity of the cell wall for the inorganic surface enables harvesting efficiencies greater than 95% for Scenedesmus ovalternus and Chlorella vulgaris. Successful separation is possible in a broad range of environmental conditions and primarily depends on the nanoparticle-to-microalgae mass ratio, whereas the effect of pH and ionic strength are less significant when the mass ratio is chosen properly. The weakening of ionic concentration profiles at the interphase due to the successive addition of deionized water leads the microalgae to detach from the nanoparticles. The process works efficiently at the liter scale, enabling complete separation of the microalgae from their medium and the separate recovery of all materials (algae, salts, and nanoparticles). The current lack of profitable harvesting processes for microalgae demands innovative approaches to encourage further development. This application of magnetic nanoparticles is an example of the prospects that nanobiotechnology offers for biomass exploitation.
Collapse
Affiliation(s)
- Paula Fraga-García
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstr 15, 85748 Garching, Germany.
| | - Peter Kubbutat
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstr 15, 85748 Garching, Germany.
| | - Markus Brammen
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstr 15, 85748 Garching, Germany.
| | - Sebastian Schwaminger
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstr 15, 85748 Garching, Germany.
| | - Sonja Berensmeier
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstr 15, 85748 Garching, Germany.
| |
Collapse
|
58
|
Modelling of Biomass Concentration, Multi-Wavelength Absorption and Discrimination Method for Seven Important Marine Microalgae Species. ENERGIES 2018. [DOI: 10.3390/en11051089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
59
|
Koutra E, Economou CN, Tsafrakidou P, Kornaros M. Bio-Based Products from Microalgae Cultivated in Digestates. Trends Biotechnol 2018; 36:819-833. [PMID: 29605178 DOI: 10.1016/j.tibtech.2018.02.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 11/18/2022]
Abstract
In recent years the increasing demand for food, energy, and valuable chemicals has necessitated research and development on renewable, novel, and sustainable sources. Microalgae represent a promising option to produce various products with environmentally friendly applications. However, several challenges must be overcome to reduce production cost. To this end, using effluents from biogas production units, called digestates, in cultivation systems can help to optimize bioprocesses, and several bioproducts including biofuels, biofertilizers, proteins and valuable chemicals can be obtained. Nevertheless, several parameters, including the productivity and quality of biomass and specific target products, downstream processes, and cost-effectiveness, must be improved. Further investigations will be necessary to take full advantage of the produced biomass and effectively upscale the process.
Collapse
Affiliation(s)
- Eleni Koutra
- Laboratory of Biochemical Engineering and Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| | - Christina N Economou
- Laboratory of Biochemical Engineering and Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| | - Panagiota Tsafrakidou
- Laboratory of Biochemical Engineering and Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| | - Michael Kornaros
- Laboratory of Biochemical Engineering and Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 26504 Patras, Greece.
| |
Collapse
|
60
|
Ambati RR, Gogisetty D, Aswathanarayana RG, Ravi S, Bikkina PN, Bo L, Yuepeng S. Industrial potential of carotenoid pigments from microalgae: Current trends and future prospects. Crit Rev Food Sci Nutr 2018; 59:1880-1902. [PMID: 29370540 DOI: 10.1080/10408398.2018.1432561] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Microalgae are rich source of various bioactive molecules such as carotenoids, lipids, fatty acids, hydrocarbons, proteins, carbohydrates, amino acids, etc. and in recent Years carotenoids from algae gained commercial recognition in the global market for food and cosmeceutical applications. However, the production of carotenoids from algae is not yet fully cost effective to compete with synthetic ones. In this context the present review examines the technologies/methods in relation to mass production of algae, cell harvesting for extraction of carotenoids, optimizing extraction methods etc. Research studies from different microalgal species such as Spirulina platensis, Haematococcus pluvialis, Dunaliella salina, Chlorella sps., Nannochloropsis sps., Scenedesmus sps., Chlorococcum sps., Botryococcus braunii and Diatoms in relation to carotenoid content, chemical structure, extraction and processing of carotenoids are discussed. Further these carotenoid pigments, are useful in various health applications and their use in food, feed, nutraceutical, pharmaceutical and cosmeceutical industries was briefly touched upon. The commercial value of algal carotenoids has also been discussed in this review. Possible recommendations for future research studies are proposed.
Collapse
Affiliation(s)
- Ranga Rao Ambati
- a Food Science and Technology Programme, Beijing Normal University-Hong Kong Baptist University United International College , Tangjiawan, Zhuhai , Guangdong , China.,b Estuarine Fisheries Research Institute , Doumen, Zhuhai , Guangdong , China.,c Department of Biotechnology , Vignan's Foundation for Science, Technology and Research (Deemed to be University) , Vadlamudi, Guntur , Andhra Pradesh , India
| | - Deepika Gogisetty
- d Department of Chemistry , Sri Chaitanya Junior College , Tenali, Guntur , Andhra Pradesh , India
| | | | - Sarada Ravi
- f Plant Cell Biotechnology Department , Central Food Technological Research Institute, (Constituent Laboratory of Council of Scientific & Industrial Research) , Mysore , Karnataka , India
| | | | - Lei Bo
- a Food Science and Technology Programme, Beijing Normal University-Hong Kong Baptist University United International College , Tangjiawan, Zhuhai , Guangdong , China
| | - Su Yuepeng
- b Estuarine Fisheries Research Institute , Doumen, Zhuhai , Guangdong , China
| |
Collapse
|
61
|
Ambati RR, Gogisetty D, Aswathnarayana Gokare R, Ravi S, Bikkina PN, Su Y, Lei B. Botryococcus as an alternative source of carotenoids and its possible applications – an overview. Crit Rev Biotechnol 2017; 38:541-558. [DOI: 10.1080/07388551.2017.1378997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ranga Rao Ambati
- Food Science and Technology Programme, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China
- Estuarine Fisheries Research Institute of Doumen, Zhuhai, China
| | - Deepika Gogisetty
- Department of Chemistry, Sri Vivekananda College, Viveka Educational Institutions, Tenali, India
| | | | - Sarada Ravi
- Plant Cell Biotechnology Department, Central Food Technological Research Institute (Constituent Laboratory of Council of Scientific & Industrial Research), Mysore, India
| | | | - Yuepeng Su
- Estuarine Fisheries Research Institute of Doumen, Zhuhai, China
| | - Bo Lei
- Food Science and Technology Programme, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China
| |
Collapse
|
62
|
García JL, de Vicente M, Galán B. Microalgae, old sustainable food and fashion nutraceuticals. Microb Biotechnol 2017; 10:1017-1024. [PMID: 28809450 PMCID: PMC5609256 DOI: 10.1111/1751-7915.12800] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 07/12/2017] [Indexed: 01/19/2023] Open
Abstract
Microalgae have been used for centuries to provide nourishment to humans and animals, only very recently they have become much more widely cultured and harvested at large industrial scale. This paper reviews the potential health benefits and nutrition provided by microalgae whose benefits are contributing to expand their market. We also point out several key challenges that remain to be addressed in this field.
Collapse
Affiliation(s)
- José L. García
- Department of Environmental BiologyCentro de Investigaciones Biológicas (CIB) (CSIC)MadridSpain
- Department of Applied BiotechnologyInstitute for Integrative Systems Biology (I2SysBio) (Universidad de Valencia‐CSIC)ValenciaSpain
| | - Marta de Vicente
- Department of Environmental BiologyCentro de Investigaciones Biológicas (CIB) (CSIC)MadridSpain
| | - Beatriz Galán
- Department of Environmental BiologyCentro de Investigaciones Biológicas (CIB) (CSIC)MadridSpain
| |
Collapse
|
63
|
Achyuthan KE, Harper JC, Manginell RP, Moorman MW. Volatile Metabolites Emission by In Vivo Microalgae-An Overlooked Opportunity? Metabolites 2017; 7:E39. [PMID: 28788107 PMCID: PMC5618324 DOI: 10.3390/metabo7030039] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/19/2017] [Accepted: 07/25/2017] [Indexed: 01/04/2023] Open
Abstract
Fragrances and malodors are ubiquitous in the environment, arising from natural and artificial processes, by the generation of volatile organic compounds (VOCs). Although VOCs constitute only a fraction of the metabolites produced by an organism, the detection of VOCs has a broad range of civilian, industrial, military, medical, and national security applications. The VOC metabolic profile of an organism has been referred to as its 'volatilome' (or 'volatome') and the study of volatilome/volatome is characterized as 'volatilomics', a relatively new category in the 'omics' arena. There is considerable literature on VOCs extracted destructively from microalgae for applications such as food, natural products chemistry, and biofuels. VOC emissions from living (in vivo) microalgae too are being increasingly appreciated as potential real-time indicators of the organism's state of health (SoH) along with their contributions to the environment and ecology. This review summarizes VOC emissions from in vivo microalgae; tools and techniques for the collection, storage, transport, detection, and pattern analysis of VOC emissions; linking certain VOCs to biosynthetic/metabolic pathways; and the role of VOCs in microalgae growth, infochemical activities, predator-prey interactions, and general SoH.
Collapse
Affiliation(s)
- Komandoor E Achyuthan
- Nano and Microsensors Department, Sandia National Laboratories, Albuquerque, NM 87185, USA.
| | - Jason C Harper
- Bioenergy and Defense Technology Department, Sandia National Laboratories, Albuquerque, NM 87185, USA.
| | - Ronald P Manginell
- Nano and Microsensors Department, Sandia National Laboratories, Albuquerque, NM 87185, USA.
| | - Matthew W Moorman
- Nano and Microsensors Department, Sandia National Laboratories, Albuquerque, NM 87185, USA.
| |
Collapse
|
64
|
Guo H, Hong C, Zheng B, Lu F, Jiang D, Qin W. Bioflocculants' production in a biomass-degrading bacterium using untreated corn stover as carbon source and use of bioflocculants for microalgae harvest. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:306. [PMID: 29270220 PMCID: PMC5738095 DOI: 10.1186/s13068-017-0987-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/01/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND Bioflocculation has been developed as a cost-effective and environment-friendly method to harvest multiple microalgae. However, the high production cost of bioflocculants makes it difficult to scale up. In the current study, low-cost bioflocculants were produced from untreated corn stover by a biomass-degrading bacterium Pseudomonas sp. GO2. RESULTS Pseudomonas sp. GO2 showed excellent production ability of bioflocculants through directly hydrolyzing various biomasses. The untreated corn stover was selected as carbon source for bioflocculants' production due to its highest flocculating efficiency compared to that when using other biomasses as carbon source. The effects of fermentation parameters on bioflocculants' production were optimized via response surface methodology. According to the optimal model, an ideal flocculating efficiency of 99.8% was obtained with the fermentation time of 130.46 h, initial pH of 7.46, and biomass content of 0.64%. The relative importance of carboxymethyl cellulase and xylanase accounted for 51.8% in the process of bioflocculants' production by boosted regression tree analysis, further indicating that the bioflocculants were mainly from the hydrolysates of biomass. Biochemical analysis showed that it contained 59.0% polysaccharides with uronic acid (34.2%), 32.1% protein, and 6.1% nucleic acid in the bioflocculants, which had an average molecular weight as 1.33 × 106 Da. In addition, the bioflocculants showed the highest flocculating efficiency at a concentration of 12.5 mg L-1 and were stable over broad ranges of pH and temperature. The highest flocculating efficiencies obtained for Chlorella zofingiensis and Neochloris oleoabundans were 77.9 and 88.9%, respectively. CONCLUSIONS The results indicated that Pseudomonas sp. GO2 can directly utilize various untreated lignocellulolytic biomasses to produce low-cost bioflocculants, which showed the high efficiency to harvest two green microalgae in a low GO2 fermentation broth/algal culture ratio.
Collapse
Affiliation(s)
- Haipeng Guo
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1 Canada
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Chuntao Hong
- Academy of Agricultural Sciences of Ningbo City, Ningbo, 315040 China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300 China
| | - Fan Lu
- School of Biological Engineering, Hubei University of Technology, Wuhan, 430068 China
| | - Dean Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Wensheng Qin
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1 Canada
| |
Collapse
|