51
|
Edvinsson L, Larsen SS, Maddahi A, Nielsen J. Plasticity of cerebrovascular smooth muscle cells after subarachnoid hemorrhage. Transl Stroke Res 2014; 5:365-76. [PMID: 24449486 DOI: 10.1007/s12975-014-0331-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/19/2013] [Accepted: 01/06/2014] [Indexed: 12/27/2022]
Abstract
Subarachnoid hemorrhage (SAH) is most often followed by a delayed phase of cerebral ischemia which is associated with high morbidity and mortality rates. The causes underlying this delayed phase are still unsettled, but are believed to include cerebral vasospasm, cortical spreading depression, inflammatory reactions, and microthrombosis. Additionally, a large body of evidence indicates that vascular plasticity plays an important role in SAH pathophysiology, and this review aims to summarize our current knowledge on the phenotypic changes of vascular smooth muscle cells of the cerebral vasculature following SAH. In light of the emerging view that the whole cerebral vasculature and the cells of the brain parenchyma should be viewed as one integrated neurovascular network, phenotypical changes are discussed both for the cerebral arteries and the microvasculature. Furthermore, the intracellular signaling involved in the vascular plasticity is discussed with a focus on the Raf-MEK1/2-ERK1/2 pathway which seems to play a crucial role in SAH pathology.
Collapse
Affiliation(s)
- Lars Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Glostrup University Hospital, Glostrup, Denmark,
| | | | | | | |
Collapse
|
52
|
Kooijman E, Nijboer CH, van Velthoven CTJ, Kavelaars A, Kesecioglu J, Heijnen CJ. The rodent endovascular puncture model of subarachnoid hemorrhage: mechanisms of brain damage and therapeutic strategies. J Neuroinflammation 2014; 11:2. [PMID: 24386932 PMCID: PMC3892045 DOI: 10.1186/1742-2094-11-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/17/2013] [Indexed: 01/05/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) represents a considerable health problem. To date, limited therapeutic options are available. In order to develop effective therapeutic strategies for SAH, the mechanisms involved in SAH brain damage should be fully explored. Here we review the mechanisms of SAH brain damage induced by the experimental endovascular puncture model. We have included a description of similarities and distinctions between experimental SAH in animals and human SAH pathology. Moreover, several novel treatment options to diminish SAH brain damage are discussed.SAH is accompanied by cerebral inflammation as demonstrated by an influx of inflammatory cells into the cerebral parenchyma, upregulation of inflammatory transcriptional pathways and increased expression of cytokines and chemokines. Additionally, various cell death pathways including cerebral apoptosis, necrosis, necroptosis and autophagy are involved in neuronal damage caused by SAH.Treatment strategies aiming at inhibition of inflammatory or cell death pathways demonstrate the importance of these mechanisms for survival after experimental SAH. Moreover, neuroregenerative therapies using stem cells are discussed as a possible strategy to repair the brain after SAH since this therapy may extend the window of treatment considerably. We propose the endovascular puncture model as a suitable animal model which resembles the human pathology of SAH and which could be applied to investigate novel therapeutic therapies to combat this debilitating insult.
Collapse
Affiliation(s)
- Elke Kooijman
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cora H Nijboer
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cindy TJ van Velthoven
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annemieke Kavelaars
- Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jozef Kesecioglu
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cobi J Heijnen
- Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
53
|
Shao A, Guo S, Tu S, Ammar AB, Tang J, Hong Y, Wu H, Zhang J. Astragaloside IV alleviates early brain injury following experimental subarachnoid hemorrhage in rats. Int J Med Sci 2014; 11:1073-81. [PMID: 25136262 PMCID: PMC4135229 DOI: 10.7150/ijms.9282] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/01/2014] [Indexed: 12/28/2022] Open
Abstract
Astragaloside IV, one of the main effective components isolated from Astragalus membranaceus, has multiple neuroprotective properties, while the effects of astragaloside IV on the attenuation of subarachnoid hemorrhage (SAH)-induced early brain injury (EBI) and its possible mechanisms are unknown. In the present study, we aimed to determine whether astragaloside IV could inhibit oxidative stress, reduce neuronal apoptosis, and improve neurological deficits after experimental SAH in rats. Rats (n=68) were randomly divided into the following groups: Sham group, SAH group, SAH+vehicle group, and SAH+astragaloside IV group. Astragaloside IV or an equal volume of vehicle was administered at 1 h and 6 h after SAH, all the rats were subsequently sacrificed at 24 h after SAH. Mortality, neurological scores, and brain edema were assessed, biochemical tests and histological studies were also performed at that point. SAH induced an increase in the malondialdehyde (MDA) level, neuronal apoptosis, cleaved caspase 3, brain edema and decreased activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Astragaloside IV treatment reversed these changes and improved neurobehavioral outcomes of SAH rats. Our findings suggested that astragaloside IV may alleviate EBI after SAH through antioxidative and anti-apoptotic effects.
Collapse
Affiliation(s)
- Anwen Shao
- 1. Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Songxue Guo
- 2. Department of Burns, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Tu
- 3. First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Al-baadani Ammar
- 1. Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junjia Tang
- 1. Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuan Hong
- 1. Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haijian Wu
- 1. Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- 1. Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
54
|
Zhuang Z, Sun XJ, Zhang X, Liu HD, You WC, Ma CY, Zhu L, Zhou ML, Shi JX. Nuclear factor-κB/Bcl-XL pathway is involved in the protective effect of hydrogen-rich saline on the brain following experimental subarachnoid hemorrhage in rabbits. J Neurosci Res 2013; 91:1599-608. [PMID: 24105634 DOI: 10.1002/jnr.23281] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/22/2013] [Accepted: 06/26/2013] [Indexed: 01/01/2023]
Abstract
Early brain injury (EBI), a significant contributor to poor outcome after subarachnoid hemorrhage (SAH), is intimately associated with neuronal apoptosis. Recently, the protective role of hydrogen (H2 ) in the brain has been widely studied, but the underlying mechanism remains elusive. Numerous studies have shown nuclear factor-κB (NF-κB) as a crucial survival pathway in neurons. Here we investigated the role of H2 in EBI following SAH, focusing on the NF-κB pathway. A double blood injection model was used to produce experimental SAH, and H2 -rich saline was injected intraperitoneally. NF-κB activity within the occipital cortex was measured. Immunofluorescence was performed to demonstrate the activation of NF-κB; Bcl-xL and cleaved caspase-3 were determined via Western blot. Gene expression of Bcl-xL was detected by real-time PCR, and TUNEL and Nissl staining were performed to illustrate brain injury in the occipital cortex. SAH induced a significant increase of cleaved caspase-3. Correspondingly, TUNEL staining demonstrated obvious neuronal apoptosis following SAH. In contrast, H2 treatment markedly increased NF-κB activity and the expression of Bcl-xL and decreased the level of cleaved caspase-3. Additionally, H2 treatment significantly reduced post-SAH neuronal apoptosis. The current study shows that H2 treatment alleviates EBI in the rabbits following SAH and that NF-κB/Bcl-xL pathway is involved in the protective role of H2 .
Collapse
Affiliation(s)
- Zong Zhuang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Titova E, Ostrowski RP, Zhang JH, Tang J. Experimental models of subarachnoid hemorrhage for studies of cerebral vasospasm. Neurol Res 2013; 31:568-81. [DOI: 10.1179/174313209x382412] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
56
|
Kuo CP, Wen LL, Chen CM, Huh B, Cherng CH, Wong CS, Liaw WJ, Yeh CC, Lin BF, Wu CT. Attenuation of neurological injury with early baicalein treatment following subarachnoid hemorrhage in rats. J Neurosurg 2013; 119:1028-37. [PMID: 23724981 DOI: 10.3171/2013.4.jns121919] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECT Baicalein has been shown to offer neuroprotection in the ischemic brain, but its effect in subarachnoid hemorrhage (SAH) is unknown. The authors used a double-hemorrhage model to study the role of early baicalein treatment in SAH. METHODS Subarachnoid hemorrhage was induced in male Wistar rats through a repeat injection of autologous blood at a 48-hour interval. Rats subjected or not subjected to SAH received a 30-mg/kg baicalein injection 3 hours after SAH and daily for 6 consecutive days, and results were compared with those obtained in vehicle-treated control rats. Mortality of the rats was recorded. Neurological outcome was assessed daily. Cerebrospinal fluid dialysates were collected and examined for glutamate concentrations. Cerebral vasospasm (CVS), brain water content, neuron variability, expression of glutamate transporter-1 (GLT-1), immunoreactivity of astrocyte, and level of malondialdehyde, activities of superoxide dismutase (SOD), and catalase in brain tissues content were determined on post-SAH Day 7. RESULTS Mortality rate, neuronal degeneration, brain water content, and CVS were decreased and neurological function improved in the baicalein-treated rats. Baicalein increased astrocyte activity and preserved GLT-1, which attenuated the glutamate surge after SAH. Baicalein also provided antioxidative stress by preserving activities of SOD and catalase and decreased malondialdehydelevel after SAH. The glutamate, body weight, neurological scores, and glial fibrillary acidic protein activity were significantly correlated. The CVS was correlated with neuronal degeneration, and GLT-1 was correlated with oxidative stress. CONCLUSIONS Early baicalein treatment attenuated CVS and limited neurological injury following SAH. These data may indicate clinical utility for baicalein as an adjunct therapy to reduce brain injury and improve patient outcomes.
Collapse
|
57
|
Macdonald RL. Does Prevention of Vasospasm in Subarachnoid Hemorrhage Improve Clinical Outcome? Yes. Stroke 2013; 44:S31-3. [DOI: 10.1161/strokeaha.112.679142] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
58
|
Yan F, Hu Q, Chen J, Wu C, Gu C, Chen G. Progesterone attenuates early brain injury after subarachnoid hemorrhage in rats. Neurosci Lett 2013; 543:163-7. [DOI: 10.1016/j.neulet.2013.03.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/03/2013] [Accepted: 03/06/2013] [Indexed: 12/17/2022]
|
59
|
You WC, Wang CX, Pan YX, Zhang X, Zhou XM, Zhang XS, Shi JX, Zhou ML. Activation of nuclear factor-κB in the brain after experimental subarachnoid hemorrhage and its potential role in delayed brain injury. PLoS One 2013; 8:e60290. [PMID: 23536907 PMCID: PMC3607578 DOI: 10.1371/journal.pone.0060290] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 02/25/2013] [Indexed: 01/20/2023] Open
Abstract
It has been reported that inflammation is involved in brain injury after subarachnoid hemorrhage (SAH). Nuclear factor-κB (NF-κB) is a key transcriptional regulator of inflammatory genes. Here, we used pyrrolidine dithiocarbamate(PDTC), an inhibitor of NF-κB, through intracisternal injection to study the role of NF-κB in delayed brain injury after SAH. A total of 55 rabbits were randomly divided into five groups: the control group; the SAH groups including Day-3, 5, and 7 SAH groups (the rabbits in these groups were sacrificed at 3, 5, 7 days after SAH, respectively); and the PDTC group (n = 11 for each group). Electrophoretic mobility shift assay (EMSA) was performed to detect NF-κB DNA-binding activity. The mRNA levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and intercellular adhesion molecule (ICAM)-1 were evaluated by RT-PCR analysis. Deoxyribonucleic acid fragmentation was detected by TUNEL and p65 immunoactivity was assessed by immunohistochemistry. Our results showed the activation of NF-κB after SAH, especially at day 3 and 5. The activated p65 was detected in neurons. NF-κB DNA-binding activity was suppressed by intracisternal administration of PDTC. Increased levels of the TNF-α, IL-1β, and ICAM-1 mRNA were found in the brain at day 5 after SAH, and which were suppressed in the PDTC group. The number of TUNEL-positive cells also decreased significantly in the PDTC group compared with that in the Day-5 SAH group. These results demonstrated that the activated NF-κB in neurons after SAH plays an important role in regulating the expressions of inflammatory genes in the brain, and ultimately contributes to delayed brain injury.
Collapse
Affiliation(s)
- Wan-Chun You
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Chun-xi Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yun-xi Pan
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xin Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiao-ming Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiang-sheng Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Ji-xin Shi
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Meng-liang Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
- * E-mail:
| |
Collapse
|
60
|
Povlsen GK, Johansson SE, Larsen CC, Samraj AK, Edvinsson L. Early events triggering delayed vasoconstrictor receptor upregulation and cerebral ischemia after subarachnoid hemorrhage. BMC Neurosci 2013; 14:34. [PMID: 23496889 PMCID: PMC3618233 DOI: 10.1186/1471-2202-14-34] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 03/07/2013] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Upregulation of vasoconstrictor receptors in cerebral arteries, including endothelin B (ETB) and 5-hydroxytryptamine 1B (5-HT(1B)) receptors, has been suggested to contribute to delayed cerebral ischemia, a feared complication after subarachnoid hemorrhage (SAH). This receptor upregulation has been shown to be mediated by intracellular signalling via the mitogen activated protein kinase kinase (MEK1/2)--extracellular regulated kinase 1/2 (ERK1/2) pathway. However, it is not known what event(s) that trigger MEK-ERK1/2 activation and vasoconstrictor receptor upregulation after SAH.We hypothesise that the drop in cerebral blood flow (CBF) and wall tension experienced by cerebral arteries in acute SAH is a key triggering event. We here investigate the importance of the duration of this acute CBF drop in a rat SAH model in which a fixed amount of blood is injected into the prechiasmatic cistern either at a high rate resulting in a short acute CBF drop or at a slower rate resulting in a prolonged acute CBF drop. RESULTS We demonstrate that the duration of the acute CBF drop is determining for a) degree of early ERK1/2 activation in cerebral arteries, b) delayed upregulation of vasoconstrictor receptors in cerebral arteries and c) delayed CBF reduction, neurological deficits and mortality. Moreover, treatment with an inhibitor of MEK-ERK1/2 signalling during an early time window from 6 to 24 h after SAH was sufficient to completely prevent delayed vasoconstrictor receptor upregulation and improve neurological outcome several days after the SAH. CONCLUSIONS Our findings suggest a series of events where 1) the acute CBF drop triggers early MEK-ERK1/2 activation, which 2) triggers the transcriptional upregulation of vasoconstrictor receptors in cerebral arteries during the following days, where 3) the resulting enhanced cerebrovascular contractility contribute to delayed cerebral ischemia.
Collapse
Affiliation(s)
- Gro Klitgaard Povlsen
- Department of Clinical Experimental Research, Glostrup Research Institute, Glostrup University Hospital, Nordre Ringvej 69, Glostrup, DK 2600, Denmark
| | - Sara Ellinor Johansson
- Department of Clinical Experimental Research, Glostrup Research Institute, Glostrup University Hospital, Nordre Ringvej 69, Glostrup, DK 2600, Denmark
| | | | - Ajoy Kumar Samraj
- Department of Clinical Experimental Research, Glostrup Research Institute, Glostrup University Hospital, Nordre Ringvej 69, Glostrup, DK 2600, Denmark
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Glostrup University Hospital, Nordre Ringvej 69, Glostrup, DK 2600, Denmark
| |
Collapse
|
61
|
Koide M, Sukhotinsky I, Ayata C, Wellman GC. Subarachnoid hemorrhage, spreading depolarizations and impaired neurovascular coupling. Stroke Res Treat 2013; 2013:819340. [PMID: 23577279 PMCID: PMC3610342 DOI: 10.1155/2013/819340] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 02/08/2013] [Indexed: 11/17/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) has devastating consequences on brain function including profound effects on communication between neurons and the vasculature leading to cerebral ischemia. Physiologically, neurovascular coupling represents a focal increase in cerebral blood flow to meet increased metabolic demand of neurons within active regions of the brain. Neurovascular coupling is an ongoing process involving coordinated activity of the neurovascular unit-neurons, astrocytes, and parenchymal arterioles. Neuronal activity can also influence cerebral blood flow on a larger scale. Spreading depolarizations (SD) are self-propagating waves of neuronal depolarization and are observed during migraine, traumatic brain injury, and stroke. Typically, SD is associated with increased cerebral blood flow. Emerging evidence indicates that SAH causes inversion of neurovascular communication on both the local and global level. In contrast to other events causing SD, SAH-induced SD decreases rather than increases cerebral blood flow. Further, at the level of the neurovascular unit, SAH causes an inversion of neurovascular coupling from vasodilation to vasoconstriction. Global ischemia can also adversely affect the neurovascular response. Here, we summarize current knowledge regarding the impact of SAH and global ischemia on neurovascular communication. A mechanistic understanding of these events should provide novel strategies to treat these neurovascular disorders.
Collapse
Affiliation(s)
- Masayo Koide
- Department of Pharmacology, University of Vermont College of Medicine, Burlington, VT 05405-0068, USA
| | - Inna Sukhotinsky
- Neurovascular Research Laboratory, Department of Radiology, Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 52990, Israel
| | - Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - George C. Wellman
- Department of Pharmacology, University of Vermont College of Medicine, Burlington, VT 05405-0068, USA
| |
Collapse
|
62
|
Early brain injury: a common mechanism in subarachnoid hemorrhage and global cerebral ischemia. Stroke Res Treat 2013; 2013:394036. [PMID: 23533958 PMCID: PMC3603523 DOI: 10.1155/2013/394036] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 01/27/2013] [Indexed: 12/19/2022] Open
Abstract
Early brain injury (EBI) has become an area of extreme interest in the recent years and seems to be a common denominator in the pathophysiology of global transient ischemia and subarachnoid hemorrhage (SAH). In this paper, we highlight the importance of cerebral hypoperfusion and other mechanisms that occur in tandem in both pathologies and underline their possible roles in triggering brain injury after hemorrhagic or ischemic strokes.
Collapse
|
63
|
Kao CH, Chang CZ, Su YF, Tsai YJ, Chang KP, Lin TK, Hwang SL, Lin CL. 17β-Estradiol attenuates secondary injury through activation of Akt signaling via estrogen receptor alpha in rat brain following subarachnoid hemorrhage. J Surg Res 2013; 183:e23-30. [PMID: 23465388 DOI: 10.1016/j.jss.2013.01.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 01/12/2013] [Accepted: 01/17/2013] [Indexed: 01/10/2023]
Abstract
BACKGROUND Apoptosis is implicated in vasospasm and the long-term sequelae of subarachnoid hemorrhage (SAH). This study tested the hypothesis that attenuation of SAH-induced apoptosis after 17β-estradiol (E2) treatment is associated with an increase in phosphorylation of Akt via estrogen receptor-α (ER-α) in rats. MATERIALS AND METHODS We examined the expression of phospho-Akt, ERα and ERβ, and apoptosis in cerebral cortex, hippocampus, and dentate gyrus in a two-hemorrhage SAH model in rats. We subcutaneously implanted other rats with a silicone rubber tube containing E2; they received daily injections of nonselective estrogen receptor antagonist (ICI 182,780), selective ERα-selective antagonist (methyl-piperidino-pyrazole), or ERβ-selective antagonist (R,R-tetrahydrochrysene) after the first hemorrhage. RESULTS At 7 d after the first SAH, protein levels of phospho-Akt and ERα were significantly decreased and caspase-3 was significantly increased in the dentate gyrus. The cell death assay revealed that DNA fragmentation was significantly increased in the dentate gyrus. Those actions were reversed by E2 and blocked by ICI 182,780 and methyl-piperidino-pyrazole, but not R,R-tetrahydrochrysene. However, there were no significant changes in the expression of the protein levels of phospho-Akt, ERα, ERβ, and caspase-3, and DNA fragmentation after SAH. CONCLUSIONS The present study shows that a beneficial effect of E2 in attenuating SAH-induced apoptosis is associated with activation of the expression of phospho-Akt and ERα, and alteration in caspase-3 protein expression via an ERα-dependent mechanism in the dentate gyrus. These data support further the investigation of E2 in the treatment of SAH in humans.
Collapse
Affiliation(s)
- Cheng-Hsing Kao
- Center for General Education, Southern Taiwan University of Technology, Tainan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Sehba FA, Friedrich V. Cerebral microvasculature is an early target of subarachnoid hemorrhage. ACTA NEUROCHIRURGICA. SUPPLEMENT 2012; 115:199-205. [PMID: 22890669 DOI: 10.1007/978-3-7091-1192-5_37] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Most subarachnoid hemorrhage (SAH) patients exhibit clinical signs of cerebral ischemia at admission but no angiographic vasospasm. Consequently, the source of early cerebral ischemia is not understood. Parenchymal microvessels may contribute to early cerebral ischemia, but the low resolution of current imaging has prevented their analysis in SAH patients. Animal studies demonstrated that early after SAH structure and function of parenchymal vessels are compromised to the level that may very well contribute to early ischemia. We review these studies.
Collapse
Affiliation(s)
- Fatima A Sehba
- Department of Neurosurgery and Neurosciences, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | |
Collapse
|
65
|
Greenhalgh AD, Brough D, Robinson EM, Girard S, Rothwell NJ, Allan SM. Interleukin-1 receptor antagonist is beneficial after subarachnoid haemorrhage in rat by blocking haem-driven inflammatory pathology. Dis Model Mech 2012; 5:823-33. [PMID: 22679224 PMCID: PMC3484865 DOI: 10.1242/dmm.008557] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 04/23/2012] [Indexed: 12/19/2022] Open
Abstract
Subarachnoid haemorrhage (SAH) is a major contributor to the burden of stroke on society. Treatment options are limited and animal models of SAH do not always mimic key pathophysiological hallmarks of the disease, thus hindering development of new therapeutics. Inflammation is strongly associated with brain injury after SAH in animals and patients, and inhibition of the pro-inflammatory cytokine interleukin-1 (IL-1) represents a possible therapeutic target. Here we report that a rupture of the middle cerebral artery in the rat produces heterogeneous infarct patterns similar to those observed in human SAH. Administration of the IL-1 receptor antagonist (IL-1Ra) reduced blood-brain barrier breakdown, and the extent of breakdown correlated with brain injury. After SAH, haem oxygenase-1 (HO-1) was strongly expressed around the bleed site and in the cortex and striatum, indicating the presence of free haem, a breakdown product of haemoglobin. HO-1 expression was also found in the same regions as microglial/macrophage expression of IL-1α. The direct effect of haem on IL-1α expression was confirmed in vitro using organotypic slice culture (OSC). Haem-induced cell death was dependent on IL-1 signalling, with IL-1Ra completely blocking cellular injury. Furthermore, stimulation of mouse primary mixed glial cells with haem induced the release of IL-1α, but not IL-1β. Thus, we suggest that haem, released from lysed red blood cells (RBCs) in the subarachnoid space, acts as a danger-associated molecular pattern (DAMP) driving IL-1-dependent inflammation. These data provide new insights into inflammation after SAH-induced brain injury and suggest IL-1Ra as a candidate therapeutic for the disease.
Collapse
Affiliation(s)
- Andrew D Greenhalgh
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PL, UK.
| | | | | | | | | | | |
Collapse
|
66
|
Caner B, Hou J, Altay O, Fuj M, Zhang JH. Transition of research focus from vasospasm to early brain injury after subarachnoid hemorrhage. J Neurochem 2012; 123 Suppl 2:12-21. [DOI: 10.1111/j.1471-4159.2012.07939.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Basak Caner
- Department of Physiology; Loma Linda University, School of Medicine; Loma Linda; California; USA
| | - Jack Hou
- Department of Physiology; Loma Linda University, School of Medicine; Loma Linda; California; USA
| | - Orhan Altay
- Department of Physiology; Loma Linda University, School of Medicine; Loma Linda; California; USA
| | - Mutsumi Fuj
- Department of Physiology; Loma Linda University, School of Medicine; Loma Linda; California; USA
| | | |
Collapse
|
67
|
Xie Z, Lei B, Huang Q, Deng J, Wu M, Shen W, Cheng Y. Neuroprotective effect of Cyclosporin A on the development of early brain injury in a subarachnoid hemorrhage model: a pilot study. Brain Res 2012; 1472:113-23. [PMID: 22796593 DOI: 10.1016/j.brainres.2012.06.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/27/2012] [Accepted: 06/29/2012] [Indexed: 02/02/2023]
Abstract
Cyclosporin A (CsA) has been demonstrated to be neuroprotective in ischemic and traumatic brain injuries by inhibiting mitochondrial permeability transition pore (mPTP) opening, thereby maintaining mitochondrial homeostasis and inhibiting pro-apoptotic protein release. The effects of CsA on early brain injury (EBI) after subarachnoid hemorrhage (SAH), however, have not been investigated. This study was designed to explore the effects of CsA on apoptotic signaling pathways and EBI after experimental SAH using four equal groups (n=36) of adult male SD rats, including the sham group, SAH+vehicle group, SAH+CsA2 group, and SAH+CsA10 group. The rat SAH model was induced by injection of 0.3ml non-heparinized arterial blood into the prechiasmatic cistern. In the SAH+CsA2 and SAH+CsA10 groups, a dose of 2mg/kg and 10mg/kg CsA was directly administered by intercarotid injection at 15min and again 24h after SAH induction. Cerebral tissue samples were extracted 48h after SAH. Increased expressions of Cytochrome C, apoptosis-inducing factor (AIF), and cleaved caspase-3 were observed in the cerebral cortex after SAH. Treatment with high dose (10mg/kg) CsA markedly decreased expressions of Cytochrome C, AIF, and cleaved caspase-3, and inhibited apoptosis pathways. Administration of CsA following SAH significantly ameliorated EBI, including cortical apoptosis, brain edema, blood-brain barrier (BBB) impairment, and neurobehavioral deficits. These findings suggest that early administration of CsA may ameliorate EBI and provide neuroprotection in the SAH model through potential mechanisms that include blockage of mPTP opening and inhibition of apoptotic cell death pathways.
Collapse
Affiliation(s)
- Zongyi Xie
- Department of Neurosurgery, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China.
| | | | | | | | | | | | | |
Collapse
|
68
|
Simard JM, Tosun C, Ivanova S, Kurland DB, Hong C, Radecki L, Gisriel C, Mehta R, Schreibman D, Gerzanich V. Heparin reduces neuroinflammation and transsynaptic neuronal apoptosis in a model of subarachnoid hemorrhage. Transl Stroke Res 2012; 3:155-65. [PMID: 22707992 PMCID: PMC3372778 DOI: 10.1007/s12975-012-0166-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 03/27/2012] [Accepted: 03/29/2012] [Indexed: 01/01/2023]
Abstract
Subarachnoid hemorrhage (SAH) can lead to disabling motor, cognitive, and neuropsychological abnormalities. Part of the secondary injury to cerebral tissues associated with SAH is attributable to the neuroinflammatory response induced by blood. Heparin is a pleiotropic compound that reduces inflammatory responses in conditions outside the central nervous system. Using a model of SAH devoid of global insult, we evaluated the effect of delayed intravenous (IV) infusion of heparin, at a dose that does not produce therapeutic anticoagulation, on neuroinflammation, myelin preservation, and apoptosis. Adult male rats underwent bilateral stereotactic injections of autologous blood (50 μL) into the subarachnoid space of the entorhinal cortex. The rats were implanted with mini-osmotic pumps that delivered either vehicle or unfractionated heparin (10 U/kg/h IV) beginning 12 h after SAH. No mechanical or hemorrhagic injury was observed in the hippocampus. In vehicle controls assessed at 48 h, SAH was associated with robust neuroinflammation in the adjacent cortex [neutrophils, activated phagocytic microglia, nuclear factor-kappa B, tumor necrosis factor-alpha, and interleukin-1beta] and neurodegeneration (Fluoro-Jade C staining and loss of NeuN). In the hippocampus, a muted neuroinflammatory response was indicated by Iba1-positive, ED1-negative microglia exhibiting an activated morphology. The perforant pathway showed Fluoro-Jade C staining and demyelination, and granule cells of the dentate gyrus had pyknotic nuclei, labeled with Fluoro-Jade C and showed upregulation of cleaved caspase-3, consistent with transsynaptic apoptosis. Administration of heparin significantly reduced neuroinflammation, demyelination, and transsynaptic apoptosis. We conclude that delayed IV infusion of low-dose unfractionated heparin may attenuate adverse neuroinflammatory effects of SAH.
Collapse
Affiliation(s)
- J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S. Greene St., Suite S12D, Baltimore, MD 21201-1595 USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Cigdem Tosun
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S. Greene St., Suite S12D, Baltimore, MD 21201-1595 USA
| | - Svetlana Ivanova
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S. Greene St., Suite S12D, Baltimore, MD 21201-1595 USA
| | - David B. Kurland
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S. Greene St., Suite S12D, Baltimore, MD 21201-1595 USA
| | - Caron Hong
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Leanne Radecki
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S. Greene St., Suite S12D, Baltimore, MD 21201-1595 USA
| | - Carter Gisriel
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S. Greene St., Suite S12D, Baltimore, MD 21201-1595 USA
| | - Rupal Mehta
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD USA
| | - David Schreibman
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S. Greene St., Suite S12D, Baltimore, MD 21201-1595 USA
| |
Collapse
|
69
|
Sehba FA, Hou J, Pluta RM, Zhang JH. The importance of early brain injury after subarachnoid hemorrhage. Prog Neurobiol 2012; 97:14-37. [PMID: 22414893 PMCID: PMC3327829 DOI: 10.1016/j.pneurobio.2012.02.003] [Citation(s) in RCA: 473] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 02/01/2012] [Accepted: 02/16/2012] [Indexed: 12/11/2022]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a medical emergency that accounts for 5% of all stroke cases. Individuals affected are typically in the prime of their lives (mean age 50 years). Approximately 12% of patients die before receiving medical attention, 33% within 48 h and 50% within 30 days of aSAH. Of the survivors 50% suffer from permanent disability with an estimated lifetime cost more than double that of an ischemic stroke. Traditionally, spasm that develops in large cerebral arteries 3-7 days after aneurysm rupture is considered the most important determinant of brain injury and outcome after aSAH. However, recent studies show that prevention of delayed vasospasm does not improve outcome in aSAH patients. This finding has finally brought in focus the influence of early brain injury on outcome of aSAH. A substantial amount of evidence indicates that brain injury begins at the aneurysm rupture, evolves with time and plays an important role in patients' outcome. In this manuscript we review early brain injury after aSAH. Due to the early nature, most of the information on this injury comes from animals and few only from autopsy of patients who died within days after aSAH. Consequently, we began with a review of animal models of early brain injury, next we review the mechanisms of brain injury according to the sequence of their temporal appearance and finally we discuss the failure of clinical translation of therapies successful in animal models of aSAH.
Collapse
Affiliation(s)
- Fatima A Sehba
- The Departments of Neurosurgery and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | |
Collapse
|
70
|
A novel intravital method to evaluate cerebral vasospasm in rat models of subarachnoid hemorrhage: a study with synchrotron radiation angiography. PLoS One 2012; 7:e33366. [PMID: 22428033 PMCID: PMC3299776 DOI: 10.1371/journal.pone.0033366] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 02/13/2012] [Indexed: 02/06/2023] Open
Abstract
Precise in vivo evaluation of cerebral vasospasm caused by subarachnoid hemorrhage has remained a critical but unsolved issue in experimental small animal models. In this study, we used synchrotron radiation angiography to study the vasospasm of anterior circulation arteries in two subarachnoid hemorrhage models in rats. Synchrotron radiation angiography, laser Doppler flowmetry-cerebral blood flow measurement, [125I]N-isopropyl-p-iodoamphetamine cerebral blood flow measurement and terminal examinations were applied to evaluate the changes of anterior circulation arteries in two subarachnoid hemorrhage models made by blood injection into cisterna magna and prechiasmatic cistern. Using synchrotron radiation angiography technique, we detected cerebral vasospasm in subarachnoid hemorrhage rats compared to the controls (p<0.05). We also identified two interesting findings: 1) both middle cerebral artery and anterior cerebral artery shrunk the most at day 3 after subarachnoid hemorrhage; 2) the diameter of anterior cerebral artery in the prechiasmatic cistern injection group was smaller than that in the cisterna magna injection group (p<0.05), but not for middle cerebral artery. We concluded that synchrotron radiation angiography provided a novel technique, which could directly evaluate cerebral vasospasm in small animal experimental subarachnoid hemorrhage models. The courses of vasospasm in these two injection models are similar; however, the model produced by prechiasmatic cistern injection is more suitable for study of anterior circulation vasospasm.
Collapse
|
71
|
Friedrich V, Flores R, Sehba FA. Cell death starts early after subarachnoid hemorrhage. Neurosci Lett 2012; 512:6-11. [PMID: 22306092 DOI: 10.1016/j.neulet.2012.01.036] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 01/13/2012] [Accepted: 01/14/2012] [Indexed: 12/22/2022]
Abstract
Brain injury begins early after aneurysmal subarachnoid hemorrhage (SAH). Although cell death via apoptosis and necrosis is known to be present in brain 24 h after SAH, it is not known how soon after SAH cell death begins. We have previously described structural changes in rat brain microvessels 10 min after induction of SAH by endovascular puncture. This study examined brain for evidence of cell death beginning 10 min after induction of SAH. Cleaved caspase-3 (cl-caspase-3) staining was evident in vascular and parenchymal cells at 10 min after SAH and was significantly greater than in time-matched, sham-operated controls. The number of cl-caspase-3 positive cells was increased further at 24 h after SAH. TUNEL assay revealed apoptotic cells present at 10 min, with substantially more at 24 h after SAH. Scattered Fluoro-Jade positive neurons appeared at 1h after SAH and their number increased with time. At 1 h Fluoro-Jade positive neurons were present in cortical and subcortical regions but not in hippocampus; at 24h they were also present in hippocampus and were significantly greater in the hemisphere ipsilateral to the vascular puncture. No Fluoro-Jade staining was present in shams. These data demonstrate an early activation of endothelial and parenchymal cells apoptosis and neuronal necrosis after SAH and identifies endpoints that can be targeted to reduce early brain injury after SAH.
Collapse
Affiliation(s)
- Victor Friedrich
- Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1065, New York, NY 10029, USA
| | | | | |
Collapse
|
72
|
|
73
|
Greenhalgh AD, Rothwell NJ, Allan SM. An Endovascular Perforation Model of Subarachnoid Haemorrhage in Rat Produces Heterogeneous Infarcts that Increase with Blood Load. Transl Stroke Res 2011; 3:164-72. [DOI: 10.1007/s12975-011-0124-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/11/2011] [Accepted: 10/24/2011] [Indexed: 10/15/2022]
|
74
|
Sherchan P, Lekic T, Suzuki H, Hasegawa Y, Rolland W, Duris K, Zhan Y, Tang J, Zhang JH. Minocycline improves functional outcomes, memory deficits, and histopathology after endovascular perforation-induced subarachnoid hemorrhage in rats. J Neurotrauma 2011; 28:2503-12. [PMID: 22013966 DOI: 10.1089/neu.2011.1864] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) results in significant long-lasting cognitive dysfunction. Therefore, evaluating acute and long-term outcomes after therapeutic intervention is important for clinical translation. The aim of this study was to use minocycline, a known neuroprotectant agent, to evaluate the long-term benefits in terms of neurobehavior and neuropathology after experimental SAH in rats, and to determine which neurobehavioral test would be effective for long-term evaluation. SAH was induced by endovascular perforation in adult male Sprague-Dawley rats (n=118). The animals were treated with intraperitoneal injection of minocycline (45 mg/kg or 135 mg/kg) or vehicle 1 h after SAH induction. In the short-term, animals were euthanized at 24 and 72 h for evaluation of neurobehavior, brain water content, and matrix metalloproteinase (MMP) activity. In the long-term, neurobehavior was evaluated at days 21-28 post-SAH, and histopathological analysis was done at day 28. High-dose but not low-dose minocycline reduced brain water content at 24 h, and therefore only the high-dose regimen was used for further evaluation, which reduced MMP-9 activity at 24 h. Further, high-dose minocycline improved spatial memory and attenuated neuronal loss in the hippocampus and cortex. The rotarod, T-maze, and water maze tests, but not the inclined plane test, detected neurobehavioral deficits in SAH rats at days 21-28. This study demonstrates that minocycline attenuates long-term functional and morphological outcomes after endovascular perforation-induced SAH. Long-term neurobehavioral assessments using the rotarod, T-maze, and water maze tests could be useful to evaluate the efficacy of therapeutic intervention after experimental SAH.
Collapse
Affiliation(s)
- Prativa Sherchan
- Department of Physiology, Loma Linda University, School of Medicine, Loma Linda, California 92354, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Sehba FA, Pluta RM, Zhang JH. Metamorphosis of subarachnoid hemorrhage research: from delayed vasospasm to early brain injury. Mol Neurobiol 2010; 43:27-40. [PMID: 21161614 PMCID: PMC3023855 DOI: 10.1007/s12035-010-8155-z] [Citation(s) in RCA: 241] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 11/24/2010] [Indexed: 01/07/2023]
Abstract
Delayed vasospasm that develops 3–7 days after aneurysmal subarachnoid hemorrhage (SAH) has traditionally been considered the most important determinant of delayed ischemic injury and poor outcome. Consequently, most therapies against delayed ischemic injury are directed towards reducing the incidence of vasospasm. The clinical trials based on this strategy, however, have so far claimed limited success; the incidence of vasospasm is reduced without reduction in delayed ischemic injury or improvement in the long-term outcome. This fact has shifted research interest to the early brain injury (first 72 h) evoked by SAH. In recent years, several pathological mechanisms that activate within minutes after the initial bleed and lead to early brain injury are identified. In addition, it is found that many of these mechanisms evolve with time and participate in the pathogenesis of delayed ischemic injury and poor outcome. Therefore, a therapy or therapies focused on these early mechanisms may not only prevent the early brain injury but may also help reduce the intensity of later developing neurological complications. This manuscript reviews the pathological mechanisms of early brain injury after SAH and summarizes the status of current therapies.
Collapse
Affiliation(s)
- Fatima A Sehba
- Department of Neurosurgery, Mount Sinai School of Medicine, Box 1136, New York, NY 10029, USA.
| | | | | |
Collapse
|
76
|
King MD, Laird MD, Ramesh SS, Youssef P, Shakir B, Vender JR, Alleyne CH, Dhandapani KM. Elucidating novel mechanisms of brain injury following subarachnoid hemorrhage: an emerging role for neuroproteomics. Neurosurg Focus 2010; 28:E10. [PMID: 20043714 PMCID: PMC3151677 DOI: 10.3171/2009.10.focus09223] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Subarachnoid hemorrhage (SAH) is a devastating neurological injury associated with significant patient morbidity and death. Since the first demonstration of cerebral vasospasm nearly 60 years ago, the preponderance of research has focused on strategies to limit arterial narrowing and delayed cerebral ischemia following SAH. However, recent clinical and preclinical data indicate a functional dissociation between cerebral vasospasm and neurological outcome, signaling the need for a paradigm shift in the study of brain injury following SAH. Early brain injury may contribute to poor outcome and early death following SAH. However, elucidation of the complex cellular mechanisms underlying early brain injury remains a major challenge. The advent of modern neuroproteomics has rapidly advanced scientific discovery by allowing proteome-wide screening in an objective, nonbiased manner, providing novel mechanisms of brain physiology and injury. In the context of neurosurgery, proteomic analysis of patient-derived CSF will permit the identification of biomarkers and/or novel drug targets that may not be intuitively linked with any particular disease. In the present report, the authors discuss the utility of neuroproteomics with a focus on the roles for this technology in understanding SAH. The authors also provide data from our laboratory that identifies high-mobility group box protein-1 as a potential biomarker of neurological outcome following SAH in humans.
Collapse
Affiliation(s)
- Melanie D King
- Department of Neurosurgery, Medical College of Georgia, Augusta, Georgia 30809, USA
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Cheng G, Chunlei W, Pei W, Zhen L, Xiangzhen L. Simvastatin activates Akt/glycogen synthase kinase-3beta signal and inhibits caspase-3 activation after experimental subarachnoid hemorrhage. Vascul Pharmacol 2009; 52:77-83. [PMID: 20004738 DOI: 10.1016/j.vph.2009.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 12/03/2009] [Indexed: 01/23/2023]
Abstract
This study was designed to explore the role of simvastatin and its effects on the Akt/GSK3beta survival signal and apoptosis pathway after experimental subarachnoid hemorrhage (SAH). SAH was induced by blood injection into the cisterna magna in New Zealand white rabbits. Increased expression of phospho-Akt and phospho-GSK3beta was observed in brain tissue after SAH. Apoptosis and related proteins, including P53, apoptosis-inducing factor (AIF), cytochrome C, and cleaved caspase-3, were also activated. Simvastatin, at both low dose (10 mg/kg) and high dose (40 mg/kg), further increased expression of phospho-Akt and phospho-GSK3beta, decreased activation of caspase-3, and inhibited apoptosis. Preserved blood-brain barrier and attenuated brain edema were observed following simvastatin treatment. In addition, the neuroprotective effects of simvastatin were blocked by wortmannin (2.5 microg/kg/min), an irreversible PIK3 inhibitor. P53, AIF, and cytochrome C were not affected by simvastatin treatment. Findings from the present study suggest that simvastatin ameliorates acute brain injury after SAH. The potential mechanisms of action include activation of the Akt/GSK3beta survival signal and inhibition of caspase-dependent apoptosis pathway.
Collapse
Affiliation(s)
- Gao Cheng
- Department of Neurosurgery, The First affiliated hospital of Harbin Medical University, No.23, Youzheng Street, Nangang District, Harbin, China.
| | | | | | | | | |
Collapse
|
78
|
Role of gap junctions in early brain injury following subarachnoid hemorrhage. Brain Res 2009; 1315:150-8. [PMID: 20018179 DOI: 10.1016/j.brainres.2009.12.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 11/30/2009] [Accepted: 12/04/2009] [Indexed: 11/21/2022]
Abstract
Gap junction inhibition has been demonstrated to reverse the vascular contraction that follows experimental subarachnoid hemorrhage. This study hypothesizes that the use of established gap junction inhibitors: octonal and carbenoxolone, to interrupt cell to cell communication will provide neuroprotection against early brain injury after SAH. The filament perforation model of SAH was performed in male Sprague-Dawley rats weighing between 300 and 380 g. Octanol (260.46 mg or 781.38 mg/kg), carbenoxolone (100 mg/kg), or vehicles were given via intraperitoneal injection 1 h after SAH. Neurologic deficits and cerebral apoptosis were assessed 24 and 72 h after SAH. In addition, Western blot analysis was performed to confirm the in vivo inhibition of CNS gap junctions. The administration of octanol and carbenoxolone both failed to attenuate the neurological deficits induced by SAH, and they did not reduce neuronal apoptosis. Additionally, carbenoloxone increased post SAH mortality and exacerbated SAH-induced apoptosis. Despite previous studies that show gap junction inhibitors reverse vasospasm following experimental SAH, they failed to improve clinical outcomes or provide neuroprotection in this study.
Collapse
|
79
|
Schubert GA, Seiz M, Hegewald AA, Manville J, Thomé C. Acute Hypoperfusion Immediately after Subarachnoid Hemorrhage: A Xenon Contrast-Enhanced CT Study. J Neurotrauma 2009; 26:2225-31. [DOI: 10.1089/neu.2009.0924] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Gerrit Alexander Schubert
- Department of Neurosurgery, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany
| | - Marcel Seiz
- Department of Neurosurgery, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany
| | - Aldemar Andrés Hegewald
- Department of Neurosurgery, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jérôme Manville
- Department of Neurosurgery, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany
| | - Claudius Thomé
- Department of Neurosurgery, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
80
|
Lin CL, Dumont AS, Su YF, Dai ZK, Cheng JT, Tsai YJ, Huang JH, Chang KP, Hwang SL. Attenuation of subarachnoid hemorrhage-induced apoptotic cell death with 17 beta-estradiol. Laboratory investigation. J Neurosurg 2009; 111:1014-22. [PMID: 19425893 DOI: 10.3171/2009.3.jns081660] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECT Apoptosis is implicated in vasospasm and long-term sequelae of subarachnoid hemorrhage (SAH). The authors observed that 17beta-estradiol (E2) can attenuate cerebral vasospasm, lower endothelin-1 production, and preserve normal endothelial nitric oxide synthase expression by reduction of inducible NO synthase expression in experimental SAH. The authors investigated the potential antiapoptotic effects of E2 in an experimental rat model of SAH. METHODS The authors examined the antiapoptotic effects of E2 in a double-hemorrhage SAH model in male Sprague-Dawley rats. The rats underwent subcutaneous implantation of a Silastic tube containing corn oil either with or without E2, and some E2-treated animals also received ICI 182,780 (a nonselective estrogen receptor [ER] antagonist) for 7 days after SAH. The degree of vasospasm was determined by averaging the cross-sectional areas of the basilar artery 7 days after SAH. The expression of apoptotic indicators, including TNF-alpha, caspase 3, Bcl-2, Bax, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL), and cell death assays were used for detection of apoptosis. RESULTS Treatment with E2 significantly attenuated SAH-induced vasospasm. Seven days after the induction of SAH, positive TUNEL-staining was seen, and DNA fragmentation was increased in the dentate gyrus. Increased TNF-alpha and cleaved caspase-3 protein expression and decreased Bcl-2 protein expression in the dentate gyrus were also observed. These changes were reversed with E2-treatment but not in the presence of ICI 182,780. However, the expression of Bax did not change after SAH either with or without E2 treatment. CONCLUSIONS The authors found that E2 appears to confer an antiapoptotic effect that reduces secondary brain injury after SAH via estrogen receptor-dependent mechanisms. This finding provides support for possible future applications of E2 treatment for the reduction of secondary injury after SAH in patients.
Collapse
Affiliation(s)
- Chih-Lung Lin
- Department of Neurosurgery, Faculty of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Jeon H, Ai J, Sabri M, Tariq A, Shang X, Chen G, Macdonald RL. Neurological and neurobehavioral assessment of experimental subarachnoid hemorrhage. BMC Neurosci 2009; 10:103. [PMID: 19706182 PMCID: PMC2749856 DOI: 10.1186/1471-2202-10-103] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 08/25/2009] [Indexed: 01/14/2023] Open
Abstract
About 50% of humans with aneurysmal subarachnoid hemorrhage (SAH) die and many survivors have neurological and neurobehavioral dysfunction. Animal studies usually focused on cerebral vasospasm and sometimes neuronal injury. The difference in endpoints may contribute to lack of translation of treatments effective in animals to humans. We reviewed prior animal studies of SAH to determine what neurological and neurobehavioral endpoints had been used, whether they differentiated between appropriate controls and animals with SAH, whether treatment effects were reported and whether they correlated with vasospasm. Only a few studies in rats examined learning and memory. It is concluded that more studies are needed to fully characterize neurobehavioral performance in animals with SAH and assess effects of treatment.
Collapse
Affiliation(s)
- Hyojin Jeon
- Division of Neurosurgery, St. Michael's Hospital, Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael's Hospital and Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
82
|
Cetas JS, Lee DR, Alkayed NJ, Wang R, Iliff JJ, Heinricher MM. Brainstem control of cerebral blood flow and application to acute vasospasm following experimental subarachnoid hemorrhage. Neuroscience 2009; 163:719-29. [PMID: 19539726 DOI: 10.1016/j.neuroscience.2009.06.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 06/10/2009] [Accepted: 06/12/2009] [Indexed: 11/19/2022]
Abstract
Symptomatic ischemia following aneurysmal subarachnoid hemorrhage (SAH) is common but poorly understood and inadequately treated. Severe constriction of the major arteries at the base of the brain, termed vasospasm, traditionally has been thought to be a proximal event underlying these ischemias, although microvascular changes also have been described. The vast majority of studies aimed at understanding the pathogenesis of ischemic deficits, and vasospasm have focused on the interaction of the "spasmogen" of the extravasated blood with the smooth muscle and endothelium of the arteries. This has led to a comparative neglect of the contribution of the CNS to the maintenance of cerebral perfusion. In the present study, we focused on the role of the rostral ventromedial medulla (RVM) in modulating cerebral perfusion at rest and following an experimental SAH in the rat. Changes in cerebral blood flow (CBF) were measured using laser-Doppler flowmetry and three-dimensional optical microangiography. Focal application of a GABA(A) receptor agonist and antagonist was used to respectively inactivate and activate the RVM. We show here that the RVM modulates cerebral blood flow under resting conditions, and further, contributes to restoration of cerebral perfusion following a high-grade SAH. Failure of this brainstem compensatory mechanism could be significant for acute perfusion deficits seen in patients following subarachnoid hemorrhage.
Collapse
Affiliation(s)
- J S Cetas
- Department of Neurological Surgery, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239-3098, USA.
| | | | | | | | | | | |
Collapse
|
83
|
Lin CL, Dumont AS, Su YF, Tsai YJ, Huang JH, Chang KP, Howng SL, Kwan AL, Kassell NF, Kao CH. Attenuation of cerebral vasospasm and secondary injury by 17beta-estradiol following experimental subarachnoid hemorrhage. J Neurosurg 2009; 110:457-61. [PMID: 18950269 DOI: 10.3171/2008.6.17622] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Cerebral vasospasm remains a major complication in patients who have suffered a subarachnoid hemorrhage (SAH). Previous studies have shown that 17beta-estradiol (E2) attenuates experimental SAH-induced cerebral vasospasm. Moreover, E2 has been shown to reduce neuronal apoptosis and secondary injury following cerebral ischemia. Adenosine A1 receptor (AR-A1) expression is increased following ischemia and may represent an endogenous neuroprotective effect. This study was designed to evaluate the efficacy of E2 in preventing cerebral vasospasm and reducing secondary injury, as evidenced by DNA fragmentation and AR-A1 expression, following SAH. METHODS A double-hemorrhage model of SAH in rats was used, and the degree of vasospasm was determined by averaging the cross-sectional areas of the basilar artery 7 days after the first SAH. A cell death assay was used to detect apoptosis. Changes in the protein expression of AR-A1 in the cerebral cortex, hippocampus, and dentate gyrus were compared with levels in normal controls and E2-treated groups (subcutaneous E2, 0.3 mg/ml). RESULTS The administration of E2 prevented vasospasm (p < 0.05). Seven days after the first SAH, DNA fragmentation and protein levels of AR-A1 were significantly increased in the dentate gyrus. The E2 treatment decreased DNA fragmentation and prevented the increase in AR-A1 expression in the dentate gyrus. There were no significant changes in DNA fragmentation and the expression of AR-A1 after SAH in the cerebral cortex and hippocampus in the animals in the control and E2-treated groups. CONCLUSIONS The E2 was effective in attenuating SAH-induced cerebral vasospasm, decreasing apoptosis in the dentate gyrus, and reducing the expression of AR-A1 in the dentate gyrus after SAH. Interestingly, E2 appears to effectively prevent cerebral vasospasm subsequent to SAH as well as attenuate secondary injury by reducing both apoptosis and a compensatory increase in AR-A1 expression in the dentate gyrus.
Collapse
Affiliation(s)
- Chih-Lung Lin
- Department of Neurosurgery, Graduate Institute of Medicine, College of Medicine, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Silasi G, Colbourne F. Long-term assessment of motor and cognitive behaviours in the intraluminal perforation model of subarachnoid hemorrhage in rats. Behav Brain Res 2008; 198:380-7. [PMID: 19059287 DOI: 10.1016/j.bbr.2008.11.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 10/31/2008] [Accepted: 11/10/2008] [Indexed: 10/21/2022]
Abstract
The endovascular perforation model of subarachnoid hemorrhage (SAH) is a commonly used model in rats as it is performed without a craniotomy and accurately mimics the physiological effects of SAH in humans. The long-term behavioural profile of the model, however, has not been characterized. Given that humans often have cognitive deficits following SAH, we set out to characterize the behavioural profile as well as the spontaneous temperature changes of rats following intraluminal perforation. Rats were pre-trained on three motor tasks (tapered beam, limb-use asymmetry and the horizontal ladder tasks) prior to receiving a SAH. The animals were then assessed on post-surgical days 3, 7, 14 and 21 on these tasks. At the completion of motor testing, the rats were assessed on a moving platform version of the Morris water task. Despite significant mortality (33%), SAH did not result in lasting motor deficits on any of the tasks examined. However, the SAH group did show a minor cognitive impairment in the Morris water task. In addition, SAH produced a slight, but significant elevation in body temperature (vs. sham operated rats) despite an acute decrease in general home cage activity. The majority of the animals did not have any observable infarcts and the SAH did not significantly affect cortical thickness. In summary, the endovascular perforation model of SAH results in no lasting motor deficits and only minor cognitive impairment in survivors, which alone would be difficult to evaluate in neuroprotection or rehabilitation studies.
Collapse
Affiliation(s)
- Gergely Silasi
- Centre for Neuroscience and Department of Psychology, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
85
|
Lin CL, Dumont AS, Tsai YJ, Huang JH, Chang KP, Kwan AL, Hong YR, Howng SL. 17Beta-estradiol activates adenosine A(2a) receptor after subarachnoid hemorrhage. J Surg Res 2008; 157:208-15. [PMID: 19181336 DOI: 10.1016/j.jss.2008.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 08/15/2008] [Accepted: 08/18/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND Our previous study showed that 17beta-estradiol (E2) and an adenosine A(2A) receptor (AR-A(2A)) agonist could attenuate subarachnoid hemorrhage (SAH)-induced cerebral vasospasm via preventing the augmentation of iNOS expression and preserving the normal eNOS expression. This study tests the hypothesis that E2 attenuates SAH-induced vasospasm and apoptosis by activating adenosine AR-A(2A) and extracellular signal-regulated kinase 1 and 2 (ERK1/2), and by altering antiapoptotic and proapoptotic protein expression (Bcl-2 and Bax, respectively). MATERIALS AND METHODS The two-hemorrhage SAH model in rat was used. Animals were treated with E2 with or without a nonselective estrogen receptor (ER) antagonist (ICI182,780). The cross sectional areas of the basilar artery and terminal dUTP nick-end labeling (TUNEL) were used to determine the degree of vasospasm and apoptosis, respectively. The expressions of Bcl-2, Bax, AR-A(2A), and ERK1/2 in the cerebral cortex, hippocampus, and dentate gyrus were investigated. RESULTS E2 significantly attenuated vasospasm. Seven days after the first SAH, TUNEL scores were significantly increased, and protein levels of AR-A(2A), ERK1/2, and Bcl-2 were significantly decreased in the dentate gyrus only but not in the cortex and hippocampus. These changes were reversed by E2 while ICI182,780 abrogated the antiapoptotic and anti-spastic effects of E2. The expression of Bax did not change in the dentate gyrus after SAH with or without treatment. CONCLUSIONS The down-regulated AR-A(2A) and ERK may play a role in vasospasm and apoptosis after SAH. The beneficial effect of E2 in the attenuating SAH-induced vasospasm and apoptosis may be due to an increased expression of AR-A(2A) and ERK via ER-dependent mechanisms. These data may support further investigation of E2 in the treatment of SAH in humans.
Collapse
Affiliation(s)
- Chih-Lung Lin
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Sabri M, Kawashima A, Ai J, Macdonald RL. Neuronal and astrocytic apoptosis after subarachnoid hemorrhage: a possible cause for poor prognosis. Brain Res 2008; 1238:163-71. [PMID: 18786513 DOI: 10.1016/j.brainres.2008.08.031] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 08/07/2008] [Accepted: 08/08/2008] [Indexed: 01/05/2023]
Abstract
Clinical evidence suggests that factors other than cerebral vasospasm, such as delayed neuronal and astrocytic cell death, may play a role in the poor prognosis of patients with subarachnoid hemorrhage (SAH). Here we examined this using immunohistochemistry and confocal microscopy in 3 different brain areas in a dog model of SAH. Using antibodies against neuronal marker neuronal nuclear protein (NeuN) and astrocyte marker glial fibrillary acidic protein (GFAP) in conjunction with apoptosis marker (cleaved caspase-3), we quantified neurons and astrocytes to monitor the degree of apoptosis in both groups. Experimental SAH group showed 44 +/- 1% caspase-3 positive neurons in comparison to the 2.0 +/- 0.1% in the control group (P < 0.001, 6 animals each group). For astrocytes, a total 25 +/- 1% were caspase-3 positive in day 7 SAH group, as compared to 0.40 +/- 0.01% for controls (P < 0.001). Regional analysis revealed that neuronal caspase-3 immunoreactivity in all 3 regions were significantly higher (P < 0.001) in SAH animals than that in the control animals. However, the analysis of total area, size and signal co-localization of GFAP with caspase-3 indicated that astrocytic reactivity and proliferation are seen primarily in the hippocampal area, with the least changes detectable in the brainstem. We conclude that in the dog model, there was a significant increase of neuronal and astrocytic cleaved caspase-3, possibly reflecting apoptosis, following SAH induction. These changes coupled with neurological deterioration seen in patients may present a possible reason for the poor outcome in SAH patients.
Collapse
Affiliation(s)
- Mohammed Sabri
- Division of Neurosurgery, St Michael's Hospital, Keenan Research Centre in the Li Ka Shing Knowledge Institute of St Michael's, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
87
|
Löhr M, Tzouras G, Molcanyi M, Ernestus RI, Hampl JA, Fischer JH, Sahin K, Arendt T, Härtig W. DEGENERATION OF CHOLINERGIC RAT BASAL FOREBRAIN NEURONS AFTER EXPERIMENTAL SUBARACHNOID HEMORRHAGE. Neurosurgery 2008; 63:336-44; discussion 344-5. [DOI: 10.1227/01.neu.0000320422.54985.6d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Mario Löhr
- Department of General Neurosurgery, Center of Neurosurgery, University of Cologne, Cologne, Germany
| | - Georgios Tzouras
- Department of General Neurosurgery, Center of Neurosurgery, University of Cologne, Cologne, Germany
| | - Marek Molcanyi
- Department of General Neurosurgery, Center of Neurosurgery, University of Cologne, Cologne, Germany
| | - Ralf-Ingo Ernestus
- Department of General Neurosurgery, Center of Neurosurgery, University of Cologne, Cologne, Germany
| | - Jürgen A. Hampl
- Department of General Neurosurgery, Center of Neurosurgery, University of Cologne, Cologne, Germany
| | - Jürgen H. Fischer
- Department of Experimental Medicine, University of Cologne, Cologne, Germany
| | - Kurtulus Sahin
- Institute of Medical Statistics, Informatics and Epidemiology, University of Cologne, Cologne, Germany
| | - Thomas Arendt
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| |
Collapse
|
88
|
Ayer RE, Zhang JH. The clinical significance of acute brain injury in subarachnoid hemorrhage and opportunity for intervention. ACTA NEUROCHIRURGICA. SUPPLEMENT 2008; 105:179-184. [PMID: 19066106 DOI: 10.1007/978-3-211-09469-3_35] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) is a devastating neurological event that accounts for 3-7% of all strokes and carries a mortality rate as high as 40%. Delayed cerebral vasospasm has traditionally been recognized as the most treatable cause of morbidity and mortality from SAH. However, evidence is mounting that the physiological and cellular events of acute brain injury, which occur during the 24-72 h following aneurysm rupture, make significant contributions to patient outcomes, and may even be a more significant factor than delayed cerebral vasospasm. Acute brain injury in aneurysmal SAH is the result of physiological derangements such as increased intracranial pressure and decreased cerebral blood flow that result in global cerebral ischemia, and lead to the acute development of edema, oxidative stress, inflammation, apoptosis, and infarction. The consequence of these events is often death or significant neurological disability. In this study of acute brain injury, we elucidate some of the complex molecular signaling pathways responsible for these poor outcomes. Continued research in this area and the development of therapies to interrupt these cascades should be a major focus in the future as we continue to seek effective therapies for aneurysmal SAH.
Collapse
Affiliation(s)
- R E Ayer
- Department of Physiology and Pharmacology, Loma Linda University Medical Center, Loma Linda, CA 92350,USA
| | | |
Collapse
|
89
|
Ostrowski RP, Graupner G, Titova E, Zhang J, Chiu J, Dach N, Corleone D, Tang J, Zhang JH. The hyperbaric oxygen preconditioning-induced brain protection is mediated by a reduction of early apoptosis after transient global cerebral ischemia. Neurobiol Dis 2007; 29:1-13. [PMID: 17822911 PMCID: PMC2190110 DOI: 10.1016/j.nbd.2007.07.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 06/25/2007] [Accepted: 07/17/2007] [Indexed: 01/14/2023] Open
Abstract
We hypothesized that the brain-protective effect of hyperbaric oxygen (HBO) preconditioning in a transient global cerebral ischemia rat model is mediated by the inhibition of early apoptosis. One hundred ten male Sprague-Dawley (SD) rats (300-350 g body weight) were allocated to the sham group and three other groups with 10 min of four-vessel occlusion, untreated or preconditioned with either 3 or 5 hyperbaric oxygenations. HBO preconditioning improved neurobehavioral scores and reduced mortality, decreased ischemic cell change, reduced the number of early apoptotic cells and hampered a conversion of early to late apoptotic alterations. HBO preconditioning reduced the immunoreactivity of phosphorylated p38 in vulnerable neurons and increased the expression of brain derived neurotrophic factor (BDNF) in early stage post-ischemia. However, preconditioning with 3 HBO treatments proved less beneficial than with 5 HBO treatments. We conclude that HBO preconditioning may be neuroprotective by reducing early apoptosis and inhibition of the conversion of early to late apoptosis, possibly through an increase in brain BDNF level and the suppression of p38 activation.
Collapse
Affiliation(s)
| | | | - Elena Titova
- Department of Physiology and Pharmacology, Loma Linda University, USA
| | - Jennifer Zhang
- Department of Physiology and Pharmacology, Loma Linda University, USA
| | - Jeffrey Chiu
- Department of Physiology and Pharmacology, Loma Linda University, USA
| | - Neal Dach
- Department of Physiology and Pharmacology, Loma Linda University, USA
| | - Dalia Corleone
- Department of Physiology and Pharmacology, Loma Linda University, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, USA
| | - John H. Zhang
- Department of Physiology and Pharmacology, Loma Linda University, USA
- Department of Neurosurgery, Loma Linda University, USA
- Department of Anesthesiology, Loma Linda University, USA
| |
Collapse
|
90
|
Macdonald RL, Pluta RM, Zhang JH. Cerebral vasospasm after subarachnoid hemorrhage: the emerging revolution. ACTA ACUST UNITED AC 2007; 3:256-63. [PMID: 17479073 DOI: 10.1038/ncpneuro0490] [Citation(s) in RCA: 293] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 02/16/2007] [Indexed: 11/10/2022]
Abstract
Cerebral vasospasm is the classic cause of delayed neurological deterioration after aneurysmal subarachnoid hemorrhage, leading to cerebral ischemia and infarction, and thus to poor outcome and occasionally death. Advances in diagnosis and treatment-principally the use of nimodipine, intensive care management, hemodynamic manipulations and endovascular neuroradiology procedures-have improved the prospects for these patients, but outcomes remain disappointing. Recent clinical trials have demonstrated marked prevention of vasospasm with the endothelin receptor antagonist clazosentan, yet patient outcome was not improved. This Review considers possible explanations for this result and proposes alternative causes of neurological deterioration and poor outcome after subarachnoid hemorrhage, including delayed effects of global cerebral ischemia, thromboembolism, microcirculatory dysfunction and cortical spreading depression.
Collapse
Affiliation(s)
- R Loch Macdonald
- Division of Neurosurgery at St Michael's Hospital, University of Toronto, Toronto, Canada.
| | | | | |
Collapse
|
91
|
Endo H, Nito C, Kamada H, Yu F, Chan PH. Reduction in oxidative stress by superoxide dismutase overexpression attenuates acute brain injury after subarachnoid hemorrhage via activation of Akt/glycogen synthase kinase-3beta survival signaling. J Cereb Blood Flow Metab 2007; 27:975-82. [PMID: 16969382 PMCID: PMC1857281 DOI: 10.1038/sj.jcbfm.9600399] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent studies have revealed that oxidative stress has detrimental effects in several models of neurodegenerative diseases, including subarachnoid hemorrhage (SAH). However, how oxidative stress affects acute brain injury after SAH remains unknown. We have previously reported that overexpression of copper/zinc-superoxide dismutase (SOD1) reduces oxidative stress and subsequent neuronal injury after cerebral ischemia. In this study, we investigated the relationship between oxidative stress and acute brain injury after SAH using SOD1 transgenic (Tg) rats. SAH was produced by endovascular perforation in wild-type (Wt) and SOD1 Tg rats. Apoptotic cell death at 24 h, detected by a cell death assay, was significantly decreased in the cerebral cortex of the SOD1 Tg rats compared with the Wt rats. The mortality rate at 24 h was also significantly decreased in the SOD1 Tg rats. A hydroethidine study demonstrated that superoxide anion production after SAH was reduced in the cerebral cortex of the SOD1 Tg rats. Moreover, phosphorylation of Akt and glycogen synthase kinase-3beta (GSK3beta), which are survival signals in apoptotic cell death, was more enhanced in the cerebral cortex of the SOD1 Tg rats after SAH using Western blot analysis and immunohistochemistry. We conclude that reduction in oxidative stress by SOD1 overexpression may attenuate acute brain injury after SAH via activation of Akt/GSK3beta survival signaling.
Collapse
Affiliation(s)
| | | | | | | | - Pak H Chan
- Correspondence: Dr Pak H Chan, Neurosurgical Laboratories, Stanford University, 1201 Welch Road, MSLS #P314, Stanford, CA 94305-5487, USA. Telephone: 650-498-4457; fax: 650-498-4550. E-mail:
| |
Collapse
|
92
|
Ostrowski RP, Colohan AR, Zhang JH. Molecular mechanisms of early brain injury after subarachnoid hemorrhage. Neurol Res 2006; 28:399-414. [PMID: 16759443 DOI: 10.1179/016164106x115008] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVES Increasing body of experimental and clinical data indicates that early brain injury after initial bleeding largely contributes to unfavorable outcome after subarachnoid hemorrhage (SAH). This review presents molecular mechanisms underlying brain injury at its early stages after SAH. METHODS PubMed was searched using term 'subarachnoid hemorrhage' and key words referring to molecular and cellular pathomechanisms of SAH-induced early brain injury. RESULTS The authors reviewed intracranial phenomena and molecular agents that contribute to the early development of pathological sequelae of SAH in cerebral and vascular tissues, including cerebral ischemia and its interactions with injurious blood components, blood-brain barrier disruption, brain edema and apoptosis. DISCUSSION It is believed that detailed knowledge of molecular signaling pathways after SAH will serve to improve therapeutic interventions. The most promising approach is the protection of neurovascular unit including anti-apoptosis therapy.
Collapse
|
93
|
Endo H, Nito C, Kamada H, Yu F, Chan PH. Akt/GSK3beta survival signaling is involved in acute brain injury after subarachnoid hemorrhage in rats. Stroke 2006; 37:2140-6. [PMID: 16794215 DOI: 10.1161/01.str.0000229888.55078.72] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND PURPOSE Apoptotic cell death is associated with acute brain injury after subarachnoid hemorrhage (SAH). The Akt/glycogen synthase kinase-3beta (GSK3beta) pathway plays an important role in the cell death/survival pathway after a variety of cell death stimuli. However, its role in acute brain injury after SAH remains unknown. METHODS We used an endovascular perforation model of SAH in rats. Phospho-Akt and phospho-GSK3beta expression was examined by Western blot analysis and immunohistochemistry. Terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end-labeling (TUNEL) and a cell death assay were used for detection of apoptosis. We administered LY294002 to examine the role of the Akt/GSK3beta pathway in the phosphoinositide 3-kinase pathway after SAH. RESULTS Phosphorylation of Akt and GSK3beta was accelerated after SAH. In the cerebral cortex, where acute brain injury was the most severe, phosphorylation of these proteins was observed in the early phase after SAH. Cortical neurons with continuous Akt phosphorylation did not colocalize with TUNEL-positive cells at 24 hours. LY294002 reduced Akt and GSK3beta phosphorylation and increased brain injury after SAH. CONCLUSIONS The present study suggests that the Akt/GSK3beta pathway might be involved in neuronal survival in acute brain injury after SAH.
Collapse
Affiliation(s)
- Hidenori Endo
- Department of Neurosurgery, and Program in Neurosciences, Stanford University School of Medicine, 1201 Welch Rd, MSLS #P314, Stanford, California 94305-5487, USA
| | | | | | | | | |
Collapse
|