51
|
Na SH, Jeon H, Oh MH, Kim YJ, Chu M, Lee IY, Lee JC. Therapeutic Effects of Inhibitor of ompA Expression against Carbapenem-Resistant Acinetobacter baumannii Strains. Int J Mol Sci 2021; 22:12257. [PMID: 34830146 PMCID: PMC8623844 DOI: 10.3390/ijms222212257] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 12/02/2022] Open
Abstract
The widespread of carbapenem-resistant Acinetobacter baumannii (CRAB) is of great concern in clinical settings worldwide. It is urgent to develop new therapeutic agents against this pathogen. This study aimed to evaluate the therapeutic potentials of compound 62520, which has been previously identified as an inhibitor of the ompA promoter activity of A. baumannii, against CRAB isolates, both in vitro and in vivo. Compound 62520 was found to inhibit the ompA expression and biofilm formation in A. baumannii ATCC 17978 at sub-inhibitory concentrations in a dose-dependent manner. These inhibitory properties were also observed in clinical CRAB isolates belonging to sequence type (ST) 191. Additionally, compound 62520 exhibited a bacteriostatic activity against clinical clonal complex (CC) 208 CRAB isolates, including ST191, and ESKAPE pathogens. This bacteriostatic activity was not different between STs of CRAB isolates. Bacterial clearance was observed in mice infected with bioimaging A. baumannii strain 24 h after treatment with compound 62520. Compound 62520 was shown to significantly increase the survival rates of both immunocompetent and neutropenic mice infected with A. baumannii ATCC 17978. This compound also increased the survival rates of mice infected with clinical CRAB isolate. These results suggest that compound 62520 is a promising scaffold to develop a novel therapeutic agent against CRAB infections.
Collapse
Affiliation(s)
- Seok-Hyeon Na
- Division of Antimicrobial Resistance Research, Center for Infectious Diseases Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea;
| | - Hyejin Jeon
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (H.J.); (Y.-J.K.)
| | - Man-Hwan Oh
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan 16890, Korea;
| | - Yoo-Jeong Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (H.J.); (Y.-J.K.)
| | - Mingi Chu
- Research Center for Eco-Friendly New Materials, Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; (M.C.); (I.-Y.L.)
| | - Ill-Young Lee
- Research Center for Eco-Friendly New Materials, Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; (M.C.); (I.-Y.L.)
| | - Je-Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (H.J.); (Y.-J.K.)
| |
Collapse
|
52
|
Ragheb SM, Govinden U, Osei Sekyere J. Genetic support of carbapenemases: a One Health systematic review and meta-analysis of current trends in Africa. Ann N Y Acad Sci 2021; 1509:50-73. [PMID: 34753206 DOI: 10.1111/nyas.14703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/06/2021] [Accepted: 09/26/2021] [Indexed: 11/28/2022]
Abstract
Antimicrobial resistance (AMR) is a public health threat globally. Carbapenems are β-lactam antibiotics used as last-resort agents for treating antibiotic-resistant infections. Mobile genetic elements (MGEs) play an important role in the dissemination and expression of antimicrobial resistance genes (ARGs), including the mobilization of ARGs within and between species. The presence of MGEs around carbapenem-hydrolyzing enzymes, called carbapenemases, in bacterial isolates in Africa is concerning. The association between MGEs and carbapenemases is described herein. Specific plasmid replicons, integrons, transposons, and insertion sequences were found flanking specific and different carbapenemases across the same and different clones and species isolated from humans, animals, and the environment. Notably, similar genetic contexts have been reported in non-African countries, supporting the importance of MGEs in driving the intra- and interclonal and species transmission of carbapenemases in Africa and globally. Technical and budgetary limitations remain challenges for epidemiological analysis of carbapenemases in Africa, as studies undertaken with whole-genome sequencing remained relatively few. Characterization of MGEs in antibiotic-resistant infections can deepen our understanding of carbapenemase epidemiology and facilitate the control of AMR in Africa. Investment in genomic epidemiology will facilitate faster clinical interventions and containment of outbreaks.
Collapse
Affiliation(s)
- Suzan Mohammed Ragheb
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, Egypt
| | - Usha Govinden
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
| | - John Osei Sekyere
- Department of Microbiology & Immunology, Indiana University School of Medicine-Northwest, Gary, Indiana.,Department of Dermatology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
53
|
Comparative study of phenotypic-based detection assays for carbapenemase-producing Acinetobacter baumannii with a proposed algorithm in resource-limited settings. PLoS One 2021; 16:e0259686. [PMID: 34735533 PMCID: PMC8568097 DOI: 10.1371/journal.pone.0259686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/23/2021] [Indexed: 11/23/2022] Open
Abstract
The increasing incidence of carbapenem resistance in Acinetobacter baumannii is a critical concern worldwide owing to the limitations of therapeutic alternatives. The most important carbapenem resistance mechanism for A. baumannii is the enzymatic hydrolysis mediated by carbapenemases, mostly OXA-type carbapenemases (class D) and, to a lesser extent, metallo-β-lactamases (class B). Therefore, early and accurate detection of carbapenemase-producing A. baumannii is required to achieve the therapeutic efficacy of such infections. Many methods for carbapenemase detection have been proposed as effective tests for A. baumannii; however, none of them are officially recommended. In this study, three carbapenemase detection methods, namely, CarbaAcineto NP test, modified carbapenem inactivation method (mCIM), and simplified carbapenem inactivation method (sCIM) were evaluated for phenotypic detection of clinically isolated A. baumannii. The MICs of imipenem, meropenem, and doripenem were determined for 123 clinically isolated A. baumannii strains before performing three phenotypic detections. The overall sensitivity and specificity values were 89.09%/100% for the carbAcineto NP test, 71.82%/100% for sCIM, and 32.73%/33.13% for mCIM. CarbAcineto NP test and sCIM performed excellently (100% sensitivity) when both Class B and Class D carbapenemases were present in the same isolate. Based on the results, the combined detection method of sCIM and CarbAcineto NP test was proposed to detect carbapenemase-producing A. baumannii rather than a single assay, significantly increasing the sensitivity of detection to 98.18%. The proposed algorithm was more reliable and cost-effective than the CarbAcineto NP test alone. It can be easily applied in routine microbiology laboratories for developing countries with limited resources.
Collapse
|
54
|
Clinical Status of Efflux Resistance Mechanisms in Gram-Negative Bacteria. Antibiotics (Basel) 2021; 10:antibiotics10091117. [PMID: 34572699 PMCID: PMC8467137 DOI: 10.3390/antibiotics10091117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/05/2021] [Accepted: 09/15/2021] [Indexed: 01/25/2023] Open
Abstract
Antibiotic efflux is a mechanism that is well-documented in the phenotype of multidrug resistance in bacteria. Efflux is considered as an early facilitating mechanism in the bacterial adaptation face to the concentration of antibiotics at the infectious site, which is involved in the acquirement of complementary efficient mechanisms, such as enzymatic resistance or target mutation. Various efflux pumps have been described in the Gram-negative bacteria most often encountered in infectious diseases and, in healthcare-associated infections. Some are more often involved than others and expel virtually all families of antibiotics and antibacterials. Numerous studies report the contribution of these pumps in resistant strains previously identified from their phenotypes. The authors characterize the pumps involved, the facilitating antibiotics and those mainly concerned by the efflux. However, today no study describes a process for the real-time quantification of efflux in resistant clinical strains. It is currently necessary to have at hospital level a reliable and easy method to quantify the efflux in routine and contribute to a rational choice of antibiotics. This review provides a recent overview of the prevalence of the main efflux pumps observed in clinical practice and provides an idea of the prevalence of this mechanism in the multidrug resistant Gram-negative bacteria. The development of a routine diagnostic tool is now an emergency need for the proper application of current recommendations regarding a rational use of antibiotics.
Collapse
|
55
|
Abdollahi A, Aliramezani A, Salehi M, Norouzi Shadehi M, Ghourchian S, Douraghi M. Co-infection of ST2 IP carbapenem-resistant Acinetobacter baumannii with SARS-CoV-2 in the patients admitted to a Tehran tertiary referral hospital. BMC Infect Dis 2021; 21:927. [PMID: 34496774 PMCID: PMC8423834 DOI: 10.1186/s12879-021-06642-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Carbapenem-resistant Acinetobacter baumannii (CRAB) is among the most concerning cause of healthcare-associated infections (HAI) due to its high level of antibiotic resistance and high mortality. In the era of the COVID-19 pandemic, the key priority of infection control committees is to contain the dissemination of antibiotic resistant Gram-negative bacteria. Here, we aimed to timely recognize the emergence of CRAB in COVID-19 cases admitted to the wards of a tertiary referral hospital and to identify the genetic relatedness of the isolates. METHODS From 30 March to 30 May 2020, a total of 242 clinical samples from COVID-19 cases were screened for CRAB isolates using standard microbiologic and antibiotic susceptibility tests. The PCRs targeting oxa23, oxa24, oxa58, blaTEM and blaNDM-1 genes were performed. Two multiplex PCRs for identifying the global clones (GC) of A. baumannii were also performed. The sequence type of CRABs was determined using Institut Pasteur (IP) multilocus sequence typing (MLST) scheme. RESULTS Eighteen CRAB isolates were recovered from COVID-19 patients with the mean age of 63.94 ± 13.8 years. All but 4 COVID-19 patients co-infected with CRAB were suffering from an underlying disease. Death was recorded as the outcome in ICUs for 9 (50%) COVID-19 patients co-infected with CRAB. The CRAB isolates belong to GC2 and ST2IP and carried the oxa23 carbapenem resistance gene. CONCLUSION This study demonstrated the co-infection of CRAB isolates and SARS-CoV-2 in the patients admitted to different ICUs at a referral hospital in Tehran. The CRAB isolates were found to belong to ST2IP, share the oxa23 gene and to have caused several outbreaks in the wards admitting COVID-19 patients.
Collapse
Affiliation(s)
- Alireza Abdollahi
- Department of Pathology, School of Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Aliramezani
- Department of Pathology, School of Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Salehi
- Department of Infectious Disease, School of Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Norouzi Shadehi
- Department of Infectious Disease, School of Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Sedighe Ghourchian
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, PO Box: 14155-6446, Tehran, Iran
| | - Masoumeh Douraghi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, PO Box: 14155-6446, Tehran, Iran.
| |
Collapse
|
56
|
Xu X, Xu C, Salisu RB, Xu W. Beta-Lactamase Gene Expression Level of Hospital-Acquired CRAB Isolated from Children in Picu. Infect Drug Resist 2021; 14:3195-3205. [PMID: 34429619 PMCID: PMC8378911 DOI: 10.2147/idr.s322604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/24/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Acinetobacter baumannii is a major cause of hospital-acquired infections. Studies showed that carbapenem resistance was related to mortality. Carbapenem resistance depends on expression of β-lactamase in adults. The present study explores the relationship between β-lactamase gene expression and carbapenem resistance and outcomes in children with A. baumannii infections. Patients and Methods We gathered clinical data of 131 children diagnosed with hospital-associated A. baumannii infections from the pediatrics unit of Shengjing Hospital of China Medical University. We obtained 131 isolates of A. baumannii, determined the minimal inhibitory concentrations (MICs) for common antibiotics, and measured carbapenemase-encoding genes expression using real-time PCR. Results We isolated 131 strains, 89 of which were carbapenem-resistant (MIC ≥ 8 µg/mL), and 42 carbapenem-sensitive strains. Univariate analysis identified statistically significant differences between the carbapenem-resistant group and the carbapenem-sensitive group for in-hospital days before infection, previous deep vein catheterization, previous urinary catheterization, previous treatment with a carbapenem (meropenem/imipenem), and expression of oxa-51 and oxa-23. Logistic regression analysis of factors associated with carbapenem-resistant A. baumannii infections found significant associations with oxa-23 expression (hazard ratio [HR] 0.005, confidence interval [CI] 95% 0-0.153, P = 0.002) and previous carbapenem treatment (HR 0.031 CI 95% 0.1-0.959, P = 0.042). Of 131 patients, 27 died within 30 days. Cox regression analysis of factors associated with 30-day mortality from A. baumannii infections showed that cephalosporin combined with sulbactam (HR 0.271, CI 95% 0.101-0.723, P = 0.009) was associated with 30-day survival. Conclusion The expression of oxa-23 and the use of carbapenems were independent risk factors for carbapenem resistance. The use of cephalosporins combined with sulbactam was independently associated with 30-day survival. We recommend using cephalosporins combined with sulbactam in children infected with A. baumannii.
Collapse
Affiliation(s)
- Xiao Xu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Caifang Xu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Rabiu Bilya Salisu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Wei Xu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
57
|
In vitro and in silico evaluation of some plant extracts and phytocompounds against multidrug-resistant Gram-negative bacteria. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-021-00602-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
58
|
Zangane Matin F, Rezatofighi SE, Roayaei Ardakani M, Akhoond MR, Mahmoodi F. Virulence characterization and clonal analysis of uropathogenic Escherichia coli metallo-beta-lactamase-producing isolates. Ann Clin Microbiol Antimicrob 2021; 20:50. [PMID: 34344363 PMCID: PMC8336094 DOI: 10.1186/s12941-021-00457-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022] Open
Abstract
Background Uropathogenic Escherichia coli (UPEC) is a major cause of urinary tract infection (UTI); however, treatment of UTI has been challenging due to increased antimicrobial resistance (AMR). One of the most important types of AMR is carbapenem resistance (CR). CR bacteria are known as an important threat to global public health today. Class B metallo-beta-lactamases (MBLs) are one of the major factors for resistance against carbapenems. We aimed to investigate the characteristics of UPEC isolates producing MBL. Methods A cross-sectional study was conducted from October 2018 to December 2019 in Ahvaz; Iran. UPEC isolates were identified by biochemical and molecular methods. Metallo-beta-lactamase-producing isolates were detected using modified carbapenem inactivation method (mCIM) and EDTA-CIM (eCIM) tests. MBL genes, phylogenetic group, and virulence genes profile of carbapenem resistant isolates were determined. Conjugation assay and plasmid profiling were conducted to evaluate the ability of transferring of CR to other E. coli isolates. Clonal similarity of isolates were assessed using Enterobacterial intergenic repetitive element sequence (ERIC)-PCR. Results Among 406 UPEC isolates, 12 (2.95%) carbapenem-resistant were detected of which 11 were phenotypically MBL-producing strains. Four isolates were resistant to all investigated antimicrobial agents and were considered possible pandrug-resistant (PDR). blaNDM, blaOXA-48, blaIMP-1, and blaIMP-2 genes were found in 9, 5, 1, and 1 isolates, respectively. Among 30 virulence genes investigated, the traT, fyuA followed by fimH, and iutA with the frequency of 8 (66.7%), 8 (66.7%), 7 (58.3%), and 7 (58.3%) were the most identified genes, respectively. Siderophore production was the main virulence trait among carbapenem-resistant UPEC isolates. Except for two, all other isolates showed weak to moderate virulence index. In all recovered isolates, CR was readily transmitted via plasmids to other isolates during conjugation experiments. Conclusion MBL and carbapenemase genes, especially blaNDM and blaOXA-48 are spreading rapidly among bacteria, which can be a threat to global public health. Therefore monitoring the emergence and dissemination of new AMR is necessary to continuously refine guidelines for empiric antimicrobial therapy. Understanding the mechanisms of resistance and virulence in this group of bacteria can play an effective role in providing new therapeutic methods.
Collapse
Affiliation(s)
- Fatemeh Zangane Matin
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, 6135743135, Ahvaz, Iran
| | - Seyedeh Elham Rezatofighi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, 6135743135, Ahvaz, Iran.
| | - Mohammad Roayaei Ardakani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, 6135743135, Ahvaz, Iran
| | - Mohammad Reza Akhoond
- Mathematical Sciences and Computer Faculty, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Fahimeh Mahmoodi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, 6135743135, Ahvaz, Iran
| |
Collapse
|
59
|
Wareth G, Brandt C, Sprague LD, Neubauer H, Pletz MW. WGS based analysis of acquired antimicrobial resistance in human and non-human Acinetobacter baumannii isolates from a German perspective. BMC Microbiol 2021; 21:210. [PMID: 34243717 PMCID: PMC8272256 DOI: 10.1186/s12866-021-02270-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022] Open
Abstract
Background Acinetobacter baumannii ability to develop and acquire resistance makes it one of the most critical nosocomial pathogens globally. Whole-genome sequencing (WGS) was applied to identify the acquired or mutational variants of antimicrobial resistance (AMR) genes in 85 German A. baumannii strains utilizing Illumina technology. Additionally, the whole genome of 104 German isolates deposited in the NCBI database was investigated. Results In-silico analysis of WGS data revealed wide varieties of acquired AMR genes mediating resistance mostly to aminoglycosides, cephalosporins, carbapenems, sulfonamides, tetracyclines and macrolides. In the 189 analyzed genomes, the ant (3″)-IIa conferring resistance to aminoglycosides was the most frequent (55%), followed by blaADC.25 (38.6%) conferring resistance to cephalosporin, blaOXA-23 (29%) and the blaOXA-66 variant of the intrinsic blaOXA-51-likes (26.5%) conferring resistance to carbapenems, the sul2 (26%) conferring resistance to sulfonamides, the tet. B (19.5%) conferring resistance to tetracycline, and mph. E and msr. E (19%) conferring resistance to macrolides. blaTEM variants conferring resistance to cephalosporins were found in 12% of genomes. Thirteen variants of the intrinsic blaOXA-51 carbapenemase gene, blaOXA-510 and blaADC-25 genes were found in isolates obtained from dried milk samples. Conclusion The presence of strains harboring acquired AMR genes in dried milk raises safety concerns and highlights the need for changes in producing dried milk. Acquired resistance genes and chromosomal gene mutation are successful routes for disseminating AMR determinants among A. baumannii. Identification of chromosomal and plasmid-encoded AMR in the genome of A. baumannii may help understand the mechanism behind the genetic mobilization and spread of AMR genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02270-7.
Collapse
Affiliation(s)
- Gamal Wareth
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743, Jena, Germany. .,Institute for Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany. .,Department of Bacteriology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Egypt.
| | - Christian Brandt
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Lisa D Sprague
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743, Jena, Germany
| | - Heinrich Neubauer
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743, Jena, Germany
| | - Mathias W Pletz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Research Campus Infectognostics, Philosophenweg 7, 07743, Jena, Germany
| |
Collapse
|
60
|
Octavia S, Xu W, Ng OT, Marimuthu K, Venkatachalam I, Cheng B, Lin RTP, Teo JWP. Identification of AbaR4 Acinetobacter baumannii resistance island in clinical isolates of blaOXA-23-positive Proteus mirabilis. J Antimicrob Chemother 2021; 75:521-525. [PMID: 31725155 DOI: 10.1093/jac/dkz472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/01/2019] [Accepted: 10/14/2019] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES bla OXA-23 is a class D carbapenemase-encoding gene typical of the Acinetobacter genus. However, its occurrence in the Enterobacteriaceae is uncommon. Here we provide the genome characterization of blaOXA-23-positive Proteus mirabilis. METHODS In Singapore, a national surveillance of carbapenem non-susceptible clinical Enterobacteriaceae has enabled the collection of OXA-23 bearing isolates. Three clinical P. mirabilis were whole-genome sequenced using Oxford Nanopore MinION and Illumina platforms. The sequence accuracy of MinION long-read contigs was enhanced by polishing with Illumina-derived short-read data. RESULTS In two P. mirabilis genomes, blaOXA-23 was detected as two copies, present on the chromosome and on a 60018 bp plasmid. blaOXA-23 was associated with the classic Acinetobacter composite transposon Tn2006, bounded by two copies of ISAba1 bracketing the carbapenemase gene. The Tn2006 itself was embedded within an Acinetobacter baumannii AbaR4 resistance island. In the chromosome, the AbaR4 was found integrated into the comM gene, which is also the preferred 'hotspot' in A. baumannii. In the plasmid, AbaR4 integrated into a putative colicin gene. CONCLUSIONS Our description of an A. baumannii AbaR4 encoding blaOXA-23 in P. mirabilis is to our knowledge the first description of an Acinetobacter resistance island in Proteus and suggests that P. mirabilis may be a reservoir for this class D carbapenemase gene.
Collapse
Affiliation(s)
- Sophie Octavia
- National Public Health Laboratory, Ministry of Health, Singapore.,National Centre for Infectious Diseases, Singapore
| | - Weizhen Xu
- National Centre for Infectious Diseases, Singapore.,Tan Tock Seng Hospital, Department of Infectious Diseases, Singapore
| | - Oon Tek Ng
- National Public Health Laboratory, Ministry of Health, Singapore.,National Centre for Infectious Diseases, Singapore.,Tan Tock Seng Hospital, Department of Infectious Diseases, Singapore.,Nanyang Technological University, Lee Kong Chian School of Medicine, Singapore
| | - Kalisvar Marimuthu
- National Centre for Infectious Diseases, Singapore.,Tan Tock Seng Hospital, Department of Infectious Diseases, Singapore.,National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | - Indumathi Venkatachalam
- Singapore General Hospital, Department of Infectious Diseases and Department of Infection Prevention & Epidemiology, Singapore
| | - Bernadette Cheng
- National University Hospital, Department of Laboratory Medicine, Singapore
| | - Raymond T P Lin
- National Public Health Laboratory, Ministry of Health, Singapore.,National Centre for Infectious Diseases, Singapore.,National University Hospital, Department of Laboratory Medicine, Singapore
| | - Jeanette W P Teo
- National University Hospital, Department of Laboratory Medicine, Singapore
| |
Collapse
|
61
|
Gheorghe I, Barbu IC, Surleac M, Sârbu I, Popa LI, Paraschiv S, Feng Y, Lazăr V, Chifiriuc MC, Oţelea D, Zhiyong Z. Subtypes, resistance and virulence platforms in extended-drug resistant Acinetobacter baumannii Romanian isolates. Sci Rep 2021; 11:13288. [PMID: 34168184 PMCID: PMC8225882 DOI: 10.1038/s41598-021-92590-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/09/2021] [Indexed: 02/05/2023] Open
Abstract
Acinetobacter baumannii has emerged worldwide as a dominant pathogen in a broad range of severe infections, raising an acute need for efficient antibacterials. This is the first report on the resistome and virulome of 33 extended drug-resistant and carbapenem-resistant A. baumannii (XDR CRAB) strains isolated from hospitalized and ambulatory patients in Bucharest, Romania. A total of 33 isolates were collected and analyzed using phenotypic antibiotic susceptibility and conjugation assays, PCR, whole-genome sequencing (WGS), pulsed-field gel electrophoresis (PFGE) and MultiLocus Sequence Typing (MLST). All isolates were extensively drug-resistant (XDR), being susceptible only to colistin. The carbapenem resistance was attributed by PCR mainly to blaOXA-24 and blaOXA-23 genes. PFGE followed by MLST analysis demonstrated the presence of nine pulsotypes and six sequence types. WGS of seven XDR CRAB isolates from healthcare-associated infections demonstrated the high diversity of resistance genes repertoire, as well as of mobile genetic elements, carrying ARGs for aminoglycosides, sulphonamides and macrolides. Our data will facilitate the understanding of resistance, virulence and transmission features of XDR AB isolates from Romanian patients and might be able to contribute to the implementation of appropriate infection control measures and to develop new molecules with innovative mechanisms of action, able to fight effectively against these bugs, for limiting the spread and decreasing the infection rate and mortality.
Collapse
Affiliation(s)
- Irina Gheorghe
- grid.5100.40000 0001 2322 497XDepartment of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania ,grid.5100.40000 0001 2322 497XResearch Institute of the University of Bucharest (ICUB), Bucharest, Romania
| | - Ilda Czobor Barbu
- grid.5100.40000 0001 2322 497XDepartment of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania ,grid.5100.40000 0001 2322 497XResearch Institute of the University of Bucharest (ICUB), Bucharest, Romania
| | - Marius Surleac
- grid.5100.40000 0001 2322 497XResearch Institute of the University of Bucharest (ICUB), Bucharest, Romania ,grid.8194.40000 0000 9828 7548National Institute for Infectious Diseases “Matei Bals”, Bucharest, Romania
| | - Ionela Sârbu
- grid.5100.40000 0001 2322 497XResearch Institute of the University of Bucharest (ICUB), Bucharest, Romania ,grid.5100.40000 0001 2322 497XGenetics Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Laura Ioana Popa
- grid.5100.40000 0001 2322 497XDepartment of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania ,grid.5100.40000 0001 2322 497XResearch Institute of the University of Bucharest (ICUB), Bucharest, Romania ,grid.435400.60000 0004 0369 4845Department of Bioinformatics, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Simona Paraschiv
- grid.8194.40000 0000 9828 7548National Institute for Infectious Diseases “Matei Bals”, Bucharest, Romania
| | - Yu Feng
- grid.13291.380000 0001 0807 1581Centre of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Veronica Lazăr
- grid.5100.40000 0001 2322 497XDepartment of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania ,grid.5100.40000 0001 2322 497XResearch Institute of the University of Bucharest (ICUB), Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- grid.5100.40000 0001 2322 497XDepartment of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania ,grid.5100.40000 0001 2322 497XResearch Institute of the University of Bucharest (ICUB), Bucharest, Romania ,grid.435118.aAcademy of Romanian Scientists, 050045 Bucharest, Romania
| | - Dan Oţelea
- grid.8194.40000 0000 9828 7548National Institute for Infectious Diseases “Matei Bals”, Bucharest, Romania
| | - Zong Zhiyong
- grid.13291.380000 0001 0807 1581Centre of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
62
|
Sharma A, Gaind R. Development of Loop-Mediated Isothermal Amplification Assay for Detection of Clinically Significant Members of Acinetobacter calcoaceticus-baumannii Complex and Associated Carbapenem Resistance. Front Mol Biosci 2021; 8:659256. [PMID: 34250011 PMCID: PMC8260673 DOI: 10.3389/fmolb.2021.659256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Background:Acinetobacter calcoaceticus–baumannii (ACB) complex has emerged as an important nosocomial pathogen and is associated with life-threatening infections, especially among ICU patients, including neonates. Carbapenem resistance in Acinetobacter baumannii has emerged globally and is commonly mediated by blaOXA-23. Clinically significant infections with carbapenem-resistant Acinetobacter baumannii (CRAB) are a major concern since therapeutic options are limited and associated mortality is high. Early diagnosis of both the pathogen and resistance is important to initiate the optimal therapy and prevent selection of resistance. In the current study, a loop-mediated isothermal amplification (LAMP) assay was developed for rapid detection of the ACB complex and carbapenem resistance mediated by blaOXA-23. Methodology: Universal LAMP primers were designed for the detection of significant members of the ACB complex and carbapenem resistance targeting the ITS 16S–23S rRNA and blaOXA-23 gene respectively. The optimal conditions for the LAMP assay were standardized for each primer set using standard ATCC strains. The sensitivity of the LAMP assay was assessed based on the limit of detection (LOD) using different DNA concentrations and colony counts. The specificity of LAMP was determined using the non-ACB complex and non-Acinetobacter species. The results of the LAMP assay were compared with those of polymerase chain reaction (PCR). Results: The optimal temperature for the LAMP assay was 65°C, and the detection time varied with various primers designed. Using the ITS Ab1 primer, LODs of LAMP and PCR assays were 100 pg/μl and 1 ng/μl of DNA concentration and 104 cfu/ml and 108 cfu/ml of colony count, respectively. The LAMP assay was 10- and 104-fold more sensitive than PCR using DNA concentration and colony count, respectively. The LAMP assay was found to be specific for clinically important ACB complex species. Significance of the study: The LAMP assay can be applied for early detection of significant species of the ACB complex from clinical samples and their carbapenem-resistant variants. Depending on the emerging pathogen and locally prevalent resistance genes, the LAMP assay can be modified for detection of colonization or infection by various resistant bugs.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Microbiology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.,University School of Medicine and Paramedical Health Sciences, Guru Gobind Singh Indraprastha University, Dwarka, India
| | - Rajni Gaind
- Department of Microbiology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
63
|
Jun SH, Lee DE, Hwang HR, Kim N, Kim HJ, Lee YC, Kim YK, Lee JC. Clonal change of carbapenem-resistant Acinetobacter baumannii isolates in a Korean hospital. INFECTION GENETICS AND EVOLUTION 2021; 93:104935. [PMID: 34029723 DOI: 10.1016/j.meegid.2021.104935] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022]
Abstract
The expansion of specific carbapenem-resistant Acinetobacter baumannii (CRAB) clones is a global concern due to its therapeutic difficulty and epidemicity. To understand the prevalence of CRAB isolates in a Korean hospital, we investigated the epidemiological characteristics of 96 CRAB isolates between 2016 and 2018, including the sequence types (STs), antimicrobial susceptibility, and genetic background of resistance to carbapenems and aminoglycosides. Six STs were identified using the Oxford multilocus sequence typing scheme; ST191 (n = 8), ST208 (n = 12), ST229 (n = 11), and ST369 (n = 21) were previously identified clones in the study hospital, whereas gpi variants of ST208, ST451 (n = 34) and ST784 (n = 10), were emerging clones. ST208 isolates exhibited higher resistance rates to minocycline than other ST isolates, whereas ST369 isolates exhibited lower resistance rates to aminoglycosides and trimethoprim/sulfamethoxazole than other ST isolates. All CRAB isolates previously isolated in the study hospital carried ISAbaI-blaOXA-23 for carbapenem resistance, but 10 ST229 isolates carried only ISAbaI-blaOXA-51. The carriage of armA was lower in ST369 isolates (38%) than in other ST isolates (≥83%). The frequency and diversity of aminoglycoside-modifying enzyme genes were decreased among the CRAB isolates between 2016 and 2018 compared with CRAB isolates between 2013 and 2015 at the study hospital. In conclusion, clonal complex 208 CRAB isolates are predominant in the study hospital. This study demonstrates the evolutionary change of CRAB isolates in the study hospital in relation to the emergence of new STs and selection of resistant genes.
Collapse
Affiliation(s)
- So Hyun Jun
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Da Eun Lee
- Kyungpook National University Hospital National Culture Collection for Pathogens (KNUH-NCCP), Kyungpook National University Hospital, Daegu, South Korea
| | - Hye Ryeong Hwang
- Kyungpook National University Hospital National Culture Collection for Pathogens (KNUH-NCCP), Kyungpook National University Hospital, Daegu, South Korea
| | - Nayeong Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Hyo Jeong Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Yoo Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea; Kyungpook National University Hospital National Culture Collection for Pathogens (KNUH-NCCP), Kyungpook National University Hospital, Daegu, South Korea
| | - Yu Kyung Kim
- Kyungpook National University Hospital National Culture Collection for Pathogens (KNUH-NCCP), Kyungpook National University Hospital, Daegu, South Korea; Department of Clinical Pathology, School of Medicine, Kyungpook National University, Daegu, South Korea.
| | - Je Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea; Kyungpook National University Hospital National Culture Collection for Pathogens (KNUH-NCCP), Kyungpook National University Hospital, Daegu, South Korea.
| |
Collapse
|
64
|
Slimene K, El Salabi AA, Dziri O, Mabrouk A, Miniaoui D, Gharsa H, Shokri SA, Alhubge AM, Achour W, Rolain JM, Chouchani C. High Carbapenem Resistance Caused by VIM and NDM Enzymes and OprD Alteration in Nonfermenter Bacteria Isolated from a Libyan Hospital. Microb Drug Resist 2021; 27:1546-1554. [PMID: 34029121 DOI: 10.1089/mdr.2020.0175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Acinetobacter baumannii and Pseudomonas aeruginosa are among the most prevalent pathogens causing a wide range of serious infections in hospitalized patients and contaminating intensive care units and inanimate surfaces. The purpose of this study was to investigate the mechanism of carbapenem resistance in clinical and hospital environmental isolates of A. baumannii and P. aeruginosa recovered from a Libyan hospital. From a total of 82 Gram-negative bacteria, 8 isolates of A. baumannii and 3 isolates of P. aeruginosa exhibited resistance to imipenem with minimum inhibitory concentrations ranging from 16 to >32 μg/mL. Five isolates of A. baumannii harbored blaOXA-23 gene, from which three isolates were collected from patients and two from hospital environment. Only one isolate harbored blaNDM-1 gene, which was responsible for carbapenem resistance in A. baumannii. The OprD gene seems to be disturbed by an insertion sequence (IS) in two isolates and affected by polymorphism in one isolate. Pulsed-field gel electrophoresis results showed high genetic diversity among carbapenemase producing A. baumannii. This study highlights the dissemination of blaOXA-23 and blaNDM-1 genes in a Libyan setting. Therefore, infection prevention and control practices, antimicrobial stewardship initiatives, and antimicrobial resistance surveillance systems should be implemented to prevent the wide spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Khouloud Slimene
- Microbes Evolution Phylogenie et Infections (MEPHI), Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France.,IHU Méditerranée Infection, Valorisation and Transfer, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France.,Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El-Manar, Tunis, Tunisie.,Laboratoire de Recherche des Sciences et Technologies de l'Environnement, Institut Supérieur des Sciences et Technologies de l'Environnement de Borj-Cedria, Université de Carthage, Borj-Cedria, Tunisie
| | - Allaaeddin Ali El Salabi
- Department of Environmental Health, Faculty of Public Health, University of Benghazi, Benghazi, Libya
| | - Olfa Dziri
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El-Manar, Tunis, Tunisie.,Laboratoire de Recherche des Sciences et Technologies de l'Environnement, Institut Supérieur des Sciences et Technologies de l'Environnement de Borj-Cedria, Université de Carthage, Borj-Cedria, Tunisie
| | - Aymen Mabrouk
- Faculté de Médecine de Tunis, LR18ES39, Centre National de Greffe de Moelle Osseuse, Université Tunis El Manar, Tunis, Tunisie
| | - Dhouha Miniaoui
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El-Manar, Tunis, Tunisie.,Laboratoire de Recherche des Sciences et Technologies de l'Environnement, Institut Supérieur des Sciences et Technologies de l'Environnement de Borj-Cedria, Université de Carthage, Borj-Cedria, Tunisie
| | - Haythem Gharsa
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El-Manar, Tunis, Tunisie.,Institut Supérieur des Sciences Biologiques et Appliqués de Tunis, Université Tunis El Manar, Tunis, Tunisie
| | - Salah A Shokri
- Department of Microbiology, Faculty of Science, Misurata University, Misurata, Libya
| | - Altaher M Alhubge
- Department of Microbiology, Faculty of Science, Misurata University, Misurata, Libya
| | - Wafa Achour
- Faculté de Médecine de Tunis, LR18ES39, Centre National de Greffe de Moelle Osseuse, Université Tunis El Manar, Tunis, Tunisie
| | - Jean-Marc Rolain
- Microbes Evolution Phylogenie et Infections (MEPHI), Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France.,IHU Méditerranée Infection, Valorisation and Transfer, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France
| | - Chedly Chouchani
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El-Manar, Tunis, Tunisie.,Laboratoire de Recherche des Sciences et Technologies de l'Environnement, Institut Supérieur des Sciences et Technologies de l'Environnement de Borj-Cedria, Université de Carthage, Borj-Cedria, Tunisie
| |
Collapse
|
65
|
Rapid ResaImipenem/Acinetobacter NP Test for Detection of Carbapenem Susceptibility/Resistance in Acinetobacter baumannii. J Clin Microbiol 2021; 59:JCM.03025-20. [PMID: 33789957 DOI: 10.1128/jcm.03025-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/22/2021] [Indexed: 11/20/2022] Open
Abstract
The rapid ResaImipenem/Acinetobacter NP test was developed for the identification of carbapenem resistance among Acinetobacter baumannii isolates. The principle of this test is based on the reduction of resazurin (a viability colorant) by metabolically active bacterial cells, hence detecting bacterial growth, in the presence of a defined concentration of imipenem chosen to be slightly above that defining imipenem resistance (6 μg/ml). Bacterial growth is visually detected by a color change from blue (resazurin) to purple or pink (resorufin product). A total of 110 A. baumannii isolates, among which 61 were imipenem resistant, were used to evaluate test performance. The sensitivity and specificity of the test were found to be 100%, in comparison with broth microdilution taken as the reference standard method. The rapid ResaImipenem/Acinetobacter NP test is highly specific and sensitive and is easy to implement in routine microbiology laboratories, and results are obtained within 2 h 30 min. It does not require any specific equipment.
Collapse
|
66
|
Khuntayaporn P, Kanathum P, Houngsaitong J, Montakantikul P, Thirapanmethee K, Chomnawang MT. Predominance of international clone 2 multidrug-resistant Acinetobacter baumannii clinical isolates in Thailand: a nationwide study. Ann Clin Microbiol Antimicrob 2021; 20:19. [PMID: 33743736 PMCID: PMC7980754 DOI: 10.1186/s12941-021-00424-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/14/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Acinetobacter baumannii has emerged as one of the common multidrug resistance pathogens causing hospital-acquired infections. This study was conducted to elucidate the distribution of antimicrobial resistance genes in the bacterial population in Thailand. Multidrug-resistant A. baumannii (MDR A. baumannii) isolates were characterized phenotypically, and the molecular epidemiology of clinical isolates in 11 tertiary hospitals was investigated at a country-wide level. METHODS A total of 135 nonrepetitive MDR A. baumannii isolates collected from tertiary care hospitals across 5 regions of Thailand were examined for antibiotic susceptibility, resistance genes, and sequence types. Multilocus sequence typing (MLST) was performed to characterize the spread of regional lineages. RESULTS ST2 belonging to IC2 was the most dominant sequence type in Thailand (65.19%), and to a lesser extent, there was also evidence of the spread of ST164 (10.37%), ST129 (3.70%), ST16 (2.96%), ST98 (2.96%), ST25 (2.96%), ST215 (2.22%), ST338 (1.48%), and ST745 (1.48%). The novel sequence types ST1551, ST1552, ST1553, and ST1557 were also identified in this study. Among these, the blaoxa-23 gene was by far the most widespread in MDR A. baumannii, while the blaoxa-24/40 and blaoxa-58 genes appeared to be less dominant in this region. The results demonstrated that the predominant class D carbapenemase was blaOXA-23, followed by the class B carbapenemase blaNDM-like, while the mcr-1 gene was not observed in any isolate. Most of the MDR A. baumannii isolates were resistant to ceftazidime (99.23%), gentamicin (91.85%), amikacin (82.96%), and ciprofloxacin (97.78%), while all of them were resistant to carbapenems. The results suggested that colistin could still be effective against MDR A. baumannii in this region. CONCLUSION This is the first molecular epidemiological analysis of MDR A. baumannii clinical isolates at the national level in Thailand to date. Studies on the clonal relatedness of MDR A. baumannii isolates could generate useful data to understand the local epidemiology and international comparisons of nosocomial outbreaks.
Collapse
Affiliation(s)
- Piyatip Khuntayaporn
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, 447 Sri Ayudthya Rd, Rajathevi, Bangkok, 10400, Thailand
| | - Pohnvipa Kanathum
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, 447 Sri Ayudthya Rd, Rajathevi, Bangkok, 10400, Thailand
| | - Jantana Houngsaitong
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri Ayudthya Rd, Rajathevi, Bangkok, 10400, Thailand
| | - Preecha Montakantikul
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri Ayudthya Rd, Rajathevi, Bangkok, 10400, Thailand
| | - Krit Thirapanmethee
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, 447 Sri Ayudthya Rd, Rajathevi, Bangkok, 10400, Thailand
| | - Mullika Traidej Chomnawang
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, 447 Sri Ayudthya Rd, Rajathevi, Bangkok, 10400, Thailand.
| |
Collapse
|
67
|
Ten KE, Md Zoqratt MZH, Ayub Q, Tan HS. Characterization of multidrug-resistant Acinetobacter baumannii strain ATCC BAA1605 using whole-genome sequencing. BMC Res Notes 2021; 14:83. [PMID: 33663564 PMCID: PMC7934414 DOI: 10.1186/s13104-021-05493-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/16/2021] [Indexed: 01/21/2023] Open
Abstract
Objective The nosocomial pathogen, Acinetobacter baumannii, has acquired clinical significance due to its ability to persist in hospital settings and survive antibiotic treatment, which eventually resulted in the rapid spread of this bacterium with antimicrobial resistance (AMR) phenotypes. This study used a multidrug-resistant A. baumannii (strain ATCC BAA1605) as a model to study the genomic features of this pathogen. Results One circular chromosome and one circular plasmid were discovered in the complete genome of A. baumannii ATCC BAA1605 using whole-genome sequencing. The chromosome is 4,039,171 bp long with a GC content of 39.24%. Many AMR genes, which confer resistance to major classes of antibiotics (beta-lactams, aminoglycosides, tetracycline, sulphonamides), were found on the chromosome. Two genomic islands were predicted on the chromosome, one of which (Genomic Island 1) contains a cluster of AMR genes and mobile elements, suggesting the possibility of horizontal gene transfer. A subtype I-F CRISPR-Cas system was also identified on the chromosome of A. baumannii ATCC BAA1605. This study provides valuable genome data that can be used as a reference for future studies on A. baumannii. The genome of A. baumannii ATCC BAA1605 has been deposited at GenBank under accession no. CP058625 and CP058626.
Collapse
Affiliation(s)
- Kah Ern Ten
- School of Science, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Muhammad Zarul Hanifah Md Zoqratt
- School of Science, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.,Monash University Malaysia Genomics Facility, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Qasim Ayub
- School of Science, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.,Monash University Malaysia Genomics Facility, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.,Tropical Medicine and Biology Multidisciplinary Platform, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Hock Siew Tan
- School of Science, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia. .,Tropical Medicine and Biology Multidisciplinary Platform, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
68
|
Słoczyńska A, Wand ME, Tyski S, Laudy AE. Analysis of blaCHDL Genes and Insertion Sequences Related to Carbapenem Resistance in Acinetobacter baumannii Clinical Strains Isolated in Warsaw, Poland. Int J Mol Sci 2021; 22:ijms22052486. [PMID: 33801221 PMCID: PMC7957893 DOI: 10.3390/ijms22052486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/20/2022] Open
Abstract
Acinetobacter baumannii is an important cause of nosocomial infections worldwide. The elucidation of the carbapenem resistance mechanisms of hospital strains is necessary for the effective treatment and prevention of resistance gene transmission. The main mechanism of carbapenem resistance in A. baumannii is carbapenemases, whose expressions are affected by the presence of insertion sequences (ISs) upstream of blaCHDL genes. In this study, 61 imipenem-nonsusceptible A. baumannii isolates were characterized using phenotypic (drug-susceptibility profile using CarbaAcineto NP) and molecular methods. Pulsed field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST) methods were utilized for the genotyping. The majority of isolates (59/61) carried one of the following acquired blaCHDL genes: blaOXA-24-like (39/59), ISAba1-blaOXA-23-like (14/59) or ISAba3-blaOXA-58-like (6/59). Whole genome sequence analysis of 15 selected isolates identified the following intrinsic blaOXA-66 (OXA-51-like; n = 15) and acquired class D β-lactamases (CHDLs): ISAba1-blaOXA-23 (OXA-23-like; n = 7), ISAba3-blaOXA-58-ISAba3 (OXA-58-like; n = 2) and blaOXA-72 (OXA-24-like; n = 6). The isolates were classified into 21 pulsotypes using PFGE, and the representative 15 isolates were found to belong to sequence type ST2 of the Pasteur MLST scheme from the global IC2 clone. The Oxford MLST scheme revealed the diversity among these studied isolates, and identified five sequence types (ST195, ST208, ST208/ST1806, ST348 and ST425). CHDL-type carbapenemases and insertion elements upstream of the blaCHDL genes were found to be widespread among Polish A. baumannii clinical isolates, and this contributed to their carbapenem resistance.
Collapse
Affiliation(s)
- Alicja Słoczyńska
- Department of Pharmaceutical Microbiology, Medical University of Warsaw, PL 02-097 Warsaw, Poland; (A.S.); (S.T.)
| | - Matthew E. Wand
- Public Health England, National Infection Service, Porton Down, Salisbury SP4 0JG, UK;
| | - Stefan Tyski
- Department of Pharmaceutical Microbiology, Medical University of Warsaw, PL 02-097 Warsaw, Poland; (A.S.); (S.T.)
- Department of Antibiotics and Microbiology, National Medicines Institute, PL 00-725 Warsaw, Poland
| | - Agnieszka E. Laudy
- Department of Pharmaceutical Microbiology, Medical University of Warsaw, PL 02-097 Warsaw, Poland; (A.S.); (S.T.)
- Correspondence:
| |
Collapse
|
69
|
Liu B, Liu L. Molecular Epidemiology and Mechanisms of Carbapenem-Resistant Acinetobacter baumannii Isolates from ICU and Respiratory Department Patients of a Chinese University Hospital. Infect Drug Resist 2021; 14:743-755. [PMID: 33658811 PMCID: PMC7920613 DOI: 10.2147/idr.s299540] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/06/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The objective of our study is to estimate the differences in molecular epidemiology and resistance mechanisms in carbapenem-resistant Acinetobacter baumannii (CRAB) isolates from the ICU and respiratory department(RD) in Fourth Affiliated Hospital of Harbin Medical University. METHODS Carbapenemase genes associated with carbapenem resistance were studied by polymerase chain reaction(PCR). Genotyping was analyzed using multi-locus sequence typing (MLST) and pulsed field gel electrophoresis (PFGE). RESULTS Sixty non-duplicate CRAB isolates from the ICU and RD (n=30, respectively) were collected. All of CRAB strains were not resistant to colistin (0%). The CRAB strains from the ICU were significantly more resistant to tigecycline and cefoperazone/sulbactam compared with the RD (23.3% vs 0%, P=0.03; 53.3% % vs 23.3%, P=0.01, respectively). PCR detection of genes associated with CRAB revealed that the ratio in both the ICU and the RD of blaVIM-2, blaIMP-4, blaNDM-1, blaOXA-23, ampC, and mutation of CarO were present in 23.3% vs 0% (P=0.01), 40% vs 10% (P=0.02), 20% vs 0% (P=0.02), 80% vs 56.7%, 16.7% vs 13.3% and 86.7% vs 60% (P=0.04), respectively. Seven genotypes were detected by the PFGE in the RD and the ICU, respectively. Genotype I was significantly more frequent in the ICU compared with the RD (63.3% vs 36.6%, P=0.03). MLST showed that there were 10 ST genotypes in the RD and four in the ICU, but ST92 in both groups was 33.3% vs 63.3% (P=0.03), respectively. CONCLUSION There are differences in molecular epidemiology and resistance mechanisms in the CRAB isolates between the ICU and RD.
Collapse
Affiliation(s)
- Bin Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Lei Liu
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| |
Collapse
|
70
|
Yehouenou C, Bogaerts B, Vanneste K, Roosens NHC, De Keersmaecker SCJ, Marchal K, Affolabi D, Soleimani R, Rodriguez-Villalobos H, Van Bambeke F, Dalleur O, Simon A. First detection of a plasmid-encoded New-Delhi metallo-beta-lactamase-1 (NDM-1) producing Acinetobacter baumannii using whole genome sequencing, isolated in a clinical setting in Benin. Ann Clin Microbiol Antimicrob 2021; 20:5. [PMID: 33407536 PMCID: PMC7789245 DOI: 10.1186/s12941-020-00411-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/10/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Carbapenem-resistant Acinetobacter baumannii is considered a top priority pathogen by the World Health Organization for combatting increasing antibiotic resistance and development of new drugs. Since it was originally reported in Klebsiella pneumoniae in 2009, the quick spread of the blaNDM-1 gene encoding a New-Delhi metallo-beta-lactamase-1 (NDM-1) is increasingly recognized as a serious threat. This gene is usually carried by large plasmids and has already been documented in diverse bacterial species, including A. baumannii. Here, we report the first detection of a NDM-1-producing A. baumannii strain isolated in Benin. CASE PRESENTATION A 31-year-old woman was admitted to a surgical unit with a diagnosis of post-cesarean hematoma. An extensively-drug resistant A. baumannii strain solely susceptible to amikacin, colistin and ciprofloxacin, and resistant to several other antibiotics including ceftazidime, imipenem, meropenem, gentamicin, tobramycin, ceftazidime/avibactam, and sulfamethoxazole-trimethoprim, was isolated from the wound. Production of NDM-1 was demonstrated by immunochromatographic testing. Whole genome sequencing of the isolate confirmed the presence of blaNDM-1, but also antibiotic resistance genes against multiple beta-lactamases and other classes of antibiotics, in addition to several virulence genes. Moreover, the blaNDM-1 gene was found to be present in a Tn125 transposon integrated on a plasmid. CONCLUSIONS The discovery of this extensively-drug resistant A. baumannii strain carrying blaNDM-1 in Benin is worrying, especially because of its high potential risk of horizontal gene transfer due to being integrated into a transposon located on a plasmid. Strict control and prevention measures should be taken, once NDM-1 positive A. baumannii has been identified to prevent transfer of this resistance gene to other Enterobacterales. Capacity building is required by governmental agencies to provide suitable antibiotic treatment options and strategies, in combination with strengthening laboratory services for detection and surveillance of this pathogen.
Collapse
Affiliation(s)
- Carine Yehouenou
- Clinical Pharmacy Research Group (CLIP), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain UCLouvain, Brussels, Belgium. .,Laboratoire de Référence des Mycobactéries (LRM), Cotonou, Benin. .,Faculté des Sciences de la Santé (FSS), Université d'Abomey Calavi (UAC), Cotonou, Benin.
| | - Bert Bogaerts
- Sciensano, Transversal Activities in Applied Genomics, Brussels, Belgium. .,Department of Information Technology, IDLab, Ghent University, IMEC, Ghent, Belgium.
| | - Kevin Vanneste
- Sciensano, Transversal Activities in Applied Genomics, Brussels, Belgium
| | - Nancy H C Roosens
- Sciensano, Transversal Activities in Applied Genomics, Brussels, Belgium
| | | | - Kathleen Marchal
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Department of Information Technology, IDLab, Ghent University, IMEC, Ghent, Belgium
| | - Dissou Affolabi
- Laboratoire de Référence des Mycobactéries (LRM), Cotonou, Benin.,Faculté des Sciences de la Santé (FSS), Université d'Abomey Calavi (UAC), Cotonou, Benin.,Centre National Hospitalier et Universitaire Hubert Koutoukou Maga (CNHU-HKM) Country Cotonou, ., Benin
| | - Reza Soleimani
- Microbiologie, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, UCLouvain, Brussels, Belgium
| | - Hector Rodriguez-Villalobos
- Microbiologie, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, UCLouvain, Brussels, Belgium.,Pole de Microbiologie, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain UCLouvain, Brussels, Belgium
| | - Françoise Van Bambeke
- Clinical Pharmacy Research Group (CLIP), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain UCLouvain, Brussels, Belgium.,Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain UCLouvain, Brussels, Belgium
| | - Olivia Dalleur
- Clinical Pharmacy Research Group (CLIP), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain UCLouvain, Brussels, Belgium.,Pharmacy, Clinique Universitaire Saint-Luc, Université Catholique de Louvain, UCLouvain, Brussels, Belgium
| | - Anne Simon
- Microbiologie, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, UCLouvain, Brussels, Belgium.,Pole de Microbiologie, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain UCLouvain, Brussels, Belgium
| |
Collapse
|
71
|
Singkham-in U, Higgins PG, Wannigama DL, Hongsing P, Chatsuwan T. Rescued chlorhexidine activity by resveratrol against carbapenem-resistant Acinetobacter baumannii via down-regulation of AdeB efflux pump. PLoS One 2020; 15:e0243082. [PMID: 33264338 PMCID: PMC7710055 DOI: 10.1371/journal.pone.0243082] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 11/13/2020] [Indexed: 12/19/2022] Open
Abstract
The aim of this study was to determine the activity and synergistic mechanisms of resveratrol in combination with chlorhexidine against carbapenem-resistant Acinetobacter baumannii clinical isolates. The activity of resveratrol plus antimicrobial agents was determined by checkerboard and time-kill assay against carbapenem-resistant A. baumannii isolated from patients at the King Chulalongkorn Memorial Hospital, Bangkok, Thailand. Overexpression of efflux pumps that mediates chlorhexidine susceptibility was characterized by the ethidium bromide accumulation assay. The effect of resveratrol on the expression of efflux pump genes (adeB, adeJ, adeG abeS, and aceI) and the two-component regulators, adeR and adeS was determined by RT-qPCR. The combination of resveratrol and chlorhexidine resulted in strong synergistic and bactericidal activity against carbapenem-resistant A. baumannii. Up-regulation of adeB and aceI was induced by chlorhexidine. However, the addition of resveratrol increased chlorhexidine susceptibility with increased intracellular accumulation of ethidium bromide in A. baumannii indicating that resveratrol acts as an efflux pump inhibitor. Expression of adeB was significantly reduced in the combination of resveratrol with chlorhexidine indicating that resveratrol inhibits the AdeB efflux pump and restores chlorhexidine effect on A. baumannii. In conclusion, reduced adeB expression in A. baumannii was mediated by resveratrol suggesting that AdeB efflux pump inhibition contributes to the synergistic mechanism of resveratrol with chlorhexidine. Our finding highlights the potential importance of resveratrol in clinical applications.
Collapse
Affiliation(s)
- Uthaibhorn Singkham-in
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Antimicrobial Resistance and Stewardship Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Paul G. Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner site Bonn-Cologne, Cologne, Germany
| | - Dhammika Leshan Wannigama
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Antimicrobial Resistance and Stewardship Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Parichart Hongsing
- Mae Fah Luang University Hospital, Mae Fah Luang University, Chiang Rai, Thailand
- School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Antimicrobial Resistance and Stewardship Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
72
|
Gozalan A, Unaldı O, Guldemir D, Aydogan S, Kuzucu C, Cakirlar FK, Açıkgoz ZC, Durmaz R. Molecular Characterization of Carbapenem-Resistant Acinetobacter baumannii Blood Culture Isolates from Three Hospitals in Turkey. Jpn J Infect Dis 2020; 74:200-208. [PMID: 33250488 DOI: 10.7883/yoken.jjid.2020.478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We aimed to investigate the clonal relationships, common sequence types, and carbapenemase genes in 177 non-repetitive blood culture isolates of Acinetobacter baumannii collected from patients at three university hospitals in Turkey in 2016. Molecular epidemiological characteristics of the isolates were examined using pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing (MLST) (Pasteur scheme-cpn60, fusA, gltA, pyrG, recA, rplB, and rpoB). Multiplex PCR was used to investigate the carbapenemase genes, including blaOXA-23-like, blaOXA-24-like, blaOXA-48-like, blaOXA-58-like, blaIMP, blaVIM, and blaNDM. PFGE genotyping yielded 92 pulsotypes with a clustering ratio of 69.7%. As per a ≥85% similarity coefficient, 159 (90.9%) isolates were found to be clonally related. The blaOXA-23-like and blaOXA-58-like genes were identified in 100% and 28.2% of the isolates, respectively. The blaNDM gene was identified in two isolates. The MLST analysis included 54 isolates with different pulsotypes, and 29 sequence types (STs). Most of the isolates (n = 36) belonged to the clonal complex (CC)2, one isolate belonged to CC1, and one isolate belonged to CC164. Sixteen new STs (ST1235-ST1250) were identified. Identifying both global ST2 and a large number of new STs, revealed high genetic diversity in A. baumannii isolates in the study population.
Collapse
Affiliation(s)
- Aysegul Gozalan
- Department of Medical Microbiology, Faculty of Medicine, Alanya Alaaddin Keykubat University, Turkey
| | - Ozlem Unaldı
- National Molecular Microbiology Reference Laboratory, Public Health General Directorate, Ministry of Health, Sıhhiye, Turkey
| | - Dilek Guldemir
- National Molecular Microbiology Reference Laboratory, Public Health General Directorate, Ministry of Health, Sıhhiye, Turkey
| | - Sibel Aydogan
- Department of Medical Microbiology, Ankara City Hospital, Ministry of Health, Turkey
| | - Cigdem Kuzucu
- Department of Medical Microbiology, Faculty of Medicine, Tinaztepe İzmir University, Turkey
| | - Fatma Koksal Cakirlar
- Department of Medical Microbiology, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Turkey
| | - Ziya Cibali Açıkgoz
- Department of Medical Microbiology, Faculty of Medicine, Yildirim Beyazit University, Turkey
| | - Riza Durmaz
- Department of Medical Microbiology, Faculty of Medicine, Yildirim Beyazit University, Turkey
| |
Collapse
|
73
|
Dziri O, Dziri R, Ali El Salabi A, Chouchani C. Carbapenemase Producing Gram-Negative Bacteria in Tunisia: History of Thirteen Years of Challenge. Infect Drug Resist 2020; 13:4177-4191. [PMID: 33262613 PMCID: PMC7699306 DOI: 10.2147/idr.s259562] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/11/2020] [Indexed: 11/23/2022] Open
Abstract
The wide spread of multidrug-resistant bacteria, particularly carbapenem-resistant Gram-negative bacteria (CR-GNB), constitutes a major public health threat worldwide, owing to the limited therapeutic options. This review will describe and uncover the Tunisian experience in the challenge against carbapenem resistance. Indeed, we illuminate on the dissemination of CR-GNB in different hospitals, animals, and other natural environments in this country. We resumed the different carbapenemase variants detected from various bacterial species and mapped their regional distribution, basing on Tunisian published data during a period extended from 2006, the date of its first description in Tunisia, to February 2019. We also resumed the different mobile genetic elements implicated in their dissemination. This review shows that the majority of the research reports focused in the north and the coastal cities in spite of the fact that KPC and IMP carbapenemases were uncommonly detected in our country. However, VIM, NDM-1, and OXA-48 enzymes were usually reported with the predominance of OXA-48 among Enterobacteriaceae. Furthermore, OXA-23, OXA-51, and OXA-58 carbapenemases constituted the main mechanism conferring carbapenem resistance among Acinetobacter baumannii in Tunisia. Collaborative efforts and raising awareness of the threat of antibiotic resistance are required in order to minimize the spread of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Olfa Dziri
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia.,Laboratory of Research in Sciences and Technology of Environment, High Institute of Science and Technology of Environment, University of Carthage, Hammam-Lif, Tunisia
| | - Raoudha Dziri
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Allaaeddin Ali El Salabi
- Department of Environmental Health, Faculty of Public Health, University of Benghazi, Benghazi, Libya.,Infection Control and Patient Safety Office, New Marwa Hospital, Benghazi, Libya
| | - Chedly Chouchani
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia.,Laboratory of Research in Sciences and Technology of Environment, High Institute of Science and Technology of Environment, University of Carthage, Hammam-Lif, Tunisia
| |
Collapse
|
74
|
Kurihara MNL, de Sales RO, da Silva KE, Maciel WG, Simionatto S. Multidrug-resistant Acinetobacter baumannii outbreaks: a global problem in healthcare settings. Rev Soc Bras Med Trop 2020; 53:e20200248. [PMID: 33174956 PMCID: PMC7670754 DOI: 10.1590/0037-8682-0248-2020] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/02/2020] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION The increase in the prevalence of multidrug-resistant Acinetobacter baumannii infections in hospital settings has rapidly emerged worldwide as a serious health problem. METHODS This review synthetizes the epidemiology of multidrug-resistant A. baumannii, highlighting resistance mechanisms. CONCLUSIONS Understanding the genetic mechanisms of resistance as well as the associated risk factors is critical to develop and implement adequate measures to control and prevent acquisition of nosocomial infections, especially in an intensive care unit setting.
Collapse
Affiliation(s)
| | - Romário Oliveira de Sales
- Universidade Federal da Grande Dourados, Laboratório de Pesquisa
em Ciências da Saúde, Dourados, MS, Brasil
| | - Késia Esther da Silva
- Universidade Federal da Grande Dourados, Laboratório de Pesquisa
em Ciências da Saúde, Dourados, MS, Brasil
| | - Wirlaine Glauce Maciel
- Universidade Federal da Grande Dourados, Laboratório de Pesquisa
em Ciências da Saúde, Dourados, MS, Brasil
| | - Simone Simionatto
- Universidade Federal da Grande Dourados, Laboratório de Pesquisa
em Ciências da Saúde, Dourados, MS, Brasil
| |
Collapse
|
75
|
Brovedan MA, Cameranesi MM, Limansky AS, Morán-Barrio J, Marchiaro P, Repizo GD. What do we know about plasmids carried by members of the Acinetobacter genus? World J Microbiol Biotechnol 2020; 36:109. [PMID: 32656745 DOI: 10.1007/s11274-020-02890-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023]
Abstract
Several Acinetobacter spp. act as opportunistic pathogens causing healthcare-associated infections worldwide, and in this respect their ability to resist antimicrobial compounds has certainly boosted up their global propagation. Acinetobacter clinical strains have demonstrated a remarkable ability to evolve and become resistant to almost all available drugs in the antimicrobial arsenal, including the last-resort carbapenem β-lactams. The dissemination of antimicrobial resistant genes (ARG), heavy metals-detoxification systems and other traits such as virulence factors is facilitated by mobile genetic elements (MGE) through horizontal gene transfer. Among them, plasmids have been shown to play a critical role in this genus. Despite the continuous increase of Acinetobacter plasmid sequences present in databases, there are no reports describing the basic traits carried by these MGE. To fill this gap, a broad analysis of the Acinetobacter plasmidome was performed. A search for Acinetobacter complete plasmids indicated that 905 sequences have been deposited in the NCBI-GenBank public database, of which 492 are harbored by Acinetobacter baumannii strains. Plasmid-classification schemes based on Rep proteins homology have so far described 23 different groups for A. baumannii (GR1-23), and 16 Acinetobacter Rep3 Groups (AR3G1-16) for the complete genus. Acinetobacter plasmids size ranges from 1.3 to 400 kb. Interestingly, widespread plasmids which are < 20 kb make up 56% of the total present in members of this genus. This led to the proposal of Acinetobacter plasmid assignation to two groups according to their size (< 20 kb and > 20 kb). Usually, smaller plasmids are not self-transmissible, and thereby employ alternative mechanisms of dissemination. For instance, a subgroup of < 20 kb-plasmids belonging to the pRAY-family, lack a rep gene, but encode a relaxase enabling their mobilization by conjugative plasmids. Other subgroup, including small GR2 Acinetobacter plasmids, does not encode a relaxase gene. However, they could still be mobilized by conjugative plasmids which recognize an oriT region carried by these small plasmids. Also, these < 20 kb-plasmids usually carry accessory genes bordered by XerC/D-recombinases recognition sites which have been hypothesized to mediate plasmid plasticity. Conversely, many cases of larger plasmids are self-transmissible and might encode virulence factors and their regulators, thus controlling strain pathogenicity. The ARGs carried by the > 20 kb-plasmids are usually encoded within other MGEs such as transposons, or as part of integrons. It has been recently noted that some of the > 20 kb-plasmids are derived from excised phages, and thus dubbed as phage-like plasmids. All in all, the plethora of plasmids found in strains of this genus and the multiple strategies promoting their evolution and dissemination have certainly contributed to survival of the Acinetobacter members in different habitats, including the clinical environment.
Collapse
Affiliation(s)
- Marco A Brovedan
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Laboratorio de Resistencia a Antimicrobianos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - María M Cameranesi
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Laboratorio de Resistencia a Antimicrobianos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Adriana S Limansky
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Laboratorio de Resistencia a Antimicrobianos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Jorgelina Morán-Barrio
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Laboratorio de Resistencia a Antimicrobianos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Patricia Marchiaro
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Laboratorio de Resistencia a Antimicrobianos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Guillermo D Repizo
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Laboratorio de Resistencia a Antimicrobianos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
76
|
Antibiotic Susceptibility, Clonality, and Molecular Characterization of Carbapenem-Resistant Clinical Isolates of Acinetobacter baumannii from Washington DC. Int J Microbiol 2020; 2020:2120159. [PMID: 32695174 PMCID: PMC7368205 DOI: 10.1155/2020/2120159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022] Open
Abstract
The occurrence of carbapenem-resistant (CR) strains of Acinetobacter baumannii is reported to contribute to the severity of several nosocomial infections, especially in critically ill patients in intensive care units. The present study aims to determine the antibiotic susceptibility, clonality, and genetic mechanism of carbapenem resistance in twenty-eight Acinetobacter baumannii isolates from four hospitals in Washington DC. The antibiotic susceptibility of the isolates was determined by VITEK 2 analyses, while PCR was used to examine the presence of antibiotic-resistant genes and mobile genetic elements. Trilocus multiplex-PCR was used along with pulsed-field gel electrophoresis (PFGE) for strain typing and for accessing clonal relationships among the isolates. Antimicrobial susceptibility testing indicated that 46% of the isolates were carbapenem-resistant and possessed MDR and XDR phenotypes. PFGE clustered the 28 isolates into seven clonal (C1–C7) complexes based on >75% similarity cut-off. Thirty-six percent of the isolates belonged to international clone II, while 29% were assigned to Group 4 by trilocus multiplex-PCR. Although the blaOXA-51-like gene was found in all the isolates, only 36% were positive for the blaOXA-23-like gene. PCR analysis also found a metallo-β-lactamase (MBL) gene (blaVIM) in 71% of the isolates. Of the 13 CR isolates, 8 were PCR positive for both blaVIM and blaOXA-23-like genes, while 5 harbored only blaVIM gene. This study revealed the emergence of VIM carbapenemase-producing A. baumannii isolates, which has not been previously reported in the United States.
Collapse
|
77
|
Lukovic B, Gajic I, Dimkic I, Kekic D, Zornic S, Pozder T, Radisavljevic S, Opavski N, Kojic M, Ranin L. The first nationwide multicenter study of Acinetobacter baumannii recovered in Serbia: emergence of OXA-72, OXA-23 and NDM-1-producing isolates. Antimicrob Resist Infect Control 2020; 9:101. [PMID: 32631451 PMCID: PMC7338125 DOI: 10.1186/s13756-020-00769-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/30/2020] [Indexed: 12/16/2022] Open
Abstract
Background The worldwide emergence and clonal spread of carbapenem-resistant Acinetobacter baumannii (CRAB) is of great concern. The aim of this nationwide study was to investigate the prevalence of CRAB isolates in Serbia and to characterize underlying resistance mechanisms and their genetic relatedness. Methods Non-redundant clinical samples obtained from hospitalized patients throughout Serbia were included in the prospective, observational, multicenter study conducted from January to June 2018. Samples were initially screened for the presence of Acinetobacter baumannii-calcoaceticus (Acb) complex using conventional bacteriological techniques. Acb complexes recovered from clinical samples obtained from inpatients with confirmed bacterial infections were further evaluated for the presence of A. baumannii. Identification to the species level was done by the detection of the blaOXA-51 gene and rpoB gene sequence analysis. Susceptibility testing was done by disk diffusion and broth microdilution method. CRAB isolates were tested for the presence of acquired carbapenemases (blaOXA-24-like, blaOXA-23-like,blaOXA-58-like, blaOXA-143-like, blaIMP, blaVIM, blaGIM, blaSPM, blaSIM, blaNDM) by PCR. Clonal relatedness was assessed by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Results Acb complex was isolated in 280 out of 2401 clinical samples (11.6%). Overall, A. baumannii was identified in 237 out of 280 Acb complex (84.6%). CRAB prevalence was found to be 93.7% (237/222). The MIC50/MIC90 for imipenem and meropenem were 8/> 32 μg/mL and 16/> 32 μg/mL, respectively. Although susceptibility was high for colistin (95.7%; n = 227) and tigecycline (75.1%; n = 178), ten isolates (4.3%) were classified as pandrug-resistant. The following carbapenemases-encoding genes were found: 98 (44.2%) blaOXA-24-like, 76 (34.5%) blaOXA-23-like, and 7 (3.2%) blaNDM-1. PFGE analysis revealed six different clusters. MLST analysis identified three STs: ST2 (n = 13), ST492 (n = 14), and ST636 (n = 10). Obtained results evaluated that circulating CRAB clones in Serbia were as follows: blaOXA66/blaOXA23/ST2 (32.4%), blaOXA66/blaOXA23/blaOXA72/ST2 (2.7%), blaOXA66/blaOXA72/ST492 (37.8%), and blaOXA66/blaOXA72/ST636 (27.1%). Conclusion This study revealed extremely high proportions of carbapenem resistance among A. baumannii clinical isolates due to the emergence of blaOXA-72, blaOXA-23, and blaNDM-1 genes among CRAB isolates in Serbia and their clonal propagation.
Collapse
Affiliation(s)
- Bojana Lukovic
- Institute of Microbiology and Immunology, Medical Faculty, University of Belgrade, Doktora Subotica starijeg 1, Belgrade, 11000, Serbia.
| | - Ina Gajic
- Institute of Microbiology and Immunology, Medical Faculty, University of Belgrade, Doktora Subotica starijeg 1, Belgrade, 11000, Serbia.
| | - Ivica Dimkic
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Dusan Kekic
- Institute of Microbiology and Immunology, Medical Faculty, University of Belgrade, Doktora Subotica starijeg 1, Belgrade, 11000, Serbia
| | - Sanja Zornic
- Department of Microbiology, Clinical Center Kragujevac, Kragujevac, Serbia
| | - Tatjana Pozder
- Department of Microbiology, General Hospital Subotica, Subotica, Serbia
| | | | - Nataša Opavski
- Institute of Microbiology and Immunology, Medical Faculty, University of Belgrade, Doktora Subotica starijeg 1, Belgrade, 11000, Serbia
| | - Milan Kojic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Lazar Ranin
- Institute of Microbiology and Immunology, Medical Faculty, University of Belgrade, Doktora Subotica starijeg 1, Belgrade, 11000, Serbia
| |
Collapse
|
78
|
Fodor A, Abate BA, Deák P, Fodor L, Gyenge E, Klein MG, Koncz Z, Muvevi J, Ötvös L, Székely G, Vozik D, Makrai L. Multidrug Resistance (MDR) and Collateral Sensitivity in Bacteria, with Special Attention to Genetic and Evolutionary Aspects and to the Perspectives of Antimicrobial Peptides-A Review. Pathogens 2020; 9:pathogens9070522. [PMID: 32610480 PMCID: PMC7399985 DOI: 10.3390/pathogens9070522] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
Antibiotic poly-resistance (multidrug-, extreme-, and pan-drug resistance) is controlled by adaptive evolution. Darwinian and Lamarckian interpretations of resistance evolution are discussed. Arguments for, and against, pessimistic forecasts on a fatal “post-antibiotic era” are evaluated. In commensal niches, the appearance of a new antibiotic resistance often reduces fitness, but compensatory mutations may counteract this tendency. The appearance of new antibiotic resistance is frequently accompanied by a collateral sensitivity to other resistances. Organisms with an expanding open pan-genome, such as Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae, can withstand an increased number of resistances by exploiting their evolutionary plasticity and disseminating clonally or poly-clonally. Multidrug-resistant pathogen clones can become predominant under antibiotic stress conditions but, under the influence of negative frequency-dependent selection, are prevented from rising to dominance in a population in a commensal niche. Antimicrobial peptides have a great potential to combat multidrug resistance, since antibiotic-resistant bacteria have shown a high frequency of collateral sensitivity to antimicrobial peptides. In addition, the mobility patterns of antibiotic resistance, and antimicrobial peptide resistance, genes are completely different. The integron trade in commensal niches is fortunately limited by the species-specificity of resistance genes. Hence, we theorize that the suggested post-antibiotic era has not yet come, and indeed might never come.
Collapse
Affiliation(s)
- András Fodor
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary;
- Correspondence: or (A.F.); (L.M.); Tel.: +36-(30)-490-9294 (A.F.); +36-(30)-271-2513 (L.M.)
| | - Birhan Addisie Abate
- Ethiopian Biotechnology Institute, Agricultural Biotechnology Directorate, Addis Ababa 5954, Ethiopia;
| | - Péter Deák
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary;
- Institute of Biochemistry, Biological Research Centre, H-6726 Szeged, Hungary
| | - László Fodor
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, P.O. Box 22, H-1581 Budapest, Hungary;
| | - Ervin Gyenge
- Hungarian Department of Biology and Ecology, Faculty of Biology and Geology, Babeș-Bolyai University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania; (E.G.); (G.S.)
- Institute for Research-Development-Innovation in Applied Natural Sciences, Babeș-Bolyai University, 30 Fântânele St., 400294 Cluj-Napoca, Romania
| | - Michael G. Klein
- Department of Entomology, The Ohio State University, 1680 Madison Ave., Wooster, OH 44691, USA;
| | - Zsuzsanna Koncz
- Max-Planck Institut für Pflanzenzüchtungsforschung, Carl-von-Linné-Weg 10, D-50829 Köln, Germany;
| | | | - László Ötvös
- OLPE, LLC, Audubon, PA 19403-1965, USA;
- Institute of Medical Microbiology, Semmelweis University, H-1085 Budapest, Hungary
- Arrevus, Inc., Raleigh, NC 27612, USA
| | - Gyöngyi Székely
- Hungarian Department of Biology and Ecology, Faculty of Biology and Geology, Babeș-Bolyai University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania; (E.G.); (G.S.)
- Institute for Research-Development-Innovation in Applied Natural Sciences, Babeș-Bolyai University, 30 Fântânele St., 400294 Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania
| | - Dávid Vozik
- Research Institute on Bioengineering, Membrane Technology and Energetics, Faculty of Engineering, University of Veszprem, H-8200 Veszprém, Hungary; or or
| | - László Makrai
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, P.O. Box 22, H-1581 Budapest, Hungary;
- Correspondence: or (A.F.); (L.M.); Tel.: +36-(30)-490-9294 (A.F.); +36-(30)-271-2513 (L.M.)
| |
Collapse
|
79
|
Antibiotic Resistance Profiles, Molecular Mechanisms and Innovative Treatment Strategies of Acinetobacter baumannii. Microorganisms 2020; 8:microorganisms8060935. [PMID: 32575913 PMCID: PMC7355832 DOI: 10.3390/microorganisms8060935] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 12/18/2022] Open
Abstract
Antibiotic resistance is one of the biggest challenges for the clinical sector and industry, environment and societal development. One of the most important pathogens responsible for severe nosocomial infections is Acinetobacter baumannii, a Gram-negative bacterium from the Moraxellaceae family, due to its various resistance mechanisms, such as the β-lactamases production, efflux pumps, decreased membrane permeability and altered target site of the antibiotic. The enormous adaptive capacity of A. baumannii and the acquisition and transfer of antibiotic resistance determinants contribute to the ineffectiveness of most current therapeutic strategies, including last-line or combined antibiotic therapy. In this review, we will present an update of the antibiotic resistance profiles and underlying mechanisms in A. baumannii and the current progress in developing innovative strategies for combating multidrug-resistant A. baumannii (MDRAB) infections.
Collapse
|
80
|
Xu L, Deng S, Wen W, Tang Y, Chen L, Li Y, Zhong G, Li J, Ting WJ, Fu B. Molecular typing, and integron and associated gene cassette analyses in Acinetobacter baumannii strains isolated from clinical samples. Exp Ther Med 2020; 20:1943-1952. [PMID: 32782503 PMCID: PMC7401295 DOI: 10.3892/etm.2020.8911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 03/18/2020] [Indexed: 11/16/2022] Open
Abstract
The present study aimed to investigate the association between drug resistance and class I, II and III integrons in Acinetobacter baumannii (ABA). Multilocus sequence typing (MLST) is a tool used to analyze the homology among house-keeping gene clusters in ABA and ABA prevalence and further provides a theoretical basis for hospitals to control ABA infections. A total of 96 clinical isolates of non-repeating ABA were harvested, including 74 carbapenem-resistant ABA (CRABA) and 22 non-CRABA strains, and used for bacterial identification and drug susceptibility analysis. Variable regions were sequenced and analyzed. Then, 7 pairs of housekeeping genes were amplified and sequenced via MLST and sequence alignment was performed against the Pub MLST database to determine sequence types (STs) strains and construct different genotypic evolutionary diagrams. The detection rate of CRABA class I integrons was 13.51% (10/74); no class II and III integrons were detected. However, class I, II and III integrons were not detected in non-CRABA strains. The variable regions of 9 of 10 class I integrons were amplified and 10 gene cassettes including aacC1, aac1, aadDA1, aadA1a, aacA4, dfrA17, aadA5, aadA1, aadA22 and aadA23 were associated with drug resistance. The 96 ABA strains were divided into 21 STs: 74 CRABA strains containing 9 STs, primarily ST208 and ST1145 and 22 non-CRABA strains containing 18 STs, primarily ST1145. Class I integrons are a critical factor underlying drug resistance in ABA. CRABA and non-CRABA strains differ significantly; the former primarily contained ST208 and ST1145, and the latter contained ST1145. Most STs were concentrated in intensive care units (ICUs) and the department of Neurology, with the patients from the ICUs being the most susceptible to bacterial infection. In the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, ABA is potentially horizontally transmitted and MLST can be used for clinical ABA genotyping.
Collapse
Affiliation(s)
- Lingqing Xu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Shufei Deng
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Weihong Wen
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Yingxian Tang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Linjuan Chen
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Yuzhen Li
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Guoquan Zhong
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Jiehua Li
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Wei-Jen Ting
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Bishi Fu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China.,School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| |
Collapse
|
81
|
Li J, Fu Y, Zhang J, Zhao Y, Fan X, Yu L, Wang Y, Zhang X, Li C. The efficacy of colistin monotherapy versus combination therapy with other antimicrobials against carbapenem-resistant Acinetobacter baumannii ST2 isolates. J Chemother 2020; 32:359-367. [PMID: 32427074 DOI: 10.1080/1120009x.2020.1764282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Jiaying Li
- Jiamusi University, Jiamusi, Heilongjiang, China
| | - Yanjun Fu
- The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Jisheng Zhang
- Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Yongxin Zhao
- Jiamusi University, Jiamusi, Heilongjiang, China
| | - Xuecai Fan
- The Second Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Lan Yu
- Jiamusi University, Jiamusi, Heilongjiang, China
| | - Yong Wang
- The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Xiaoli Zhang
- The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
- Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Chunjiang Li
- Jiamusi University, Jiamusi, Heilongjiang, China
| |
Collapse
|
82
|
Hamidian M, Nigro SJ. Emergence, molecular mechanisms and global spread of carbapenem-resistant Acinetobacter baumannii. Microb Genom 2020; 5. [PMID: 31599224 PMCID: PMC6861865 DOI: 10.1099/mgen.0.000306] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Acinetobacter baumannii is a nosocomial pathogen that has emerged as a global threat because of high levels of resistance to many antibiotics, particularly those considered to be last-resort antibiotics, such as carbapenems. Although alterations in the efflux pump and outer membrane proteins can cause carbapenem resistance, the main mechanism is the acquisition of carbapenem-hydrolyzing oxacillinase-encoding genes. Of these, oxa23 is by far the most widespread in most countries, while oxa24 and oxa58 appear to be dominant in specific regions. Historically, much of the global spread of carbapenem resistance has been due to the dissemination of two major clones, known as global clones 1 and 2, although new lineages are now common in some parts of the world. The analysis of all publicly available genome sequences performed here indicates that ST2, ST1, ST79 and ST25 account for over 71 % of all genomes sequenced to date, with ST2 by far the most dominant type and oxa23 the most widespread carbapenem resistance determinant globally, regardless of clonal type. Whilst this highlights the global spread of ST1 and ST2, and the dominance of oxa23 in both clones, it could also be a result of preferential selection of carbapenem-resistant strains, which mainly belong to the two major clones. Furthermore, ~70 % of the sequenced strains have been isolated from five countries, namely the USA, PR China, Australia, Thailand and Pakistan, with only a limited number from other countries. These genomes are a vital resource, but it is currently difficult to draw an accurate global picture of this important superbug, highlighting the need for more comprehensive genome sequence data and genomic analysis.
Collapse
Affiliation(s)
- Mohammad Hamidian
- The ithree institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Steven J Nigro
- Communicable Diseases Branch, Health Protection NSW, St Leonards, NSW 2065, Australia
| |
Collapse
|
83
|
Ramirez MS, Bonomo RA, Tolmasky ME. Carbapenemases: Transforming Acinetobacter baumannii into a Yet More Dangerous Menace. Biomolecules 2020; 10:biom10050720. [PMID: 32384624 PMCID: PMC7277208 DOI: 10.3390/biom10050720] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023] Open
Abstract
Acinetobacter baumannii is a common cause of serious nosocomial infections. Although community-acquired infections are observed, the vast majority occur in people with preexisting comorbidities. A. baumannii emerged as a problematic pathogen in the 1980s when an increase in virulence, difficulty in treatment due to drug resistance, and opportunities for infection turned it into one of the most important threats to human health. Some of the clinical manifestations of A. baumannii nosocomial infection are pneumonia; bloodstream infections; lower respiratory tract, urinary tract, and wound infections; burn infections; skin and soft tissue infections (including necrotizing fasciitis); meningitis; osteomyelitis; and endocarditis. A. baumannii has an extraordinary genetic plasticity that results in a high capacity to acquire antimicrobial resistance traits. In particular, acquisition of resistance to carbapenems, which are among the antimicrobials of last resort for treatment of multidrug infections, is increasing among A. baumannii strains compounding the problem of nosocomial infections caused by this pathogen. It is not uncommon to find multidrug-resistant (MDR, resistance to at least three classes of antimicrobials), extensively drug-resistant (XDR, MDR plus resistance to carbapenems), and pan-drug-resistant (PDR, XDR plus resistance to polymyxins) nosocomial isolates that are hard to treat with the currently available drugs. In this article we review the acquired resistance to carbapenems by A. baumannii. We describe the enzymes within the OXA, NDM, VIM, IMP, and KPC groups of carbapenemases and the coding genes found in A. baumannii clinical isolates.
Collapse
Affiliation(s)
- Maria Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA;
| | - Robert A. Bonomo
- Medical Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA;
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics; Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- WRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH 44106, USA
| | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA;
- Correspondence: ; Tel.: +657-278-5263
| |
Collapse
|
84
|
Vázquez-López R, Solano-Gálvez SG, Juárez Vignon-Whaley JJ, Abello Vaamonde JA, Padró Alonzo LA, Rivera Reséndiz A, Muleiro Álvarez M, Vega López EN, Franyuti-Kelly G, Álvarez-Hernández DA, Moncaleano Guzmán V, Juárez Bañuelos JE, Marcos Felix J, González Barrios JA, Barrientos Fortes T. Acinetobacter baumannii Resistance: A Real Challenge for Clinicians. Antibiotics (Basel) 2020; 9:antibiotics9040205. [PMID: 32340386 PMCID: PMC7235888 DOI: 10.3390/antibiotics9040205] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 12/21/2022] Open
Abstract
Acinetobacter baumannii (named in honor of the American bacteriologists Paul and Linda Baumann) is a Gram-negative, multidrug-resistant (MDR) pathogen that causes nosocomial infections, especially in intensive care units (ICUs) and immunocompromised patients with central venous catheters. A. baumannii has developed a broad spectrum of antimicrobial resistance, associated with a higher mortality rate among infected patients compared with other non-baumannii species. In terms of clinical impact, resistant strains are associated with increases in both in-hospital length of stay and mortality. A. baumannii can cause a variety of infections; most involve the respiratory tract, especially ventilator-associated pneumonia, but bacteremia and skin wound infections have also been reported, the latter of which has been prominently observed in the context of war-related trauma. Cases of meningitis associated with A. baumannii have been documented. The most common risk factor for the acquisition of MDR A baumannii is previous antibiotic use, following by mechanical ventilation, length of ICU/hospital stay, severity of illness, and use of medical devices. Current efforts focus on addressing all the antimicrobial resistance mechanisms described in A. baumannii, with the objective of identifying the most promising therapeutic scheme. Bacteriophage- and artilysin-based therapeutic approaches have been described as effective, but further research into their clinical use is required.
Collapse
Affiliation(s)
- Rosalino Vázquez-López
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico; (J.J.J.V.-W.); (J.A.A.V.); (L.A.P.A.); (A.R.R.); (M.M.Á.); (D.A.Á.-H.); (V.M.G.); (J.E.J.B.)
- Correspondence: or ; Tel.: +52-56-270210 (ext. 7302)
| | - Sandra Georgina Solano-Gálvez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Juan José Juárez Vignon-Whaley
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico; (J.J.J.V.-W.); (J.A.A.V.); (L.A.P.A.); (A.R.R.); (M.M.Á.); (D.A.Á.-H.); (V.M.G.); (J.E.J.B.)
| | - Jorge Andrés Abello Vaamonde
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico; (J.J.J.V.-W.); (J.A.A.V.); (L.A.P.A.); (A.R.R.); (M.M.Á.); (D.A.Á.-H.); (V.M.G.); (J.E.J.B.)
| | - Luis Andrés Padró Alonzo
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico; (J.J.J.V.-W.); (J.A.A.V.); (L.A.P.A.); (A.R.R.); (M.M.Á.); (D.A.Á.-H.); (V.M.G.); (J.E.J.B.)
| | - Andrés Rivera Reséndiz
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico; (J.J.J.V.-W.); (J.A.A.V.); (L.A.P.A.); (A.R.R.); (M.M.Á.); (D.A.Á.-H.); (V.M.G.); (J.E.J.B.)
| | - Mauricio Muleiro Álvarez
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico; (J.J.J.V.-W.); (J.A.A.V.); (L.A.P.A.); (A.R.R.); (M.M.Á.); (D.A.Á.-H.); (V.M.G.); (J.E.J.B.)
| | - Eunice Nabil Vega López
- Medical IMPACT, Infectious Diseases Department, Mexico City 53900, Mexico; (E.N.V.L.); (G.F.-K.)
| | - Giorgio Franyuti-Kelly
- Medical IMPACT, Infectious Diseases Department, Mexico City 53900, Mexico; (E.N.V.L.); (G.F.-K.)
| | - Diego Abelardo Álvarez-Hernández
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico; (J.J.J.V.-W.); (J.A.A.V.); (L.A.P.A.); (A.R.R.); (M.M.Á.); (D.A.Á.-H.); (V.M.G.); (J.E.J.B.)
| | - Valentina Moncaleano Guzmán
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico; (J.J.J.V.-W.); (J.A.A.V.); (L.A.P.A.); (A.R.R.); (M.M.Á.); (D.A.Á.-H.); (V.M.G.); (J.E.J.B.)
| | - Jorge Ernesto Juárez Bañuelos
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico; (J.J.J.V.-W.); (J.A.A.V.); (L.A.P.A.); (A.R.R.); (M.M.Á.); (D.A.Á.-H.); (V.M.G.); (J.E.J.B.)
| | - José Marcos Felix
- Coordinación Ciclos Clínicos Medicina, FCS, Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico;
| | - Juan Antonio González Barrios
- Laboratorio de Medicina Genómica, Hospital Regional “1º de Octubre”, ISSSTE, Av. Instituto Politécnico Nacional 1669, Lindavista, Gustavo A. Madero, Ciudad de Mexico 07300, Mexico;
| | - Tomás Barrientos Fortes
- Dirección Sistema Universitario de Salud de la Universidad Anáhuac México (SUSA), Huixquilucan 52786, Mexico;
| |
Collapse
|
85
|
The Current Burden of Carbapenemases: Review of Significant Properties and Dissemination among Gram-Negative Bacteria. Antibiotics (Basel) 2020; 9:antibiotics9040186. [PMID: 32316342 PMCID: PMC7235769 DOI: 10.3390/antibiotics9040186] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 11/16/2022] Open
Abstract
Carbapenemases are β-lactamases belonging to different Ambler classes (A, B, D) and can be encoded by both chromosomal and plasmid-mediated genes. These enzymes represent the most potent β-lactamases, which hydrolyze a broad variety of β-lactams, including carbapenems, cephalosporins, penicillin, and aztreonam. The major issues associated with carbapenemase production are clinical due to compromising the activity of the last resort antibiotics used for treating serious infections, and epidemiological due to their dissemination into various bacteria across almost all geographic regions. Carbapenemase-producing Enterobacteriaceae have received more attention upon their first report in the early 1990s. Currently, there is increased awareness of the impact of nonfermenting bacteria, such as Acinetobacter baumannii and Pseudomonas aeruginosa, as well as other Gram-negative bacteria that are carbapenemase-producers. Outside the scope of clinical importance, carbapenemases are also detected in bacteria from environmental and zoonotic niches, which raises greater concerns over their prevalence, and the need for public health measures to control consequences of their propagation. The aims of the current review are to define and categorize the different families of carbapenemases, and to overview the main lines of their spread across different bacterial groups.
Collapse
|
86
|
Detection of Antimicrobial Resistance Genes Associated with Carbapenem Resistance from the Whole-Genome Sequence of Acinetobacter baumannii Isolates from Malaysia. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2020; 2020:5021064. [PMID: 32318127 PMCID: PMC7154965 DOI: 10.1155/2020/5021064] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/20/2019] [Accepted: 01/09/2020] [Indexed: 12/20/2022]
Abstract
Background The spread of carbapenem-resistant A. baumannii (CrAb) is gaining worldwide attention. The spread of this pathogen is largely due to its ability to acquire various resistance genes of intrinsic and extrinsic origins that confer unpredictable susceptibility to β-lactams. The aim of this study was to analyze β-lactamase genetic compositions of CrAb in Malaysia. Methods Whole-genome sequencing (WGS) was carried out on 13 CrAb isolates from clinical samples in Malaysia from 2011 to 2016. Results Endotracheal aspirate was the dominant clinical sample source (n = 6), and only one isolate was obtained from wound swab. A total of 6 sequence types (STs) of the Oxford scheme were identified, including 4 reported STs and 2 novel STs. Eleven isolates were classified into clonal complex 92 (CC92/ICII), among which ST195 and ST208 were the most prevalent STs. All 13 CrAb isolates harbored multiple β-lactamase genes. blaOXA-23 (n = 13) and blaOXA-66 (n = 11) were the dominant carbapenemase gene families found in these isolates. All isolates harbor blaADC, blaOXA-51-like, and blaOXA-23-like genes. blaTEM (n = 7), blaNDM-1 (n = 3), blaCARB-8 (n = 1), and blaPER-3 (n = 1) are amongst other β-lactamase genes found in this study. ISAba1 was found upstream to blaOXA-23 (n = 13), blaOXA-66 (n = 1), and blaADC (n = 11). All blaNDM-1 isolates had ISAba125 (mobile genetic element) upstream to the genes. All isolates were positive for Tn2006/2008 and Tn2009 but were negative for Tn2007. Conclusion Most of the isolates were grouped under the CC92 clonal complex which belongs to international clonal lineage 2. These findings predict that carriage of carbapenem-resistant genes possibly constitutes the underlying basis of high level of international clone II prevalence. Therefore, molecular surveillance and antimicrobial stewardship are essential in implementing policies to prevent and control the spread of CrAb in hospital settings.
Collapse
|
87
|
Ayoub Moubareck C, Hammoudi Halat D. Insights into Acinetobacter baumannii: A Review of Microbiological, Virulence, and Resistance Traits in a Threatening Nosocomial Pathogen. Antibiotics (Basel) 2020; 9:antibiotics9030119. [PMID: 32178356 PMCID: PMC7148516 DOI: 10.3390/antibiotics9030119] [Citation(s) in RCA: 290] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Being a multidrug-resistant and an invasive pathogen, Acinetobacter baumannii is one of the major causes of nosocomial infections in the current healthcare system. It has been recognized as an agent of pneumonia, septicemia, meningitis, urinary tract and wound infections, and is associated with high mortality. Pathogenesis in A. baumannii infections is an outcome of multiple virulence factors, including porins, capsules, and cell wall lipopolysaccharide, enzymes, biofilm production, motility, and iron-acquisition systems, among others. Such virulence factors help the organism to resist stressful environmental conditions and enable development of severe infections. Parallel to increased prevalence of infections caused by A. baumannii, challenging and diverse resistance mechanisms in this pathogen are well recognized, with major classes of antibiotics becoming minimally effective. Through a wide array of antibiotic-hydrolyzing enzymes, efflux pump changes, impermeability, and antibiotic target mutations, A. baumannii models a unique ability to maintain a multidrug-resistant phenotype, further complicating treatment. Understanding mechanisms behind diseases, virulence, and resistance acquisition are central to infectious disease knowledge about A. baumannii. The aims of this review are to highlight infections and disease-producing factors in A. baumannii and to touch base on mechanisms of resistance to various antibiotic classes.
Collapse
Affiliation(s)
- Carole Ayoub Moubareck
- College of Natural and Health Sciences, Zayed University, Dubai P.O. Box 144534, UAE
- Correspondence: ; Tel.: +971-4-402-1745
| | - Dalal Hammoudi Halat
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Beirut, Bekaa Campuses 1103, Lebanon;
| |
Collapse
|
88
|
Genetic Diversity of Imipenem-Resistant Acinetobacter baumannii Infections at an Intensive Care Unit. Crit Care Res Pract 2020; 2020:3290316. [PMID: 32148955 PMCID: PMC7054769 DOI: 10.1155/2020/3290316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 12/31/2019] [Indexed: 12/26/2022] Open
Abstract
Introduction. Imipenem-resistant Acinetobacter baumannii (IRAB) represents a major clinical threat. Dissemination in critical care areas necessitates effective action measures including genotyping tools to study the clonality of these strains and trace their origin. The main aim of this study is to assess the genetic relatedness between IRAB isolates in our institution intensive care units (ICU) which are at a particular risk of outbreaks.
Collapse
|
89
|
Girlich D, Bonnin RA, Dortet L, Naas T. Genetics of Acquired Antibiotic Resistance Genes in Proteus spp. Front Microbiol 2020; 11:256. [PMID: 32153540 PMCID: PMC7046756 DOI: 10.3389/fmicb.2020.00256] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/03/2020] [Indexed: 01/30/2023] Open
Abstract
Proteus spp. are commensal Enterobacterales of the human digestive tract. At the same time, P. mirabilis is commonly involved in urinary tract infections (UTI). P. mirabilis is naturally resistant to several antibiotics including colistin and shows reduced susceptibility to imipenem. However higher levels of resistance to imipenem commonly occur in P. mirabilis isolates consecutively to the loss of porins, reduced expression of penicillin binding proteins (PBPs) PBP1a, PBP2, or acquisition of several antibiotic resistance genes, including carbapenemase genes. In addition, resistance to non-β-lactams is also frequently reported including molecules used for treating UTI infections (e.g., fluoroquinolones, nitrofurans). Emergence and spread of multidrug resistant P. mirabilis isolates, including those producing ESBLs, AmpC cephalosporinases and carbapenemases, are being more and more frequently reported. This review covers Proteus spp. with a focus on the different genetic mechanisms involved in the acquisition of resistance genes to multiple antibiotic classes turning P. mirabilis into a dreadful pandrug resistant bacteria and resulting in difficult to treat infections.
Collapse
Affiliation(s)
- Delphine Girlich
- EA7361 "Structure, dynamic, function and expression of broad spectrum β-lactamases", LabEx Lermit, Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur - APHP - Université Paris-Saclay, Paris, France
| | - Rémy A Bonnin
- EA7361 "Structure, dynamic, function and expression of broad spectrum β-lactamases", LabEx Lermit, Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur - APHP - Université Paris-Saclay, Paris, France
| | - Laurent Dortet
- EA7361 "Structure, dynamic, function and expression of broad spectrum β-lactamases", LabEx Lermit, Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur - APHP - Université Paris-Saclay, Paris, France
| | - Thierry Naas
- EA7361 "Structure, dynamic, function and expression of broad spectrum β-lactamases", LabEx Lermit, Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur - APHP - Université Paris-Saclay, Paris, France
| |
Collapse
|
90
|
Whole-Genome-Sequence-Based Characterization of Extensively Drug-Resistant Acinetobacter baumannii Hospital Outbreak. mSphere 2020; 5:5/1/e00934-19. [PMID: 31941816 PMCID: PMC6968657 DOI: 10.1128/msphere.00934-19] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) has been implicated in hospital outbreaks worldwide. Here, we present a whole-genome-based investigation of an extensively drug-resistant CRAB outbreak rapidly spreading and causing high incidences of mortality at numerous wards of a large tertiary hospital in Lebanon. This is the first study of its kind in the region. Two circulating clones were identified using a combination of molecular typing approaches, short- and long-read sequencing and Bayesian transmission network analysis. One clone carried blaOXA-23 on Tn2006 (ST-1305, ST-195, and ST-218), and another carried blaOXA-72 on a pMAL-1 plasmid (ST-502 and ST-2059, a new ST). A pMAL-2 plasmid was circulating between the two clones. The approaches implemented in this study and the obtained findings facilitate the tracking of outbreak scenarios in Lebanon and the region at large. Carbapenem-resistant Acinetobacter baumannii (CRAB) is an important opportunistic pathogen linked to a variety of nosocomial infections and hospital outbreaks worldwide. This study aimed at investigating and characterizing a CRAB outbreak at a large tertiary hospital in Lebanon. A total of 41 isolates were collected and analyzed using pulsed-field gel electrophoresis (PFGE). Whole-genome sequencing (WGS) was performed on all the isolates, and long-read PacBio sequencing was used to generate reference genomes. The multilocus sequence types (MLST), repertoire of resistance genes, and virulence factors were determined from the sequencing data. The plasmid content was analyzed both in silico and using the A. baumannii PCR-based replicon typing (AB-PBRT) method. Genome analysis initially revealed two clones, one carrying blaOXA-23 on Tn2006 (ST-1305, ST-195, and ST-218) and another carrying blaOXA-72 on pMAL-1 (ST-502 and ST-2059, a new ST), with the latter having two subclones, as revealed using the Bayesian transmission network. All isolates were extensively drug resistant (XDR). WGS analysis revealed the transmission pathways and demonstrated the diversity of CRAB isolates and mobile genetic elements in this health care setting. Outbreak detection using WGS and immediate implementation of infection control measures contribute to restraining the spread and decreasing mortality. IMPORTANCE Carbapenem-resistant Acinetobacter baumannii (CRAB) has been implicated in hospital outbreaks worldwide. Here, we present a whole-genome-based investigation of an extensively drug-resistant CRAB outbreak rapidly spreading and causing high incidences of mortality at numerous wards of a large tertiary hospital in Lebanon. This is the first study of its kind in the region. Two circulating clones were identified using a combination of molecular typing approaches, short- and long-read sequencing and Bayesian transmission network analysis. One clone carried blaOXA-23 on Tn2006 (ST-1305, ST-195, and ST-218), and another carried blaOXA-72 on a pMAL-1 plasmid (ST-502 and ST-2059, a new ST). A pMAL-2 plasmid was circulating between the two clones. The approaches implemented in this study and the obtained findings facilitate the tracking of outbreak scenarios in Lebanon and the region at large.
Collapse
|
91
|
Origin of OXA-23 Variant OXA-239 from a Recently Emerged Lineage of Acinetobacter baumannii International Clone V. mSphere 2020; 5:5/1/e00801-19. [PMID: 31915222 PMCID: PMC6952199 DOI: 10.1128/msphere.00801-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A. baumannii is a major cause of nosocomial infections all over the world. Although many isolates from developed countries have been studied in terms of their genome sequence, isolates from Latin America have been much less studied. In this study, using a population genomics approach considering the whole genomes of 148 isolates, we describe the recent emergence of the lineage ST758 endemic to Latin America and the inception of the OXA-239 carbapenemase. Our study highlights the urgent need to investigate recently emerged lineages of this species in Latin America and elsewhere, as these might harbor novel antibiotic resistance genes. Over the last few decades, carbapenemase-producing Acinetobacter baumannii has become a major cause of nosocomial infections all over the world. However, the genome identity of lineages of this species in Latin America has not been studied as much as in developed countries. Here, through a population genomics approach considering the whole genomes of 148 isolates (almost 40 from Mexico and Honduras), we describe the recent emergence of the lineage sequence type 758 (ST758), which belongs to the international clone V and has spread out to Canada, Mexico, Honduras, and Colombia. Notably, this lineage was found to coexist with other A. baumannii lineages in hospitals in Mexico and Honduras. Isolates from this lineage show considerable variation in antibiotic resistance profiles, but most of them are resistant to carbapenems. Moreover, we found a variety of acquired oxacillinase (OXA) families within this lineage and tracked the very recent inception, and subsequent horizontal transmission, of the OXA-239 carbapenemase. This work highlights the urgent need to investigate recently emerged lineages of this species in Latin America and elsewhere, as these might harbor novel antibiotic resistance genes. IMPORTANCEA. baumannii is a major cause of nosocomial infections all over the world. Although many isolates from developed countries have been studied in terms of their genome sequence, isolates from Latin America have been much less studied. In this study, using a population genomics approach considering the whole genomes of 148 isolates, we describe the recent emergence of the lineage ST758 endemic to Latin America and the inception of the OXA-239 carbapenemase. Our study highlights the urgent need to investigate recently emerged lineages of this species in Latin America and elsewhere, as these might harbor novel antibiotic resistance genes.
Collapse
|
92
|
Gerson S, Lucaßen K, Wille J, Nodari CS, Stefanik D, Nowak J, Wille T, Betts JW, Roca I, Vila J, Cisneros JM, Seifert H, Higgins PG. Diversity of amino acid substitutions in PmrCAB associated with colistin resistance in clinical isolates of Acinetobacter baumannii. Int J Antimicrob Agents 2019; 55:105862. [PMID: 31837449 DOI: 10.1016/j.ijantimicag.2019.105862] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/02/2019] [Accepted: 12/08/2019] [Indexed: 11/18/2022]
Abstract
This study aimed to investigate the mechanisms of colistin resistance in 64 Acinetobacter baumannii isolates obtained from patients with ventilator-associated pneumonia hospitalised in Greece, Italy and Spain. In total, 31 A. baumannii isolates were colistin-resistant. Several novel amino acid substitutions in PmrCAB were found in 27 colistin-resistant A. baumannii. Most substitutions were detected in PmrB, indicating the importance of the histidine kinase for colistin resistance. In two colistin-resistant isolates, 93 amino acid changes were observed in PmrCAB compared with A. baumannii ACICU, and homologous recombination across different clonal lineages was suggested. Analysis of gene expression revealed increased pmrC expression in isolates harbouring pmrCAB mutations. Complementation of A. baumannii ATCC 19606 and ATCC 17978 with a pmrAB variant revealed increased pmrC expression but unchanged colistin MICs, indicating additional unknown factors associated with colistin resistance. Moreover, a combination of PmrB and PmrC alterations was associated with very high colistin MICs, suggesting accumulation of mutations as the mechanism for high-level resistance. The pmrC homologue eptA was detected in 29 colistin-susceptible and 26 colistin-resistant isolates. ISAba1 was found upstream of eptA in eight colistin-susceptible and one colistin-resistant isolate and eptA was disrupted by ISAba125 in two colistin-resistant isolates. Whilst in most isolates an association of eptA with colistin resistance was excluded, in one isolate an amino acid substitution in EptA (R127L) combined with a point mutation in ISAba1 upstream of eptA contributed to elevated colistin MICs. This study helps to gain an insight into the diversity and complexity of colistin resistance in A. baumannii.
Collapse
Affiliation(s)
- Stefanie Gerson
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstraße 19-21, 50935 Cologne, Germany
| | - Kai Lucaßen
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstraße 19-21, 50935 Cologne, Germany
| | - Julia Wille
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstraße 19-21, 50935 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Germany
| | - Carolina S Nodari
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstraße 19-21, 50935 Cologne, Germany; Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, Brazil
| | - Danuta Stefanik
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstraße 19-21, 50935 Cologne, Germany
| | - Jennifer Nowak
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstraße 19-21, 50935 Cologne, Germany
| | - Thorsten Wille
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstraße 19-21, 50935 Cologne, Germany
| | - Jonathan W Betts
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Ignasi Roca
- Department of Clinical Microbiology and ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Jordi Vila
- Department of Clinical Microbiology and ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Jose M Cisneros
- Department of Infectious Diseases, Microbiology, and Preventive Medicine, Infectious Diseases Research Group, Institute of Biomedicine of Seville (IBiS), University of Seville/CSIC/University Hospital Virgen del Rocío, Seville, Spain
| | - Harald Seifert
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstraße 19-21, 50935 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Germany
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstraße 19-21, 50935 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Germany.
| |
Collapse
|
93
|
Wong MHY, Chan BKW, Chan EWC, Chen S. Over-Expression of IS Aba1-Linked Intrinsic and Exogenously Acquired OXA Type Carbapenem-Hydrolyzing-Class D-ß-Lactamase-Encoding Genes Is Key Mechanism Underlying Carbapenem Resistance in Acinetobacter baumannii. Front Microbiol 2019; 10:2809. [PMID: 31866977 PMCID: PMC6904305 DOI: 10.3389/fmicb.2019.02809] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/19/2019] [Indexed: 01/28/2023] Open
Abstract
Acinetobacter baumannii is an important clinical pathogen which often causes fatal infections among seriously ill patients. Treatment options for managing infections caused by this organism have become limited as a result of emergence of carbapenem resistant strains. In the current study, whole genome sequencing, gene expression studies and enzyme kinetics analyses were performed to investigate the underlying carbapenem resistance mechanisms in fourteen clinical A. baumannii strains isolated from two hospitals, one each in Hong Kong and Henan Province, People’s Republic of China. A large majority of the A. baumannii strains (11/14) were found to belong to the International Clone II (IC-II), among which six were ST208. Twelve of these strains were carbapenem resistant and found to either harbor blaOXA–23/blaOXA–72, or exhibit over-expression of the blaOXA–51 gene upon ISAba1 insertion. Enzymatic assay confirmed that the OXA variants, including those of blaOXA–51, exhibited strong carbapenem-degrading activities. In terms of other intrinsic mechanisms, a weak correlation was observed between reduced production of outer membrane porin CarO/expression resistance-nodulation-division (RND) efflux AdeB and phenotypic resistance. This finding implied that over-production of carbapenem-hydrolyzing-class D-ß-lactamases (CHDLs), including the intrinsic blaOXA–51 gene and the acquired blaOXA–23 and blaOXA–24 elements, is the key mechanism of carbapenem resistance in A. baumannii. This view is confirmed by testing the effect of NaCl, a known blaOXA inhibitor, which was found to cause reduction in carbapenem MIC by twofolds to eightfolds, suggesting that inhibiting OXA type carbapenemases represents the most effective strategy to control phenotypic carbapenem resistance in A. baumannii.
Collapse
Affiliation(s)
- Marcus Ho-Yin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Bill Kwan-Wai Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Edward Wai-Chi Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Sheng Chen
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong.,Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
94
|
Antibiotic resistance pattern of Acinetobacter baumannii from burns patients: increase in prevalence of bla OXA-24-like and bla OXA-58-like genes. IRANIAN JOURNAL OF MICROBIOLOGY 2019; 11:502-509. [PMID: 32148682 PMCID: PMC7048957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND AND OBJECTIVES Notwithstanding the increased prevalence of Acinetobacter baumannii drug-resistant isolates, treatment options are progressively limiting. This study aims to provide a recent report on antibiotic susceptibility in burn wound isolates of A. baumannii, and the importance of OXA beta-lactamases in carbapenem resistance. MATERIALS AND METHODS The susceptibility levels to different antimicrobial categories were determined among 84 A. baumannii isolates from burn wound infection between 2016 and 2018. Multiplex PCR was used to detect OXA beta-lactamases genes, including bla OXA-51, bla OXA-23, bla OXA-24 and bla OXA-58. ISAba-1 association with bla OXA-51, bla OXA-23 and bla OXA-58 was detected by PCR mapping. RESULTS All the isolates were determined as multidrug-resistant (MDR) and 69% as extensively drug-resistant (XDR). Different carbapenems MIC ranges (MIC50 and MIC90) were observed among the isolates harboring bla OXA-like genes and isolates with the OXA-24-like enzyme showed higher carbapenems MIC ranges. The prevalence of bla OXA-51-like, bla OXA-23-like, bla OXA-24-like and bla OXA-58-like were 100%, 53.57%, 41.66% and 30.95%, respectively. ISAba-1 insertion sequence was found to be upstream to bla OXA-23-like and bla OXA-58-like genes in 23 out of 45 (71.1%) bla OXA-23-like-positive and 4 out of 23 (15.3) bla OXA-58-like-positive isolates, respectively. CONCLUSION Resistance to carbapenems as the last resort for treatment of A. baumannii infections is growing. This study, for the first time in Iran, has observed the increased frequency of bla OXA-24-like and bla OXA-58-like genes and found an association between ISAba-1 and bla OXA-58-like gene, which signifies the possible risk of increased diversity in OXA beta-lactamases and growth in carbapenem resistance.
Collapse
|
95
|
Butler DA, Biagi M, Tan X, Qasmieh S, Bulman ZP, Wenzler E. Multidrug Resistant Acinetobacter baumannii: Resistance by Any Other Name Would Still be Hard to Treat. Curr Infect Dis Rep 2019; 21:46. [PMID: 31734740 DOI: 10.1007/s11908-019-0706-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Acinetobacter baumannii (AB) is an infamous nosocomial pathogen with a seemingly limitless capacity for antimicrobial resistance, leading to few treatment options and poor clinical outcomes. The debatably low pathogenicity and virulence of AB are juxtaposed by its exceptionally high rate of infection-related mortality, likely due to delays in time to effective antimicrobial therapy secondary to its predilection for resistance to first-line agents. Recent studies of AB and its infections have led to a burgeoning understanding of this critical microbial threat and provided clinicians with new ammunition for which to target this elusive pathogen. This review will provide an update on the virulence, resistance, diagnosis, and treatment of multidrug resistant (MDR) AB. RECENT FINDINGS Advances in bacterial genomics have led to a deeper understanding of the unique mechanisms of resistance often present in MDR AB and how they may be exploited by new antimicrobials or optimized combinations of existing agents. Further, improvements in rapid diagnostic tests (RDTs) and their more pervasive use in combination with antimicrobial stewardship interventions have allowed for more rapid diagnosis of AB and decreases in time to effective therapy. Unfortunately, there remains a paucity of high-quality clinical data for which to inform the optimal treatment of MDR AB infections. In fact, recently completed studies have failed to identify a combination regimen that is consistently superior to monotherapy, despite the benefits demonstrated in vitro. Encouragingly, new and updated guidelines offer strategies for the treatment of MDR AB and may help to harmonize the use of high toxicity agents such as the polymyxins. Finally, new antimicrobial agents such as eravacycline and cefiderocol have promising in vitro activity against MDR AB but their place in therapy for these infections remains to be determined. Notwithstanding available clinical trial data, polymyxin-based combination therapies with either a carbapenem, minocycline, or eravacycline remain the treatment of choice for MDR, particularly carbapenem-resistant, AB. Incorporating antimicrobial stewardship intervention with RDTs relevant to MDR AB can help avoid potentially toxic combination therapies and catalyze the most important modifiable risk factor for mortality-time to effective therapy. Further research efforts into pharmacokinetic/pharmacodynamic-based dose optimization and clinical outcomes data for MDR AB continue to be desperately needed.
Collapse
Affiliation(s)
- David A Butler
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Room 164 (M/C 886), Chicago, IL, 60612, USA
| | - Mark Biagi
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Room 164 (M/C 886), Chicago, IL, 60612, USA
| | - Xing Tan
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Room 164 (M/C 886), Chicago, IL, 60612, USA
| | - Samah Qasmieh
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Room 164 (M/C 886), Chicago, IL, 60612, USA
| | - Zackery P Bulman
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Room 164 (M/C 886), Chicago, IL, 60612, USA
| | - Eric Wenzler
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Room 164 (M/C 886), Chicago, IL, 60612, USA.
| |
Collapse
|
96
|
Comparative genomic analysis of four multidrug-resistant isolates of Acinetobacter baumannii from Georgia. J Glob Antimicrob Resist 2019; 21:363-368. [PMID: 31730823 DOI: 10.1016/j.jgar.2019.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/31/2019] [Accepted: 11/02/2019] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES This study reports the draft genomes of four newly isolated multidrug-resistant (MDR) Acinetobacter baumannii (A. baumannii) isolates (0830, 0365, 4022, and 2846) from western Georgia to identify putative antimicrobial resistance genes (ARGs) and to determine the clonal subtypes of local clinical isolates. METHODS An Illumina MiSeq sequencer was used to perform whole-genome sequencing (WGS). The Vitek 2 automated system was used for microbial identification and antimicrobial resistance profiling. RESULTS Taxonomical identification as A. baumannii was confirmed by WGS. In silico analyses resolved their ARG content and clonal relatedness using the Oxford (Oxf) and Pasteur (Pas) multi-locus sequence typing schemes. Isolates 0365 and 4022 displayed similar allelic profiles corresponding to ST944Oxf/ST78Pas. Isolate 2846 displayed a different allelic profile consistent with ST19Pas/IC 1 (International or European Clone I) and exhibited a novel Oxford ST that was designated as 1868. Isolate 0830 displayed the ST78Pas allelic profile, similar to isolates 0365 and 4022, and also possessed a single allelic mismatch in the gpi gene, resulting in an ST1104Oxf allele profile in the Oxford typing scheme. CONCLUSION Circulating MDR A. baumannii exhibited genetic heterogeneity with variations in the structure and content of genomic A. baumannii resistance islands and encoded multiple putative ARGs. This report represents the first clonal subtype information and genomic characterization of MDR A. baumannii in Georgia and may inform future epidemiological investigations.
Collapse
|
97
|
Shah MW, Yasir M, Farman M, Jiman-Fatani AA, Almasaudi SB, Alawi M, El-Hossary D, Azhar EI. Antimicrobial Susceptibility and Molecular Characterization of Clinical Strains ofAcinetobacter baumanniiin Western Saudi Arabia. Microb Drug Resist 2019; 25:1297-1305. [DOI: 10.1089/mdr.2019.0018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Muhammad Waseem Shah
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Biology Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Yasir
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Farman
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Biology Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Asif A. Jiman-Fatani
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Clinical and Molecular Microbiology Laboratories, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Saad B. Almasaudi
- Biology Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maha Alawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Infection Control & Environmental Health Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Dalia El-Hossary
- Clinical and Molecular Microbiology Laboratories, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Esam I. Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
98
|
Zhu W, Chu Y, Zhang J, Xian W, Xu X, Liu H. Pharmacokinetic and pharmacodynamic profiling of four antimicrobials against Acinetobacter baumannii infection. Microb Pathog 2019; 138:103809. [PMID: 31634531 DOI: 10.1016/j.micpath.2019.103809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 09/20/2019] [Accepted: 10/17/2019] [Indexed: 11/18/2022]
Abstract
BACKGROUND The aim of this study was to evaluate common antimicrobial regimens used in eradicating Acinetobacter baumannii in Shenyang, China. METHODS Monte Carlo simulation was conducted to estimate the probability target attainment (PTA) and cumulative fraction of response (CFR) for imipenem, cefoperazone/sulbactam (2:1), tigecycline and colistin methanesulfonate. RESULTS For the results of PTAs, imipenem following administration of 0.5 g q6 h, 1 g q8 h, and 1 g q6 h for both 0.5 h and 2 h infusion achieved>90% PTAs when MIC was 8 μg/ml; cefoperazone/ sulbactam (2:1) following administration of 4.5 g q6 h and 6 g q6 h achieved>90% PTAs when MIC was 64μg/ml; tigecycline following administration of 50 mg q12 h and 100 mg q12 h achieved>90% PTAs when MIC was 1 μg/ml; colistin methanesulfonate with high dosages (3MU q8 h) could provide high PTA (95.13%) in patients with CLCr<60 ml/min when MIC was 2 μg/ml. As for CFR values of four antibiotics, imipenem achieved the lowest CFR values. For cefoperazone/sulbactam (2:1) and tigecycline, with simulated regimens improvement, the CFR values were both increased, and there were obviously increasing CFR values against Acinetobacter baumannii. For colistin methanesulfonate, the most aggressive dosage of 3MU q8 h could provide satisfactory CFR values (≥86.94%) against Acinetobacter baumannii in patients at various CLCr. CONCLUSION This study suggested that measurement of MICs, individualized therapy and therapeutic drug-level monitoring should be considered together to achieve the optimal drug exposure. That will provide the best chance of achieving the highest probability of a successful clinical or microbiological response, and avoiding the induced resistance.
Collapse
Affiliation(s)
- Wan Zhu
- Department of Health Statistics, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, PR China.
| | - Yunzhuo Chu
- Department of Clinical Laboratory, The First Hospital of China Medical University, Shenyang, Liaoning, PR China.
| | - Jingping Zhang
- Department of Infectious Diseases, The First Hospital of China Medical University, Shenyang, Liaoning, PR China.
| | - Wei Xian
- Department of Health Statistics, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, PR China.
| | - Xueying Xu
- Department of Health Statistics, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, PR China.
| | - Hongbo Liu
- Department of Health Statistics, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, PR China.
| |
Collapse
|
99
|
Abstract
Although the blaOXA-58 gene has been infrequently described in Brazil, contrasting with other bordering South American countries, we verified the maintenance of this resistance determinant over time among carbapenem-resistant Acinetobacter species isolates, not only in nosocomial settings but also in the environment. In addition, to the best of our knowledge, this is the first study to have used WPS analysis to evaluate the genetic surroundings of blaOXA-58 in Brazil. Moreover, the A. seifertii and A. baumannii clinical strains evaluated in this study were recovered 17 years apart in hospitals located in distinct Brazilian geographic regions. We characterize by whole-plasmid-sequence (WPS) two-plasmid-borne blaOXA-58 obtained from Acinetobacter seifertii (Asp-1069) and A. baumannii (Acb-45063) clinical strains recovered 17 years apart from distinct Brazilian regions. Multilocus sequence type (MLST) analysis showed that the Asp-1069 and Acb-45063 strains belong to ST551 and ST15/CC15, respectively. WPS analysis demonstrated that blaOXA-58 was located in two distinct plasmids named pAs1069_a (24,672 bp/44 open reading frames [ORFs]) and pAb45063_b (19,808 bp/24 ORFs), which belong to the GR8/GR23 (repAci23) and GR4 (repAci4) incompatibility groups, respectively. The genetic environments surrounding blaOXA-58 revealed that it was flanked by two intact ISAba3 copies on pAb45063_b, which differed from pAs1069_a. In the latter, the upstream ISAba3 copy was truncated by insertion of ISAba825 element. Although Re27-specific recombination sites were found adjacent to ISAba3-blaOXA-58-ISAba3 arrangement on pAb45063_b, such structures were absent on pAs1069_a. The conserved ISAba125-araC1-lysE arrangement was disrupted by TnaphA6 harboring the aminoglycosides resistance gene aphA6 on pAs1069_a, while an IS26-blaTEM-1-aac(3)-IIa-IS26 genetic structure was found upstream from ISAba3-blaOXA-58-ISAba3 on pAb45063_b. Other two plasmids, pAb45063_a (183,767 bp/209 ORFs) and pAs1069_b (13,129 bp/14 ORFs), were also found in the OXA-58-producing Acinetobacter species strains, harboring the strA and strB genes and the sul2 gene, which confer resistance to streptomycin and sulfonamides, respectively. The plasmid-mediated virulence factors corresponding to genes tonB, spl, glmM, ppa, sulP, and map were found in both strains, as well distinct toxin-antitoxin system-encoding genes stbD and relE (pAs1069_a), brnT and brnA (pAb45063_b), and xreE (pAb45063_a). Although infrequently reported in Brazil, plasmid-borne blaOXA-58 showed a complex and diverse genetic backbone that confers stability in different Acinetobacter species that have been isolated from nosocomial settings over time. IMPORTANCE Although the blaOXA-58 gene has been infrequently described in Brazil, contrasting with other bordering South American countries, we verified the maintenance of this resistance determinant over time among carbapenem-resistant Acinetobacter species isolates, not only in nosocomial settings but also in the environment. In addition, to the best of our knowledge, this is the first study to have used WPS analysis to evaluate the genetic surroundings of blaOXA-58 in Brazil. Moreover, the A. seifertii and A. baumannii clinical strains evaluated in this study were recovered 17 years apart in hospitals located in distinct Brazilian geographic regions.
Collapse
|
100
|
Hu Y, He L, Tao X, Meng F, Zhang J. High DNA Uptake Capacity of International Clone II Acinetobacter baumannii Detected by a Novel Planktonic Natural Transformation Assay. Front Microbiol 2019; 10:2165. [PMID: 31616393 PMCID: PMC6768954 DOI: 10.3389/fmicb.2019.02165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022] Open
Abstract
Acquisition of novel resistance genes is a key driver of multidrug resistance in the nosocomial pathogen Acinetobacter baumannii. To investigate the DNA uptake ability among clinical A. baumannii strains, a planktonic salt-free transformation assay was developed. A total of 142 clinical A. baumannii isolates with divergent genetic distance were selected, and 86 of them belong to international clonal lineage II (ICL2). Using this new transformation assay, 38% of the clinical A. baumannii isolates were natural competent. Among the multidrug-resistant (MDR) isolates, the transformable isolates all belonging to the ICLs, and showed significant higher transformation frequency compared with sensitive isolates. In addition, some of the ICL2 isolates triggered competence much earlier than the sensitive isolates with similar transformation frequencies. This may give them more opportunities to obtain successful transformation in their natural environment and provides an important clue to explain the severe drug resistance and clinical successfulness of ICL2.
Collapse
Affiliation(s)
- Yuan Hu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lihua He
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoxia Tao
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fanliang Meng
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianzhong Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|