51
|
Guo Y, Zhang W, Chen X, Fu J, Cheng W, Song D, Qu X, Yang Z, Zhao K. Timing-dependent LTP and LTD in mouse primary visual cortex following different visual deprivation models. PLoS One 2017; 12:e0176603. [PMID: 28520739 PMCID: PMC5435181 DOI: 10.1371/journal.pone.0176603] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 04/13/2017] [Indexed: 11/23/2022] Open
Abstract
Visual deprivation during the critical period induces long-lasting changes in cortical circuitry by adaptively modifying neuro-transmission and synaptic connectivity at synapses. Spike timing-dependent plasticity (STDP) is considered a strong candidate for experience-dependent changes. However, the visual deprivation forms that affect timing-dependent long-term potentiation(LTP) and long-term depression(LTD) remain unclear. Here, we demonstrated the temporal window changes of tLTP and tLTD, elicited by coincidental pre- and post-synaptic firing, following different modes of 6-day visual deprivation. Markedly broader temporal windows were found in robust tLTP and tLTD in the V1M of the deprived visual cortex in mice after 6-day MD and DE. The underlying mechanism for the changes seen with visual deprivation in juvenile mice using 6 days of dark exposure or monocular lid suture involves an increased fraction of NR2b-containing NMDAR and the consequent prolongation of NMDAR-mediated response duration. Moreover, a decrease in NR2A protein expression at the synapse is attributable to the reduction of the NR2A/2B ratio in the deprived cortex.
Collapse
Affiliation(s)
- Yatu Guo
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China
- * E-mail: (YG); (KXZ)
| | - Wei Zhang
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China
| | - Xia Chen
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China
| | - Junhong Fu
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China
- Department of Ophthalmology, The TEDA International Hospital, Tianjin, China
| | - Wenbo Cheng
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China
- Department of Ophthalmology, The TEDA International Hospital, Tianjin, China
| | - Desheng Song
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China
- Department of Ophthalmology, The TEDA International Hospital, Tianjin, China
| | - Xiaolei Qu
- Department of Ophthalmology, the Second People’s Hospital of Jinan, Shandong, China
| | - Zhuo Yang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
- College of Medicine, Nankai University, Tianjin, China
| | - Kanxing Zhao
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China
- * E-mail: (YG); (KXZ)
| |
Collapse
|
52
|
Aerobic Exercise Effects on Ocular Dominance Plasticity with a Phase Combination Task in Human Adults. Neural Plast 2017; 2017:4780876. [PMID: 28357142 PMCID: PMC5357532 DOI: 10.1155/2017/4780876] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/24/2017] [Accepted: 02/07/2017] [Indexed: 11/18/2022] Open
Abstract
Several studies have shown that short-term monocular patching can induce ocular dominance plasticity in normal adults, in which the patched eye becomes stronger in binocular viewing. There is a recent study showing that exercise enhances this plasticity effect when assessed with binocular rivalry. We address one question, is this enhancement from exercise a general effect such that it is seen for measures of binocular processing other than that revealed using binocular rivalry? Using a binocular phase combination task in which we directly measure each eye's contribution to the binocularly fused percept, we show no additional effect of exercise after short-term monocular occlusion and argue that the enhancement of ocular dominance plasticity from exercise could not be demonstrated with our approach.
Collapse
|
53
|
Chadnova E, Reynaud A, Clavagnier S, Hess RF. Short-term monocular occlusion produces changes in ocular dominance by a reciprocal modulation of interocular inhibition. Sci Rep 2017; 7:41747. [PMID: 28150723 PMCID: PMC5288724 DOI: 10.1038/srep41747] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/03/2017] [Indexed: 01/23/2023] Open
Abstract
Ocular dominance can be modulated by short-term monocular deprivation. This changes the contribution that each eye makes to binocular vision, an example of adult cortical neuroplasticity. Optical imaging in primates and psychophysics in humans suggest these neuroplastic changes occur in V1. Here we use brain imaging (MEG) in normal adults to better understand the nature of these neuroplastic changes. The results suggest that short-term monocular deprivation, whether it be by an opaque or translucent patch, modulates dichoptic inhibitory interactions in a reciprocal fashion; the unpatched eye is inhibited, the patched eye is released from inhibition. These observations locate the neuroplastic changes to a level of visual processing where there are interocular inhibitory interactions prior to binocular combination and help to explain why both binocular rivalry and fusional tasks reveal them.
Collapse
Affiliation(s)
- Eva Chadnova
- McGill Vision Research, Dept. Ophthalmology, McGill University, Montreal, Quebec, Canada
| | - Alexandre Reynaud
- McGill Vision Research, Dept. Ophthalmology, McGill University, Montreal, Quebec, Canada
| | - Simon Clavagnier
- McGill Vision Research, Dept. Ophthalmology, McGill University, Montreal, Quebec, Canada
| | - Robert F. Hess
- McGill Vision Research, Dept. Ophthalmology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
54
|
Short-Term Monocular Deprivation Enhances Physiological Pupillary Oscillations. Neural Plast 2017; 2017:6724631. [PMID: 28163935 PMCID: PMC5253512 DOI: 10.1155/2017/6724631] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/18/2016] [Indexed: 11/17/2022] Open
Abstract
Short-term monocular deprivation alters visual perception in adult humans, increasing the dominance of the deprived eye, for example, as measured with binocular rivalry. This form of plasticity may depend upon the inhibition/excitation balance in the visual cortex. Recent work suggests that cortical excitability is reliably tracked by dilations and constrictions of the pupils of the eyes. Here, we ask whether monocular deprivation produces a systematic change of pupil behavior, as measured at rest, that is independent of the change of visual perception. During periods of minimal sensory stimulation (in the dark) and task requirements (minimizing body and gaze movements), slow pupil oscillations, “hippus,” spontaneously appear. We find that hippus amplitude increases after monocular deprivation, with larger hippus changes in participants showing larger ocular dominance changes (measured by binocular rivalry). This tight correlation suggests that a single latent variable explains both the change of ocular dominance and hippus. We speculate that the neurotransmitter norepinephrine may be implicated in this phenomenon, given its important role in both plasticity and pupil control. On the practical side, our results indicate that measuring the pupil hippus (a simple and short procedure) provides a sensitive index of the change of ocular dominance induced by short-term monocular deprivation, hence a proxy for plasticity.
Collapse
|