51
|
Influence of microRNA on the maintenance of human iron metabolism. Nutrients 2013; 5:2611-28. [PMID: 23846788 PMCID: PMC3738991 DOI: 10.3390/nu5072611] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/19/2013] [Accepted: 06/24/2013] [Indexed: 12/21/2022] Open
Abstract
Iron is an essential nutrient critical for many cellular functions including DNA synthesis, ATP generation, and cellular proliferation. Though essential, excessive iron may contribute to the generation of free radicals capable of damaging cellular lipids, proteins, and nucleic acids. As such, the maintenance and control of cellular iron homeostasis is critical to prevent either iron deficiency or iron toxicity conditions. The maintenance of cellular iron homeostasis is largely coordinated by a family of cytosolic RNA binding proteins known as Iron Regulatory Proteins (IRP) that function to post-transcriptionally control the translation and/or stability of mRNA encoding proteins required for iron uptake, storage, transport, and utilization. More recently, a class of small non-coding RNA known as microRNA (miRNA) has also been implicated in the control of iron metabolism. To date, miRNA have been demonstrated to post-transcriptionally regulate the expression of genes associated with iron acquisition (transferrin receptor and divalent metal transporter), iron export (ferroportin), iron storage (ferritin), iron utilization (ISCU), and coordination of systemic iron homeostasis (HFE and hemojevelin). Given the diversity of miRNA and number of potential mRNA targets, characterizing factors that contribute to alterations in miRNA expression, biogenesis, and processing will enhance our understanding of mechanisms by which cells respond to changes in iron demand and/or iron availability to control cellular iron homeostasis.
Collapse
|
52
|
Russo R, Langella C, Esposito MR, Gambale A, Vitiello F, Vallefuoco F, Ek T, Yang E, Iolascon A. Hypomorphic mutations of SEC23B gene account for mild phenotypes of congenital dyserythropoietic anemia type II. Blood Cells Mol Dis 2013; 51:17-21. [PMID: 23453696 PMCID: PMC3651933 DOI: 10.1016/j.bcmd.2013.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/01/2013] [Indexed: 11/29/2022]
Abstract
Congenital dyserythropoietic anemia type II, a recessive disorder of erythroid differentiation, is due to mutations in SEC23B, a component of the core trafficking machinery COPII. In no case homozygosity or compound heterozygosity for nonsense mutation(s) was found. This study represents the first description of molecular mechanisms underlying SEC23B hypomorphic genotypes by the analysis of five novel mutations. Our findings suggest that reduction of SEC23B gene expression is not associated with CDA II severe clinical presentation; conversely, the combination of a hypomorphic allele with one functionally altered results in more severe phenotypes. We propose a mechanism of compensation SEC23A-mediated which justifies these observations.
Collapse
Affiliation(s)
- Roberta Russo
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II of Naples, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Kelemen O, Convertini P, Zhang Z, Wen Y, Shen M, Falaleeva M, Stamm S. Function of alternative splicing. Gene 2013; 514:1-30. [PMID: 22909801 PMCID: PMC5632952 DOI: 10.1016/j.gene.2012.07.083] [Citation(s) in RCA: 546] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/21/2012] [Accepted: 07/30/2012] [Indexed: 12/15/2022]
Abstract
Almost all polymerase II transcripts undergo alternative pre-mRNA splicing. Here, we review the functions of alternative splicing events that have been experimentally determined. The overall function of alternative splicing is to increase the diversity of mRNAs expressed from the genome. Alternative splicing changes proteins encoded by mRNAs, which has profound functional effects. Experimental analysis of these protein isoforms showed that alternative splicing regulates binding between proteins, between proteins and nucleic acids as well as between proteins and membranes. Alternative splicing regulates the localization of proteins, their enzymatic properties and their interaction with ligands. In most cases, changes caused by individual splicing isoforms are small. However, cells typically coordinate numerous changes in 'splicing programs', which can have strong effects on cell proliferation, cell survival and properties of the nervous system. Due to its widespread usage and molecular versatility, alternative splicing emerges as a central element in gene regulation that interferes with almost every biological function analyzed.
Collapse
Affiliation(s)
- Olga Kelemen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Paolo Convertini
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Zhaiyi Zhang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Yuan Wen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Manli Shen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Marina Falaleeva
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Stefan Stamm
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
54
|
Andolfo I, Alper SL, Delaunay J, Auriemma C, Russo R, Asci R, Esposito MR, Sharma AK, Shmukler BE, Brugnara C, De Franceschi L, Iolascon A. Missense mutations in the ABCB6 transporter cause dominant familial pseudohyperkalemia. Am J Hematol 2013. [PMID: 23180570 DOI: 10.1002/ajh.23357] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Familial Pseudohyperkalemia (FP) is a dominant red cell trait characterized by increased serum [K(+)] in whole blood stored at or below room temperature, without additional hematological abnormalities. Functional gene mapping and sequencing analysis of the candidate genes within the 2q35-q36 critical interval identified-in 20 affected individuals among three multigenerational FP families-two novel heterozygous missense mutations in the ABCB6 gene that cosegregated with disease phenotype. The two genomic substitutions altered two adjacent nucleotides within codon 375 of ABCB6, a porphyrin transporter that, in erythrocyte membranes, bears the Langereis blood group antigen system. The ABCB6 R375Q mutation did not alter the levels of mRNA or protein, or protein localization in mature erythrocytes or erythroid precursor cells, but it is predicted to modestly alter protein structure. ABCB6 mRNA and protein levels increase during in vitro erythroid differentiation of CD34(+) erythroid precursors and the erythroleukemia cell lines HEL and K562. These data suggest that the two missense mutations in residue 375 of the ABCB6 polypeptide found in affected individuals of families with chromosome 2-linked FP could contribute to the red cell K(+) leak characteristic of this condition.
Collapse
|
55
|
Castoldi M, Muckenthaler MU. Regulation of iron homeostasis by microRNAs. Cell Mol Life Sci 2012; 69:3945-52. [PMID: 22678662 PMCID: PMC11114850 DOI: 10.1007/s00018-012-1031-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/04/2012] [Accepted: 05/07/2012] [Indexed: 02/07/2023]
Abstract
Iron homeostasis is maintained at the cellular and systemic levels to assure adequate iron supply while preventing iron overload. The identification of genes mutated in patients with iron-related disorders or animal models with imbalances of iron homeostasis gave insight into the molecular mechanisms underlying processes critical for balancing iron levels, such as iron uptake, storage, export, and monitoring of available iron. MicroRNAs control genes involved in some of these processes adding an additional level of complexity to the regulation of iron metabolism. This review summarizes recent advances how miRNAs regulate iron homeostasis.
Collapse
Affiliation(s)
- Mirco Castoldi
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, 69120, Heidelberg, Germany,
| | | |
Collapse
|
56
|
Wiria AE, Djuardi Y, Supali T, Sartono E, Yazdanbakhsh M. Helminth infection in populations undergoing epidemiological transition: a friend or foe? Semin Immunopathol 2012; 34:889-901. [PMID: 23129304 DOI: 10.1007/s00281-012-0358-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 10/21/2012] [Indexed: 12/21/2022]
Abstract
Helminth infections are highly prevalent in developing countries, especially in rural areas. With gradual development, there is a transition from living conditions that are dominated by infection, poor sanitation, manual labor, and traditional diet to a situation where burden of infections is reduced, infrastructure is improved, sedentary lifestyle dominates, and processed food forms a large proportion of the calorie intake. The combinations of some of the changes in lifestyle and environment are expected to result in alteration of the landscape of diseases, which will become dominated by non-communicable disorders. Here we review how the major helminth infections affect a large proportion of the population in the developing world and discuss their impact on the immune system and the consequences of this for other infections which are co-endemic in the same areas. Furthermore, we address the issue of decreasing helminth infections in many parts of the world within the context of increasing inflammatory, metabolic, and cardiovascular diseases.
Collapse
|
57
|
Abstract
Cell proliferation and differentiation is a complex process involving many cellular mechanisms. One of the best-studied phenomena in cell differentiation is erythrocyte development during hematopoiesis in vertebrates. In recent years, a new class of small, endogenous, non-coding RNAs called microRNAs (miRNAs) emerged as important regulators of gene expression at the post-transcriptional level. Thousands of miRNAs have been identified in various organisms, including protozoa, fungi, bacteria and viruses, proving that the regulatory miRNA pathway is conserved in evolution. There are many examples of miRNA-mediated regulation of gene expression in the processes of cell proliferation, differentiation and apoptosis, and in cancer genesis. Many of the collected data clearly show the dependence of the proteome of a cell on the qualitative and quantitative composition of endogenous miRNAs. Numerous specific miRNAs are present in the hematopoietic erythroid line. This review attempts to summarize the state of knowledge on the role of miRNAs in the regulation of different stages of erythropoiesis. Original experimental data and results obtained with bioinformatics tools were combined to elucidate the currently known regulatory network of miRNAs that guide the process of differentiation of red blood cells.
Collapse
|
58
|
SanMartín CD, Paula-Lima AC, Hidalgo C, Núñez MT. Sub-lethal levels of amyloid β-peptide oligomers decrease non-transferrin-bound iron uptake and do not potentiate iron toxicity in primary hippocampal neurons. Biometals 2012; 25:805-13. [DOI: 10.1007/s10534-012-9545-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 03/26/2012] [Indexed: 10/28/2022]
|
59
|
Intracellular iron trafficking: role of cytosolic ligands. Biometals 2012; 25:711-23. [PMID: 22350471 DOI: 10.1007/s10534-012-9529-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 02/08/2012] [Indexed: 10/28/2022]
Abstract
Iron acquired by cells is delivered to mitochondria for metabolic processing via pathways comprising undefined chemical forms. In order to assess cytosolic factors that affect those iron delivery pathways, we relied on microscopy and flow-cytometry for monitoring iron traffic in: (a) K562 erythroleukemia cells labeled with fluorescent metal-sensors targeted to either cytosol or mitochondria and responsive to changes in labile iron and (b) permeabilized cells that retained metabolically active mitochondria accessible to test substrates. Iron supplied to intact cells as transferrin-Fe(III) or Fe(II)-salts evoked concurrent metal ingress to cytosol and mitochondria. With either supplementation modality, iron ingress into cytosol was mostly absorbed by preloaded chelators, but ingress into mitochondria was fully inhibited only by some chelators, indicating different cytosol-to-mitochondria delivery mechanisms. Iron ingress into cytosol or mitochondria were essentially unaffected by depletion of cytosolic iron ligands like glutathione or the hypothesized 2,5 dihydroxybenzoate (2,5-DHBA) siderophore/chaperone. These ligands also failed to affect mitochondrial iron ingress in permeabilized K562 cells suspended in cytosol-simulating medium. In such medium, mitochondrial iron uptake was >6-eightfold higher for Fe(II) versus Fe(III), showed saturable properties and submicromolar K(1/2) corresponding to cytosolic labile iron levels. When measured in iron(II)-containing media, ligands like AMP, ADP or ATP, did not affect mitochondrial iron uptake whereas in iron(III)-containing media ADP and ATP reduced it and AMP stimulated it. Thus, cytosolic iron forms demonstrably contribute to mitochondrial iron delivery, are apparently not associated with DHBA analogs or glutathione but rather with resident components of the cytosolic labile iron pool.
Collapse
|
60
|
Garrick MD, Zhao L, Roth JA, Jiang H, Feng J, Foot NJ, Dalton H, Kumar S, Garrick LM. Isoform specific regulation of divalent metal (ion) transporter (DMT1) by proteasomal degradation. Biometals 2012; 25:787-93. [PMID: 22310887 DOI: 10.1007/s10534-012-9522-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 01/09/2012] [Indexed: 11/24/2022]
Abstract
Divalent metal ion transporter (DMT1) is the major transporter for iron entrance into mammalian cells and iron exit from endosomes during the transferrin cycle. Four major mRNA isoforms correspond to four protein isoforms, differing at 5'/3' and N-/C-termini, respectively. Isoforms are designated 1A versus 1B reflecting where transcription starts or +iron responsive element (+IRE) versus -IRE reflecting the presence/absence of an IRE in the 3' end of the mRNA. These differences imply regulation at transcriptional and posttranscriptional levels. Many proteins are degraded by a ubiquitination-dependent mechanism. Two different ubiquitin ligases (E3s) appear to be involved in DMT1 ubiquitination: Parkin or neuronal precursor cell-expressed developmentally downregulated 4 (Nedd4) family E3s which often utilize Nedd4 family interacting protein-1 and -2 (Ndfip1 and 2) to ubiquitinate their substrate proteins. Prior data suggest that Parkin ubiquitinates 1B DMT1 but not 1A DMT1 while Nedd4/Ndfips ligate ubiquitin to DMT1 in the duodenum where 1A/+IRE DMT1 predominates. Our assay for whether these systems target DMT1 depends on two HEK293 cell lines that express permanently transfected 1A/+IRE DMT1 or 1B/-IRE DMT1 after induction by doxycycline. Transient transfection with a Parkin construct before induction diminishes 1B/-IRE DMT1 detected by immune-blots but not 1A/+IRE DMT1. Mutant Parkin serves as a control that does not affect DMT1 levels. Thus DMT1 regulation in an isoform specific fashion can occur by ubiquitination and the events involved have implications for DMT1 function and disease processes.
Collapse
Affiliation(s)
- Michael D Garrick
- Department of Biochemistry, University at Buffalo, Buffalo, NY, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Shawki A, Knight PB, Maliken BD, Niespodzany EJ, Mackenzie B. H(+)-coupled divalent metal-ion transporter-1: functional properties, physiological roles and therapeutics. CURRENT TOPICS IN MEMBRANES 2012. [PMID: 23177986 DOI: 10.1016/b978-0-12-394316-3.00005-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Divalent metal-ion transporter-1 (DMT1) is a widely expressed, iron-preferring membrane transport protein. Animal models establish that DMT1 plays indispensable roles in intestinal nonheme-iron absorption and iron acquisition by erythroid precursor cells. Rare mutations in human DMT1 result in severe microcytic-hypochromic anemia. When we express DMT1 in RNA-injected Xenopus oocytes, we observe rheogenic Fe(2+) transport that is driven by the proton electrochemical potential gradient. In that same preparation, DMT1 also transports cadmium and manganese but not copper. Whether manganese metabolism relies upon DMT1 remains unclear but DMT1 contributes to the effects of overexposure to cadmium and manganese in some tissues. There exist at least four DMT1 isoforms that arise from variant transcription of the SLC11A2 gene. Whereas these isoforms display identical functional properties, N- and C-terminal variations contain cues that direct the cell-specific targeting of DMT1 isoforms to discrete subcellular compartments (plasma membrane, endosomes, and lysosomes). An iron-responsive element (IRE) in the mRNA 3'-untranslated region permits the regulation of some isoforms by iron status, and additional mechanisms by which DMT1 is regulated are emerging. Natural-resistance-associated macrophage protein-1 (NRAMP1)-the only other member of the mammalian SLC11 gene family-contributes to antimicrobial function by extruding from the phagolysosome divalent metal ions (e.g. Mn(2+)) that may be essential cofactors for bacteria-derived enzymes or required for bacterial growth. The principal or only intestinal nonheme-iron transporter, DMT1 is a validated therapeutic target in hereditary hemochromatosis (HHC) and other iron-overload disorders.
Collapse
Affiliation(s)
- Ali Shawki
- Department of Molecular & Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | | | | | |
Collapse
|
62
|
|
63
|
Abstract
MicroRNAs are small non-coding RNAs that negatively regulate gene expression through mRNA degradation or translational repression. It is becoming increasingly recognized that miRNAs play central roles in almost all cellular processes, and especially during development. The function of miRNAs in hematopoiesis, including erythropoiesis, is beginning to be elucidated. In this review, we will focus on what is known about miRNA function in various aspects of erythropoiesis and red cell physiology.
Collapse
Affiliation(s)
- John C H Byon
- Division of Hematology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
64
|
Current World Literature. Curr Opin Nephrol Hypertens 2011; 20:561-7. [DOI: 10.1097/mnh.0b013e32834a3de5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
65
|
Effects of chronic ascariasis and trichuriasis on cytokine production and gene expression in human blood: a cross-sectional study. PLoS Negl Trop Dis 2011; 5:e1157. [PMID: 21666788 PMCID: PMC3110165 DOI: 10.1371/journal.pntd.0001157] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 03/14/2011] [Indexed: 12/21/2022] Open
Abstract
Background Chronic soil-transmitted helminth (STH) infections are associated with effects on systemic immune responses that could be caused by alterations in immune homeostasis. To investigate this, we measured the impact in children of STH infections on cytokine responses and gene expression in unstimulated blood. Methodology/Principal Findings Sixty children were classified as having chronic, light, or no STH infections. Peripheral blood mononuclear cells were cultured in medium for 5 days to measure cytokine accumulation. RNA was isolated from peripheral blood and gene expression analysed using microarrays. Different infection groups were compared for the purpose of analysis: STH infection (combined chronic and light vs. uninfected groups) and chronic STH infection (chronic vs. combined light and uninfected groups). The chronic STH infection effect was associated with elevated production of GM-CSF (P = 0.007), IL-2 (P = 0.03), IL-5 (P = 0.01), and IL-10 (P = 0.01). Data reduction suggested that chronic infections were primarily associated with an immune phenotype characterized by elevated IL-5 and IL-10, typical of a modified Th2-like response. Chronic STH infections were associated with the up-regulation of genes associated with immune homeostasis (IDO, P = 0.03; CCL23, P = 0.008, HRK, P = 0.005), down-regulation of microRNA hsa-let-7d (P = 0.01) and differential regulation of several genes associated with granulocyte-mediated inflammation (IL-8, down-regulated, P = 0.0002; RNASE2, up-regulated, P = 0.009; RNASE3, up-regulated, p = 0.03). Conclusions/Significance Chronic STH infections were associated with a cytokine response indicative of a modified Th2 response. There was evidence that STH infections were associated with a pattern of gene expression suggestive of the induction of homeostatic mechanisms, the differential expression of several inflammatory genes and the down-regulation of microRNA has-let-7d. Effects on immune homeostasis and the development of a modified Th2 immune response during chronic STH infections could explain the systemic immunologic effects that have been associated with these infections such as impaired immune responses to vaccines and the suppression of inflammatory diseases. Soil-transmitted helminth (STH or intestinal worm) infections are extremely common infectious diseases of childhood in developing countries. Infections tend be chronic and may last for many years. Chronic STH infections are associated with modulation of the immune response, a consequence of which may be a reduced prevalence of allergic inflammatory diseases such as asthma. The mechanisms by which STH infections suppress inflammatory responses are poorly understood. In this study, we hypothesized that STH infections may affect immune responses through alterations of immune homeostasis (or the steady-state adjustments of the immune system that maintain equilibrium). We investigated the capacity of blood from children classified as having no, light, or chronic STH infections to produce cytokines at rest (i.e. no immunologic stimulation) and the expression of genes in blood samples. Our data show that blood cells of children with chronic STH infections have an altered immune response that is likely to be associated with less allergic inflammation (the modified Th2 response) and that the expression of some inflammatory genes are reduced. Our findings provide insights into the mechanisms by which STH infections suppress immune responses in children to ensure the survival of the parasite and reduce inflammation.
Collapse
|
66
|
Muñoz M, García-Erce JA, Remacha AF. Disorders of iron metabolism. Part 1: molecular basis of iron homoeostasis. J Clin Pathol 2010; 64:281-6. [PMID: 21177266 DOI: 10.1136/jcp.2010.079046] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
IRON FUNCTIONS: Iron is an essential micronutrient, as it is required for satisfactory erythropoietic function, oxidative metabolism and cellular immune response. IRON PHYSIOLOGY: Absorption of dietary iron (1-2 mg/day) is tightly regulated and just balanced against iron loss because there are no active iron excretory mechanisms. Dietary iron is found in haem (10%) and non-haem (ionic, 90%) forms, and their absorption occurs at the apical surface of duodenal enterocytes via different mechanisms. Iron is exported by ferroportin 1 (the only putative iron exporter) across the basolateral membrane of the enterocyte into the circulation (absorbed iron), where it binds to transferrin and is transported to sites of use and storage. Transferrin-bound iron enters target cells-mainly erythroid cells, but also immune and hepatic cells-via receptor-mediated endocytosis. Senescent erythrocytes are phagocytosed by reticuloendothelial system macrophages, haem is metabolised by haem oxygenase, and the released iron is stored as ferritin. Iron will be later exported from macrophages to transferrin. This internal turnover of iron is essential to meet the requirements of erythropoiesis (20-30 mg/day). As transferrin becomes saturated in iron-overload states, excess iron is transported to the liver, the other main storage organ for iron, carrying the risk of free radical formation and tissue damage. REGULATION OF IRON HOMOEOSTASIS: Hepcidin, synthesised by hepatocytes in response to iron concentrations, inflammation, hypoxia and erythropoiesis, is the main iron-regulatory hormone. It binds ferroportin on enterocytes, macrophages and hepatocytes triggering its internalisation and lysosomal degradation. Inappropriate hepcidin secretion may lead to either iron deficiency or iron overload.
Collapse
Affiliation(s)
- Manuel Muñoz
- Transfusion Medicine, School of Medicine, University of Málaga, Málaga, Spain.
| | | | | |
Collapse
|
67
|
Garrick MD. Human iron transporters. GENES AND NUTRITION 2010; 6:45-54. [PMID: 21437029 DOI: 10.1007/s12263-010-0184-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 08/24/2010] [Indexed: 01/17/2023]
Abstract
Human iron transporters manage iron carefully because tissues need iron for critical functions, but too much iron increases the risk of reactive oxygen species. Iron acquisition occurs in the duodenum via divalent metal transporter (DMT1) and ferroportin. Iron trafficking depends largely on the transferrin cycle. Nevertheless, non-digestive tissues have a variety of other iron transporters that may render DMT1 modestly redundant, and DMT1 levels exceed those needed for the just-mentioned tasks. This review begins to consider why and also describes advances after 2008 that begin to address this challenge.
Collapse
Affiliation(s)
- Michael D Garrick
- Department of Biochemistry, 140 Farber Hall, SUNY at Buffalo, 3435 Main St., Buffalo, NY 14214 USA
| |
Collapse
|