51
|
Pantopoulos K, Porwal SK, Tartakoff A, Devireddy L. Mechanisms of mammalian iron homeostasis. Biochemistry 2012; 51:5705-24. [PMID: 22703180 DOI: 10.1021/bi300752r] [Citation(s) in RCA: 425] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Iron is vital for almost all organisms because of its ability to donate and accept electrons with relative ease. It serves as a cofactor for many proteins and enzymes necessary for oxygen and energy metabolism, as well as for several other essential processes. Mammalian cells utilize multiple mechanisms to acquire iron. Disruption of iron homeostasis is associated with various human diseases: iron deficiency resulting from defects in the acquisition or distribution of the metal causes anemia, whereas iron surfeit resulting from excessive iron absorption or defective utilization causes abnormal tissue iron deposition, leading to oxidative damage. Mammals utilize distinct mechanisms to regulate iron homeostasis at the systemic and cellular levels. These involve the hormone hepcidin and iron regulatory proteins, which collectively ensure iron balance. This review outlines recent advances in iron regulatory pathways as well as in mechanisms underlying intracellular iron trafficking, an important but less studied area of mammalian iron homeostasis.
Collapse
Affiliation(s)
- Kostas Pantopoulos
- Lady Davis Institute for Medical Research, Jewish General Hospital and Department of Medicine, McGill University, Montreal, QC, Canada
| | | | | | | |
Collapse
|
52
|
Frazer DM, Wilkins SJ, Darshan D, Badrick AC, McLaren GD, Anderson GJ. Stimulated erythropoiesis with secondary iron loading leads to a decrease in hepcidin despite an increase in bone morphogenetic protein 6 expression. Br J Haematol 2012; 157:615-26. [PMID: 22449175 DOI: 10.1111/j.1365-2141.2012.09104.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 02/24/2012] [Indexed: 12/18/2022]
Abstract
The BMP/SMAD signalling pathway plays an important role in iron homeostasis, regulating hepcidin expression in response to body iron levels. However, the role of this pathway in the reduction in hepcidin associated with increased erythropoiesis (and secondary iron loading) is unclear. To investigate this, we established a mouse model of chronic stimulated erythropoiesis with secondary iron loading using the haemolytic agent phenylhydrazine. We then examined the expression of components of the BMP6/SMAD signalling pathway in these animals. We also examined this pathway in the Hbb(th3/+) mouse, a model of the iron loading anaemia β-thalassaemia intermedia. Increasing doses of phenylhydrazine led to a progressive increase in both liver iron levels and Bmp6 mRNA expression, but, in contrast, hepatic Hamp expression declined. The increase in Bmp6 expression was not associated with a corresponding change in the phosphorylation of hepatic SMAD1/5/8, indicating that stimulated erythropoiesis decreases the ability of BMP6 to alter SMAD phosphorylation. Increased erythropoiesis also reduces the capacity of phosphorylated SMAD (pSMAD) to induce hepcidin, as Hamp levels declined despite no changes in pSMAD1/5/8. Similar results were seen in Hbb(th3/+) mice. Thus the erythroid signal probably affects some components of BMP/SMAD signalling, but also may exert some independent effects.
Collapse
Affiliation(s)
- David M Frazer
- Iron Metabolism Laboratory, Queensland Institute of Medical Research, Brisbane, Australia
| | | | | | | | | | | |
Collapse
|
53
|
Affiliation(s)
- Robert E Fleming
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, USA
| | | |
Collapse
|
54
|
Lee P, Hsu MH, Welser-Alves J, Peng H. Severe microcytic anemia but increased erythropoiesis in mice lacking Hfe or Tfr2 and Tmprss6. Blood Cells Mol Dis 2012; 48:173-8. [PMID: 22244935 DOI: 10.1016/j.bcmd.2011.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 12/15/2011] [Indexed: 12/17/2022]
Abstract
Cell surface proteins Hfe, Tfr2, hemojuvelin and Tmprss6 play key roles in iron homeostasis. Hfe and Tfr2 induce transcription of hepcidin, a small peptide that promotes the degradation of the iron transporter ferroportin. Hemojuvelin, a co-receptor for bone morphogenic proteins, induces hepcidin transcription through a Smad signaling pathway. Tmprss6 (also known as matriptase-2), a membrane serine protease that has been found to bind and degrade hemojuvelin in vitro, is a potent suppressor of hepcidin expression. In order to examine if Hfe and Tfr2 are substrates for Tmprss6, we generated mice lacking functional Hfe or Tfr2 and Tmprss6. We found that double mutant mice lacking functional Hfe or Tfr2 and Tmprss6 exhibited a severe iron deficiency microcytic anemia phenotype mimicking the phenotype of single mutant mice lacking functional Tmprss6 (Tmprss6msk/msk mutant) demonstrating that Hfe and Tfr2 are not substrates for Tmprss6. Nevertheless, the phenotype of the mice lacking Hfe or Tfr2 and Tmprss6 differed from Tmprss6 deficient mice alone, in that the double mutant mice exhibited much greater erythropoiesis. Hfe and Tfr2 have been shown to play important roles in the erythron, independent of their role in regulating liver hepcidin transcription. We demonstrate that lack of functional Tfr2 and Hfe allows for increased erythropoiesis even in the presence of high hepcidin expression, but the high levels of hepcidin levels significantly limit the availability of iron to the erythron, resulting in ineffective erythropoiesis. Furthermore, repression of hepcidin expression by hypoxia was unaffected by the loss of functional Hfe, Tfr2 and Tmprss6.
Collapse
Affiliation(s)
- Pauline Lee
- The Scripps Research Institute, Department of Molecular and Experimental Medicine, La Jolla, CA, USA.
| | | | | | | |
Collapse
|
55
|
Corradini E, Rozier M, Meynard D, Odhiambo A, Lin HY, Feng Q, Migas MC, Britton RS, Babitt JL, Fleming RE. Iron regulation of hepcidin despite attenuated Smad1,5,8 signaling in mice without transferrin receptor 2 or Hfe. Gastroenterology 2011; 141:1907-1914. [PMID: 21745449 PMCID: PMC3634343 DOI: 10.1053/j.gastro.2011.06.077] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 06/24/2011] [Accepted: 06/29/2011] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS HFE and transferrin receptor 2 (TFR2) are each necessary for the normal relationship between body iron status and liver hepcidin expression. In murine Hfe and Tfr2 knockout models of hereditary hemochromatosis (HH), signal transduction to hepcidin via the bone morphogenetic protein 6 (Bmp6)/Smad1,5,8 pathway is attenuated. We examined the effect of dietary iron on regulation of hepcidin expression via the Bmp6/Smad1,5,8 pathway using mice with targeted disruption of Tfr2, Hfe, or both genes. METHODS Hepatic iron concentrations and messenger RNA expression of Bmp6 and hepcidin were compared with wild-type mice in each of the HH models on standard or iron-loading diets. Liver phospho-Smad (P-Smad)1,5,8 and Id1 messenger RNA levels were measured as markers of Bmp/Smad signaling. RESULTS Whereas Bmp6 expression was increased, liver hepcidin and Id1 expression were decreased in each of the HH models compared with wild-type mice. Each of the HH models also showed attenuated P-Smad1,5,8 levels relative to liver iron status. Mice with combined Hfe/Tfr2 disruption were most affected. Dietary iron loading increased hepcidin and Id1 expression in each of the HH models. Compared with wild-type mice, HH mice demonstrated attenuated (Hfe knockout) or no increases in P-Smad1,5,8 levels in response to dietary iron loading. CONCLUSIONS These observations show that Tfr2 and Hfe are each required for normal signaling of iron status to hepcidin via the Bmp6/Smad1,5,8 pathway. Mice with combined loss of Hfe and Tfr2 up-regulate hepcidin in response to dietary iron loading without increases in liver Bmp6 messenger RNA or steady-state P-Smad1,5,8 levels.
Collapse
Affiliation(s)
- Elena Corradini
- Program in Membrane Biology, Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Molly Rozier
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO
| | - Delphine Meynard
- Program in Membrane Biology, Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Adam Odhiambo
- Program in Membrane Biology, Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Herbert Y. Lin
- Program in Membrane Biology, Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Qi Feng
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO
| | - Mary C. Migas
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO
| | - Robert S. Britton
- Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO
| | - Jodie L. Babitt
- Program in Membrane Biology, Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Robert E. Fleming
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO
- Edward A. Doisy Department of Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| |
Collapse
|
56
|
Kohgo Y. [108th Scientific Meeting of the Japanese Society of Internal Medicine: invited lecture: 2. Iron metabolism and iron overload]. NIHON NAIKA GAKKAI ZASSHI. THE JOURNAL OF THE JAPANESE SOCIETY OF INTERNAL MEDICINE 2011; 100:2412-2424. [PMID: 22117330 DOI: 10.2169/naika.100.2412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Affiliation(s)
- Yutaka Kohgo
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| |
Collapse
|
57
|
Chen J, Enns CA. Hereditary hemochromatosis and transferrin receptor 2. Biochim Biophys Acta Gen Subj 2011; 1820:256-63. [PMID: 21864651 DOI: 10.1016/j.bbagen.2011.07.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/26/2011] [Accepted: 07/29/2011] [Indexed: 02/08/2023]
Abstract
BACKGROUND Multicellular organisms regulate the uptake of calories, trace elements, and other nutrients by complex feedback mechanisms. In the case of iron, the body senses internal iron stores, iron requirements for hematopoiesis, and inflammatory status, and regulates iron uptake by modulating the uptake of dietary iron from the intestine. Both the liver and the intestine participate in the coordination of iron uptake and distribution in the body. The liver senses inflammatory signals and iron status of the organism and secretes a peptide hormone, hepcidin. Under high iron or inflammatory conditions hepcidin levels increase. Hepcidin binds to the iron transport protein, ferroportin (FPN), promoting FPN internalization and degradation. Decreased FPN levels reduce iron efflux out of intestinal epithelial cells and macrophages into the circulation. Derangements in iron metabolism result in either the abnormal accumulation of iron in the body, or in anemias. The identification of the mutations that cause the iron overload disease, hereditary hemochromatosis (HH), or iron-refractory iron-deficiency anemia has revealed many of the proteins used to regulate iron uptake. SCOPE OF THE REVIEW In this review we discuss recent data concerning the regulation of iron homeostasis in the body by the liver and how transferrin receptor 2 (TfR2) affects this process. MAJOR CONCLUSIONS TfR2 plays a key role in regulating iron homeostasis in the body. GENERAL SIGNIFICANCE The regulation of iron homeostasis is important. One third of the people in the world are anemic. HH is the most common inherited disease in people of Northern European origin and can lead to severe health complications if left untreated. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders.
Collapse
Affiliation(s)
- Juxing Chen
- Department of Cell and Developmental Biology L215, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA
| | | |
Collapse
|
58
|
Chua ACG, Trinder D, Olynyk JK. Liver and serum iron: discrete regulators of hepatic hepcidin expression. Hepatology 2011; 54:16-9. [PMID: 21618572 DOI: 10.1002/hep.24449] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
59
|
Corradini E, Meynard D, Wu Q, Chen S, Ventura P, Pietrangelo A, Babitt JL. Serum and liver iron differently regulate the bone morphogenetic protein 6 (BMP6)-SMAD signaling pathway in mice. Hepatology 2011; 54:273-284. [PMID: 21488083 PMCID: PMC3277401 DOI: 10.1002/hep.24359] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED The bone morphogenetic protein 6 (BMP6)-SMAD signaling pathway is a central regulator of hepcidin expression and systemic iron balance. However, the molecular mechanisms by which iron is sensed to regulate BMP6-SMAD signaling and hepcidin expression are unknown. Here we examined the effects of circulating and tissue iron on Bmp6-Smad pathway activation and hepcidin expression in vivo after acute and chronic enteral iron administration in mice. We demonstrated that both transferrin saturation and liver iron content independently influence hepcidin expression. Although liver iron content is independently positively correlated with hepatic Bmp6 messenger RNA (mRNA) expression and overall activation of the Smad1/5/8 signaling pathway, transferrin saturation activates the downstream Smad1/5/8 signaling cascade, but does not induce Bmp6 mRNA expression in the liver. Hepatic inhibitory Smad7 mRNA expression is increased by both acute and chronic iron administration and mirrors overall activation of the Smad1/5/8 signaling cascade. In contrast to the Smad pathway, the extracellular signal-regulated kinase 1 and 2 (Erk1/2) mitogen-activated protein kinase (Mapk) signaling pathway in the liver is not activated by acute or chronic iron administration in mice. CONCLUSION Our data demonstrate that the hepatic Bmp6-Smad signaling pathway is differentially activated by circulating and tissue iron to induce hepcidin expression, whereas the hepatic Erk1/2 signaling pathway is not activated by iron in vivo.
Collapse
Affiliation(s)
- Elena Corradini
- Program in Membrane Biology, Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Laboratory of Hereditary and Metabolic Diseases of the Liver, “Mario Coppo” Liver Research Center, University Hospital of Modena and Reggio Emilia, Modena Italy
| | - Delphine Meynard
- Program in Membrane Biology, Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Qifang Wu
- Program in Membrane Biology, Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Shan Chen
- Program in Membrane Biology, Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Paolo Ventura
- Laboratory of Hereditary and Metabolic Diseases of the Liver, “Mario Coppo” Liver Research Center, University Hospital of Modena and Reggio Emilia, Modena Italy
| | - Antonello Pietrangelo
- Laboratory of Hereditary and Metabolic Diseases of the Liver, “Mario Coppo” Liver Research Center, University Hospital of Modena and Reggio Emilia, Modena Italy
| | - Jodie L. Babitt
- Program in Membrane Biology, Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|