51
|
Sins JWR, Mager DJ, Davis SCAT, Biemond BJ, Fijnvandraat K. Pharmacotherapeutical strategies in the prevention of acute, vaso-occlusive pain in sickle cell disease: a systematic review. Blood Adv 2017; 1:1598-1616. [PMID: 29296801 PMCID: PMC5728463 DOI: 10.1182/bloodadvances.2017007211] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/03/2017] [Indexed: 12/17/2022] Open
Abstract
Sickle-cell disease (SCD) is characterized by frequent and painful vaso-occlusive crises (VOCs). Various treatments have been evaluated over the years. However, a clear overview is lacking. The objective of this study was to systematically review all pharmacotherapeutical strategies in the prevention of VOCs beyond hydroxyurea. We performed a systematic literature search (MEDLINE, Embase, CENTRAL). Eligible studies were controlled clinical trials evaluating pharmacotherapeutical interventions targeting the reduction of VOCs in patients with SCD. Primary outcomes were the number or duration of SCD-related pain days, VOCs, or hospital admissions for VOCs. Secondary outcomes included time to first VOC or hospital admission for a VOC. A standardized data extraction sheet was used. The methodological quality of studies was assessed using Cochrane's risk-of-bias tool. A total of 36 studies were included in this review, covering 26 different prophylactic interventions. The most promising interventions for reducing the frequency of either VOCs or hospitalizations were the oral antioxidants l-glutamine and ω-3 fatty acids and the IV antiadhesive agent crizanlizumab. Twenty-three studies did not show any beneficial effect of the intervention under investigation, and 6 studies were either too small or methodologically inadequate to draw conclusions. Because of the heterogeneity of interventions, no meta-analysis was performed. In conclusion, this review identified 3 promising pharmacotherapeutical strategies in the prevention of VOCs in SCD. Importantly, this study highlights the discrepancy between the significant burden of SCD worldwide and the low number of adequate trials performed. This review was registered at PROSPERO (CRD42015025250).
Collapse
Affiliation(s)
- Joep W R Sins
- Department of Pediatric Hematology, Emma Children's Hospital, and
- Department of Hematology, Academic Medical Center, Amsterdam, The Netherlands
| | - David J Mager
- Department of Pediatric Hematology, Emma Children's Hospital, and
- Department of Hematology, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Bart J Biemond
- Department of Hematology, Academic Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
52
|
Lupo F, Tibaldi E, Matte A, Sharma AK, Brunati AM, Alper SL, Zancanaro C, Benati D, Siciliano A, Bertoldi M, Zonta F, Storch A, Walker RH, Danek A, Bader B, Hermann A, De Franceschi L. A new molecular link between defective autophagy and erythroid abnormalities in chorea-acanthocytosis. Blood 2016; 128:2976-2987. [PMID: 27742708 PMCID: PMC5179337 DOI: 10.1182/blood-2016-07-727321] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/24/2016] [Indexed: 01/04/2023] Open
Abstract
Chorea-acanthocytosis is one of the hereditary neurodegenerative disorders known as the neuroacanthocytoses. Chorea-acanthocytosis is characterized by circulating acanthocytes deficient in chorein, a protein of unknown function. We report here for the first time that chorea-acanthocytosis red cells are characterized by impaired autophagy, with cytoplasmic accumulation of active Lyn and of autophagy-related proteins Ulk1 and Atg7. In chorea-acanthocytosis erythrocytes, active Lyn is sequestered by HSP90-70 to form high-molecular-weight complexes that stabilize and protect Lyn from its proteasomal degradation, contributing to toxic Lyn accumulation. An interplay between accumulation of active Lyn and autophagy was found in chorea-acanthocytosis based on Lyn coimmunoprecipitation with Ulk1 and Atg7 and on the presence of Ulk1 in Lyn-containing high-molecular-weight complexes. In addition, chorein associated with Atg7 in healthy but not in chorea-acanthocytosis erythrocytes. Electron microscopy detected multivesicular bodies and membrane remnants only in circulating chorea-acanthocytosis red cells. In addition, reticulocyte-enriched chorea-acanthocytosis red cell fractions exhibited delayed clearance of mitochondria and lysosomes, further supporting the impairment of authophagic flux. Because autophagy is also important in erythropoiesis, we studied in vitro CD34+-derived erythroid precursors. In chorea-acanthocytosis, we found (1) dyserythropoiesis; (2) increased active Lyn; (3) accumulation of a marker of autophagic flux and autolysososme degradation; (4) accumlation of Lamp1, a lysosmal membrane protein, and LAMP1-positive aggregates; and (5) reduced clearance of lysosomes and mitochondria. Our results uncover in chorea-acanthocytosis erythroid cells an association between accumulation of active Lyn and impaired autophagy, suggesting a link between chorein and autophagic vesicle trafficking in erythroid maturation.
Collapse
Affiliation(s)
- Francesca Lupo
- Department of Medicine, University of Verona and Azienda ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Elena Tibaldi
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Alessandro Matte
- Department of Medicine, University of Verona and Azienda ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Alok K Sharma
- Division of Nephrology and Vascular Biology Research Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | | | - Seth L Alper
- Division of Nephrology and Vascular Biology Research Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Carlo Zancanaro
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Donatella Benati
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Angela Siciliano
- Department of Medicine, University of Verona and Azienda ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Mariarita Bertoldi
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Francesca Zonta
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Alexander Storch
- Center for Regenerative Therapies, and
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
- Center for Neurodegenerative Diseases, Dresden, Germany
| | - Ruth H Walker
- Department of Neurology, James J. Peters VA Medical Center, Bronx, NY
- Mount Sinai School of Medicine, New York, NY; and
| | - Adrian Danek
- Department of Neurology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Benedikt Bader
- Department of Neurology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Andreas Hermann
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Lucia De Franceschi
- Department of Medicine, University of Verona and Azienda ospedaliera Universitaria Integrata di Verona, Verona, Italy
| |
Collapse
|
53
|
Matte A, De Falco L, Iolascon A, Mohandas N, An X, Siciliano A, Leboeuf C, Janin A, Bruno M, Choi SY, Kim DW, De Franceschi L. The Interplay Between Peroxiredoxin-2 and Nuclear Factor-Erythroid 2 Is Important in Limiting Oxidative Mediated Dysfunction in β-Thalassemic Erythropoiesis. Antioxid Redox Signal 2015; 23:1284-97. [PMID: 26058667 PMCID: PMC4677567 DOI: 10.1089/ars.2014.6237] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIMS β-Thalassemia is a common inherited red cell disorder characterized by ineffective erythropoiesis and severe oxidative stress. Peroxiredoxin-2 (Prx2), a typical 2-cysteine peroxiredoxin, is upregulated during β-thalassemic erythropoiesis, but its contribution to stress erythropoiesis, a common feature of thalassemia, is yet to be fully defined. RESULTS Here, we showed that Prx2(-/-) mice displayed reactive oxygen species related abnormalities in erythropoiesis similar to that of Hbb(th3/+) mice associated with activation of redox response transcriptional factor nuclear factor-erythroid 2 (Nrf2). We generated β-thalassemic mice genetically lacking Prx2 (Prx2(-/-)Hbb(th3/+)) and documented a worsened β-thalassemic hematological phenotype with severe ineffective erythropoiesis. To further validate a key role of Prx2 in stress erythropoiesis, we administrated fused recombinant PEP1Prx2 to Hbb(th3/+) mice and documented a decrease in ineffective erythropoiesis. We further show that Prx2 effects are mediated by activation of Nrf2 and upregulation of genes that protect against oxidative damage such as gluthatione S-transferase, heme-oxygenase-1, and NADPH dehydrogenase quinone-1. INNOVATION We propose Prx2 as a key antioxidant system and Nrf2 activation is a cellular adaptive process in response to oxidative stress, resulting in upregulation of antioxidant (antioxidant responsive element) genes required to ensure cell survival. CONCLUSION Our data shed new light on adaptive mechanisms against oxidative damage through the interplay of Prx2 and Nrf2 during stress erythropoiesis and suggest new therapeutic options to decrease ineffective erythropoiesis by modulation of endogenous antioxidant systems.
Collapse
Affiliation(s)
- Alessandro Matte
- 1 Department of Medicine, University of Verona-AOUI Verona , Verona, Italy
| | - Luigia De Falco
- 2 CEINGE and Department of Biochemistry, University of Naples , Naples, Italy
| | - Achille Iolascon
- 2 CEINGE and Department of Biochemistry, University of Naples , Naples, Italy
| | | | - Xiuli An
- 3 New York Blood Center , New York, New York
| | - Angela Siciliano
- 1 Department of Medicine, University of Verona-AOUI Verona , Verona, Italy
| | | | - Anne Janin
- 4 Inserm , U1165, Paris, France .,5 Université Paris 7 , Denis Diderot, Paris, France .,6 AP-HP, Hôpital Saint-Louis , Paris, France
| | - Mariasole Bruno
- 1 Department of Medicine, University of Verona-AOUI Verona , Verona, Italy .,2 CEINGE and Department of Biochemistry, University of Naples , Naples, Italy
| | - Soo Young Choi
- 7 Institute of Bioscience and Biotechnology, Hallym University , Chuncheon, Korea
| | - Dae Won Kim
- 7 Institute of Bioscience and Biotechnology, Hallym University , Chuncheon, Korea
| | | |
Collapse
|
54
|
Archer N, Galacteros F, Brugnara C. 2015 Clinical trials update in sickle cell anemia. Am J Hematol 2015; 90:934-50. [PMID: 26178236 PMCID: PMC5752136 DOI: 10.1002/ajh.24116] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 07/08/2015] [Indexed: 02/02/2023]
Abstract
Polymerization of HbS and cell sickling are the prime pathophysiological events in sickle cell disease (SCD). Over the last 30 years, a substantial understanding at the molecular level has been acquired on how a single amino acid change in the structure of the beta chain of hemoglobin leads to the explosive growth of the HbS polymer and the associated changes in red cell morphology. O2 tension and intracellular HbS concentration are the primary molecular drivers of this process, and are obvious targets for developing new therapies. However, polymerization and sickling are driving a complex network of associated cellular changes inside and outside of the erythrocyte, which become essential components of the inflammatory vasculopathy and result in a large range of potential acute and chronic organ damages. In these areas, a multitude of new targets for therapeutic developments have emerged, with several ongoing or planned new therapeutic interventions. This review outlines the key points of SCD pathophysiology as they relate to the development of new therapies, both at the pre-clinical and clinical levels.
Collapse
Affiliation(s)
- Natasha Archer
- Pediatric Hematology/Oncology Dana-Farber/Children’s Hospital Blood Disorders and Cancer Center, Boston, Massachusetts
| | - Frédéric Galacteros
- Centre De Référence Des Syndromes Drépanocytaires Majeurs, Hôpital Henri-Mondor, APHP, UPEC, Creteil, France
| | - Carlo Brugnara
- Department of Laboratory Medicine, Boston Children’s Hospital, Harvard Medical School Boston, Massachusetts
| |
Collapse
|
55
|
Hypoxia-reperfusion affects osteogenic lineage and promotes sickle cell bone disease. Blood 2015; 126:2320-8. [PMID: 26330244 DOI: 10.1182/blood-2015-04-641969] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/07/2015] [Indexed: 11/20/2022] Open
Abstract
Sickle cell disease (SCD) is a worldwide distributed hereditary red cell disorder, characterized by severe organ complication. Sickle bone disease (SBD) affects a large part of the SCD patient population, and its pathogenesis has been only partially investigated. Here, we studied bone homeostasis in a humanized mouse model for SCD. Under normoxia, SCD mice display bone loss and bone impairment, with increased osteoclast and reduced osteoblast activity. Hypoxia/reperfusion (H/R) stress, mimicking acute vaso-occlusive crises (VOCs), increased bone turnover, osteoclast activity (RankL), and osteoclast recruitment (Rank) with upregulation of IL-6 as proresorptive cytokine. This was associated with further suppression of osteogenic lineage (Runx2, Sparc). To interfere with the development of SBD, zoledronic acid (Zol), a potent inhibitor of osteoclast activity/osteoclastogenesis and promoter of osteogenic lineage, was used in H/R-exposed mice. Zol markedly inhibited osteoclast activity and recruitment, promoting osteogenic lineage. The recurrent H/R stress further worsened bone structure, increased bone turnover, depressed osteoblastogenesis (Runx2, Sparc), and increased both osteoclast activity (RankL, Cathepsin k) and osteoclast recruitment (Rank) in SCD mice compared with either normoxic or single-H/R-episode SCD mice. Zol used before recurrent VOCs prevented bone impairment and promoted osteogenic lineage. Our findings support the view that SBD is related to osteoblast impairment, and increased osteoclast activity resulted from local hypoxia, oxidative stress, and the release of proresorptive cytokine such as IL-6. Zol might act on both the osteoclast and osteoblast compartments as multimodal therapy to prevent SBD.
Collapse
|