51
|
Wang Z, Kong L, Zhu L, Hu X, Su P, Song Z. The mixed application of organic and inorganic selenium shows better effects on incubation and progeny parameters. Poult Sci 2020; 100:1132-1141. [PMID: 33518072 PMCID: PMC7858146 DOI: 10.1016/j.psj.2020.10.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/24/2022] Open
Abstract
This experiment aims to study the effects of dietary selenium (Se) sources on the production performance, reproductive performance, and maternal effect of breeder laying hens. A total of 2,112 Hyline brown breeder laying hens of 42 wk of age were selected and randomly divided into 3 groups, with 8 repeats in each group and 88 chickens per repeat. The sources of dietary Se were sodium selenite (SS, added at 0.3 mg/kg), L-selenomethionine (L-SM, added at 0.2 mg/kg), and combination of SS and L-SM (SS 0.15 mg/kg + L-SM 0.15 mg/kg). The pretest period was 7 d, and the breeding period was 49 d. Compared with 0.3 mg/kg SS, the addition of 0.2 mg/kg L-SM in the diet significantly increased the hatchability (P < 0.05) and the Se content (P < 0.05) in egg yolk and chicken embryo tissues and improved the activity of yolk glutathione peroxidase (GSH-px) effectively (P < 0.05). Treatment with 0.2 mg/kg L-SM also reduced the content of yolk malondialdehyde (P < 0.05) and significantly improved the antioxidant performance of 1-day-old chicks, as manifested by increased activity of antioxidant enzymes (GSH-px, total antioxidant capacity and the ability to inhibit hydroxyl radicals) in serum, pectoral, heart, and liver (P < 0.05). This treatment decreased the malondialdehyde content (P < 0.05) and increased the expression of liver glutathione peroxidase 4 and deiodinase 1 mRNA (P < 0.05). Adding L-SM to the diets of chickens increased the hatchability of breeder eggs as well as the amount of Se deposited and antioxidant enzyme activity in breeder eggs and embryos. Compared with SS, L-SM was more effectively transferred from the mother to the embryo and offspring, showing efficient maternal nutrition. For breeder diets, the combination of organic and inorganic Se (0.15 mg/kg SS + 0.15 mg/kg L-SM) is an effective nutrient supplementation technology program for effectively improving the breeding performance of breeders and the antioxidant performance and health level of offspring chicks.
Collapse
Affiliation(s)
- Zhenxin Wang
- Department of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Linglian Kong
- Department of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Lixian Zhu
- College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xiyi Hu
- Department of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Pengcheng Su
- Department of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhigang Song
- Department of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
52
|
Nassef E, Saker O, Shukry M. Effect of Se sources and concentrations on performance, antioxidant defense, and functional egg quality of laying Japanese quail (Coturnix japonica). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:37677-37683. [PMID: 32608001 DOI: 10.1007/s11356-020-09853-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
The study aimed to investigate the effect of Se sources and concentrations on performance, thyroid activity, antioxidant defense, and functional egg quality of Japanese quail. One hundred and twenty, 8-week-old birds were randomly assigned to 1 of 4 dietary treatments in 3 replicates (10 birds/replicate). The treatments contained inorganic sodium selenite (SS) at 0.2 mg/kg diet (SS1 = control) or 0.4 mg/kg diet (SS2) or selenomethionine (SM) at 0.2 mg/kg diet (SM1) or 0.4 mg/kg diet (SM2). Egg production (%) and feed intake were daily recorded, and feed conversion ratio (FCR) was calculated. Blood samples were collected and analyzed for glucose, thyroxine (T4), triiodothyronine (T3), glutathione peroxidase (GPX), and superoxide dismutase (SOD) enzymes. Egg quality was determined in terms of Se content and concentrations of triglycerides, LDL, HDL, and cholesterol. Dietary supplementation of SM2 increased (P < 0.05) egg production (%) and egg mass and decreased FCR compared to the other groups, which showed no significant differences (P > 0.05) in between. It is the first study reporting that the eggs from the quail fed SM2 diet had lower concentrations (P < 0.05) of triglycerides, LDL, and cholesterol than those fed SS. Feeding SM increased (P < 0.05) blood glucose, T4, and T3 levels. Moreover, feeding SM increased the activity of GPX and SOD with a higher significance (P < 0.05) for SM2 than SM1. In conclusion, no adverse effects from supplementation of SM up to 0.4 mg/kg were observed and could improve their performance, antioxidant defense, thyroid activity, and functional egg quality.
Collapse
Affiliation(s)
- Eldsokey Nassef
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Osama Saker
- Department of Biochemistry, Nutritional Deficiency Diseases, and Toxicology, Animal Health Research Institute, Agriculture Research Council (ARC), Kafrelsheikh, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| |
Collapse
|
53
|
Zhang X, Tian L, Zhai S, Lin Z, Yang H, Chen J, Ye H, Wang W, Yang L, Zhu Y. Effects of Selenium-Enriched Yeast on Performance, Egg Quality, Antioxidant Balance, and Egg Selenium Content in Laying Ducks. Front Vet Sci 2020; 7:591. [PMID: 33102547 PMCID: PMC7500446 DOI: 10.3389/fvets.2020.00591] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/23/2020] [Indexed: 12/17/2022] Open
Abstract
This study investigated the effects of dietary selenium-enriched yeast (Se yeast) supplementation on the laying performance, egg quality, plasma antioxidant balance, and egg selenium (Se) content in laying Longyan ducks. A total of 480 32-week-old ducks were randomly divided into four dietary treatments, each consisting of six replicates of 20 ducks. The dietary treatments were a control basal diet and basal diets with supplementation of 0.05, 0.15, and 0.25 mg Se/kg via Se yeast. The analyzed Se contents of the four diets were 0.15, 0.21, 0.36, and 0.43 mg Se/kg, respectively. Dietary Se yeast supplementation had no apparent effects on laying performance and egg quality (p > 0.05), but it improved the antioxidant balance of ducks, as inferred by greater glutathione peroxidase and catalase activities, and decreased the malondialdehyde content in plasma of ducks (p < 0.05). It was suggested that the Se content in the basal diet containing 0.15 mg/kg of Se requirement is adequate for productive performance, but not for the antioxidant balance of laying ducks. Besides that, the Se contents in the yolk, albumen, and whole egg increased linearly as the Se supplementation levels increased. With more feeding days, the Se contents in the yolk and whole egg from non-Se-yeast-supplemented ducks increased linearly (p < 0.05), while those from Se-yeast-supplemented ducks showed a quadratic relationship (p < 0.05). In conclusion, the Se content of the basal diet at 0.15 mg/kg was adequate for laying performance and egg quality traits in laying ducks. Dietary Se yeast supplementation is beneficial to improve the antioxidant balance of laying ducks and increase the Se deposition in eggs for producing Se-enriched eggs. Based on the quadratic model or the quadratic broken-line model analyses, supplemental 0.19 mg Se/kg via Se yeast, with a total equivalent of 0.34 mg Se/kg in the diet, could provide the optimum antioxidant balance in laying ducks. Dietary supplementation of 0.25 mg Se/kg via Se yeast, with a total equivalent of 0.40 mg Se/kg in the diet, could lead to achieving the desired Se content in the whole egg.
Collapse
Affiliation(s)
- Xiufen Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Lu Tian
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | | | - Zhenping Lin
- Institute of Baisha Livestock and Poultry Protospecies Research, Shantou, China
| | - Huiyong Yang
- Institute of Baisha Livestock and Poultry Protospecies Research, Shantou, China
| | - Junpeng Chen
- Institute of Baisha Livestock and Poultry Protospecies Research, Shantou, China
| | - Hui Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Lin Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yongwen Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, China
| |
Collapse
|
54
|
Hou L, Qiu H, Sun P, Zhu L, Chen F, Qin S. Selenium-enriched Saccharomyces cerevisiae improves the meat quality of broiler chickens via activation of the glutathione and thioredoxin systems. Poult Sci 2020; 99:6045-6054. [PMID: 33142523 PMCID: PMC7647820 DOI: 10.1016/j.psj.2020.07.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/08/2020] [Accepted: 07/19/2020] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to investigate the effects of selenium (Se)-enriched Saccharomyces cerevisiae (SSC) on meat quality and to elucidate the underlying mechanisms in broilers. A total of 200 one-day-old Arbor Acres broiler chickens were randomly allocated to one of four treatments with 5 replications of 10 chickens each. Group 1 served as a control and was fed a basal diet without Se supplementation, while groups 2, 3, and 4 were fed the basal diet supplemented with S. cerevisiae (SC), sodium selenite (SS), and SSC, respectively. Breast muscle samples were collected to evaluate meat quality, selenium concentration, oxidative stability, and the mRNA levels of antioxidant enzyme genes on day 42. As compared with groups 1 and 2, SS and SSC supplementation increased Se concentration, glutathione peroxidase (GPx) and thioredoxin reductase (TR) activities, total antioxidant capacity, and the mRNA levels of GPx-1, GPx-4, TR-1, and TR-3 (P < 0.05) and decreased drip loss and malondialdehyde (MDA) content (P < 0.05). As compared with group 3, SSC supplementation increased pH, lightness, yellowness, Se concentration, GPx and superoxide dismutase activities, and the mRNA levels of GPx-1 and GPx-4 (P < 0.05) but decreased drip loss and MDA content (P < 0.05). Thus, SSC improved meat quality and oxidative stability by activating the glutathione and thioredoxin systems, which should be attributed to the combined roles of Se and SC.
Collapse
Affiliation(s)
- Lele Hou
- Institute of Nutrition Metabolic Disease and Poisoning Disease in Animals, Qingdao Agricultural University, Qingdao 266109, China
| | - Huiling Qiu
- Institute of Nutrition Metabolic Disease in Animals, Haidu College, Qingdao Agricultural University, Laiyang 265200, China
| | - Peng Sun
- Institute of Nutrition Metabolic Disease in Animals, Shandong Vocational Animal Science and Veterinary College, Weifang 261061, China
| | - Lianqin Zhu
- Institute of Nutrition Metabolic Disease and Poisoning Disease in Animals, Qingdao Agricultural University, Qingdao 266109, China
| | - Fu Chen
- Institute of Nutrition Metabolic Disease and Poisoning Disease in Animals, Qingdao Agricultural University, Qingdao 266109, China.
| | - Shunyi Qin
- Key Laboratory of Agricultural Animal Breeding and Healthy Breeding of Tianjin, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China.
| |
Collapse
|
55
|
Lu J, Qu L, Ma M, Li YF, Wang XG, Yang Z, Wang KH. Efficacy evaluation of selenium-enriched yeast in laying hens: effects on performance, egg quality, organ development, and selenium deposition. Poult Sci 2020; 99:6267-6277. [PMID: 33142545 PMCID: PMC7647803 DOI: 10.1016/j.psj.2020.07.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/28/2020] [Accepted: 07/18/2020] [Indexed: 12/21/2022] Open
Abstract
The aim of this study was to compare the dynamic changes of egg selenium (Se) deposition and deposition efficiency and to evaluate the efficacy of selenium-enriched yeast (SY) in laying hens over the 84 d feeding period after SY supplementation. A total of one thousand one hundred fifty-two 30-wk-old, Hy-Line Brown hens were randomly assigned to 1 of 6 groups (192 laying hens per group) with 6 replicates of 32 birds each, fed a basal diet (without Se supplementation), basal diet with 0.3 mg/kg of Se from sodium selenite (SS) or basal diets with 0.1, 0.2, 0.3, or 0.4 mg/kg of Se from SY, respectively. The results showed that the Se concentrations in the eggs and breasts from hens fed a SY-supplemented diet were significantly higher than those from hens fed a SS-supplemented diet or a basal diet (P < 0.001). There was a positive linear and quadratic correlation between Se concentrations in the eggs from hens fed a SY-supplemented diet and dietary Se supplementation on days 28, 56, and 84 (r2 = 0.931, 0.932, 0.976, P < 0.001; r2 = 0.946, 0.935, 0.976, P < 0.001), respectively. The Se deposition efficiency in whole eggs from hens fed a basal or SY-supplemented diet weresignificantly higher than those in eggs from hens fed a SS-supplemented diet on days 28, 56, and 84 (P < 0.001), respectively. In addition, there was a positive linear and quadratic correlation between Se concentrations in the eggs from hens fed SY-supplemented diet (r2 = 0.655, 0.779, 0.874, 0.781, P < 0.001; r2 = 0.666, 0.863, 0.944, 0.781, P < 0.001) or SS-supplemented diet (r2 = 0.363, P = 0.002; r2 = 0.440, P = 0.002) and number of feeding days. In conclusion, the organic Se from SY has higher bioavailability and deposition efficiency of Se in whole eggs as compared with inorganic Se from SS. The Se concentrations and Se deposition efficiency in the eggs increased from hens fed a SS- or SY-supplemented diet but decreased from hens fed a basal diet with the extension of the experimental duration. The results indicate that the dietary Se supplementation from SY should be limited to a maximum of 0.1 mg Se/kg complete feed when the eggs and meat produced from hens fed a SY-supplemented diet are used as food for humans directly, whereas up to 0.4 mg/kg organic Se from SY can be used to supplement the diets for laying hens when the products are used as raw materials for producing Se-enriched food.
Collapse
Affiliation(s)
- J Lu
- Poultry Institute, Chinese Academy of Agricultural Sciences, 225125 Yangzhou, Jiangsu, P. R. China; College of Animal Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, P. R. China; Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, 225125 Yangzhou, Jiangsu, P. R. China
| | - L Qu
- Poultry Institute, Chinese Academy of Agricultural Sciences, 225125 Yangzhou, Jiangsu, P. R. China.
| | - M Ma
- Poultry Institute, Chinese Academy of Agricultural Sciences, 225125 Yangzhou, Jiangsu, P. R. China; Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, 225125 Yangzhou, Jiangsu, P. R. China
| | - Y F Li
- Poultry Institute, Chinese Academy of Agricultural Sciences, 225125 Yangzhou, Jiangsu, P. R. China; Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, 225125 Yangzhou, Jiangsu, P. R. China
| | - X G Wang
- Poultry Institute, Chinese Academy of Agricultural Sciences, 225125 Yangzhou, Jiangsu, P. R. China; Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, 225125 Yangzhou, Jiangsu, P. R. China
| | - Z Yang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - K H Wang
- Poultry Institute, Chinese Academy of Agricultural Sciences, 225125 Yangzhou, Jiangsu, P. R. China.
| |
Collapse
|
56
|
Liu G, Zhao Y, Cao S, Luo X, Wang R, Zhang L, Lu L, Liao X. Relative bioavailability of selenium yeast for broilers fed a conventional corn-soybean meal diet. J Anim Physiol Anim Nutr (Berl) 2020; 104:1052-1066. [PMID: 31782562 DOI: 10.1111/jpn.13262] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/24/2019] [Accepted: 11/02/2019] [Indexed: 12/01/2022]
Abstract
The present study was conducted to assess the relative bioavailability of selenium (Se) as Se yeast (SY) relative to sodium selenite (SS) for broilers fed a conventional corn-soybean meal diet. A total of 360 one-d-old Arbor Acres commercial broilers were randomly assigned to 5 treatments with 6 replicates per treatment in a completely randomized design involving a 2 (Se sources: SY and SS) × 2 (added Se levels: 0.20 and 0.40 mg Se/kg) factorial design of treatments plus 1 (a Se-unsupplemented control diet) for 42 days. The results showed that Se concentrations in plasma, liver, heart, breast muscle, pancreas and kidney of broilers on d 21 and 42, glutathione peroxidase (GSH-Px) activity in the pancreas on d 21 as well as in the breast muscle and pancreas on d 42, and GSH-Px mRNA levels in the liver, heart, breast muscle and pancreas on d 21 increased linearly (p < .03) as levels of added Se increased. Furthermore, a difference (p ≤ .05) between SY and SS was detected for Se concentrations in plasma, liver, heart, breast muscle, pancreas and kidney, GSH-Px activity in pancreas on both d 21 and 42, as well as pancreatic GSH-Px mRNA level on d 21. Based on slope ratios from the multiple linear regressions of the above indices, the Se bioavailabilities of SY relative to SS (100%) were 111%-394% (p ≤ .05) when calculated from the Se concentrations in plasma, liver, heart, breast muscle, pancreas, kidney and GSH-Px activities in pancreas on d 21 and 42, as well as GSH-Px mRNA level in pancreas on d 21. The results from this study indicated that the Se from SY was more available for enhancing the Se concentrations in plasma or tissues and the expression and activity of GSH-Px in pancreas of broilers than the Se from SS.
Collapse
Affiliation(s)
- Guoqing Liu
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuzhen Zhao
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sumei Cao
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Runlian Wang
- Department of Animal Science, Guangdong Ocean University, Zhanjiang, China
| | - Liyang Zhang
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Lu
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiudong Liao
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
57
|
Xia WG, Chen W, Abouelezz KFM, Ruan D, Wang S, Zhang YN, Fouad AM, Li KC, Huang XB, Zheng CT. The effects of dietary Se on productive and reproductive performance, tibial quality, and antioxidant capacity in laying duck breeders. Poult Sci 2020; 99:3971-3978. [PMID: 32731984 PMCID: PMC7597912 DOI: 10.1016/j.psj.2020.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/20/2020] [Accepted: 04/01/2020] [Indexed: 12/17/2022] Open
Abstract
This study evaluated the optimal concentrations of dietary Se for the productive and reproductive performance, tibial quality, and antioxidant status in duck breeders aged 23 to 49 wk. In total, 432 Longyan duck breeders aged 22 wk were allotted randomly to 6 treatments, each with 6 replicates of 12 individually caged birds. The experiment lasted for 27 wk, and birds were fed corn-soybean meal-based diets containing 0.11, 0.19, 0.27, 0.35, 0.43, or 0.51 mg Se/kg, respectively. The tested dietary Se levels did not affect egg production and tibial quality of duck breeders. The Se contents of the shell, yolk or albumin, whole egg, and the fertility of set eggs increased in a linear and quadratic manner (P < 0.05) in response to the increased dietary Se level, whereas the yolk malondialdehyde (MDA) and embryonic mortality decreased. The activities of glutathione peroxidase 3 (Gpx3) in plasma and Gpx1 in the erythrocytes and livers of breeder ducks increased in a linear and quadratic manner (P < 0.05) in response to increased dietary Se levels, whereas the total superoxide dismutase (T-SOD) activity increased and the MDA concentration decreased in the liver. The activity of Gpx3 in the plasma and Gpx1 in the erythrocytes and livers of newly hatched ducklings increased linearly (P < 0.01) with the increase in Se level, whereas the T-SOD activity and MDA concentration did not change. In conclusion, diets containing 0.27 mg Se/kg led to the highest egg fertility and hatchability in Longyan duck breeders, and using levels >0.19 mg Se/kg diet enhanced the antioxidant capacity in breeders and their offspring. The regression model indicated that dietary Se levels 0.19, 0.27, 0.28, 0.24, and 0.30 mg/kg are optimal levels to obtain maximum Se deposition efficiency in eggs, egg fertility, Gpx1 activity in erythrocytes and liver in duck breeders, and plasma activity of Gpx3 in newly hatched ducklings, respectively.
Collapse
Affiliation(s)
- W G Xia
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China
| | - W Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China
| | - K F M Abouelezz
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China; Department of Poultry Production, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - D Ruan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China
| | - S Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China
| | - Y N Zhang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China
| | - A M Fouad
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China; Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - K C Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China
| | - X B Huang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China
| | - C T Zheng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China.
| |
Collapse
|
58
|
Yang B, Zhao G, Wang L, Liu S, Tang J. Effects of the Agaricus bisporus stem residue on performance, nutrients digestibility and antioxidant activity of laying hens and its effects on egg storage. Anim Biosci 2020; 34:256-264. [PMID: 32106644 PMCID: PMC7876716 DOI: 10.5713/ajas.19.0853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/19/2020] [Indexed: 11/27/2022] Open
Abstract
Objective The purpose of this experiment was to investigate the effects of the Agaricus bisporus stem residue (ABSR) on the performance, nutrients digestibility, antioxidant activity of laying hens, and its effects on egg storage to determine the appropriate dosage of ABSR, so as to provide a scientific basis for the effective utilization of ABSR. Methods A total of 384 53-wk-old Nongda III layers were randomly divided into six treatments, four replicates in each treatment and 16 birds in each replicate. The control treatment was fed with basic diet, while experimental treatments were fed with diets of 2%, 4%, 6%, 8%, and 10% ABSR respectively. The experimental period was 56 d. Results The results showed that compared with the control treatment, ABSR had no significant effect on laying performance (p>0.05). The crude protein and total energy digestibility of experimental treatments was significantly higher than those of control treatment (p< 0.05). When eggs were stored for 1 wk, 2 wk, and 3 wk at 25°C, there were no significant differences in egg storage between the experimental treatments and the control treatment (p>0.05). The superoxide dismutase (SOD) activity and glutathione peroxidase (GSH-Px) activity in the serum of the experimental treatments were significantly higher than those of the control treatment (p<0.05), and the malonaldehyde (MDA) content did not change dramatically. SOD activity in yolk of experimental treatments was significantly higher than that in control treatment (p<0.05); MDA content in yolk was markedly lower than that in control treatment (p<0.05). The activity of GSH-Px and SOD in yolk of experimental treatments was significantly higher than that of control treatment stored at 25°C for 21 d, and the content of MDA was significantly lower than that of control treatment (p<0.05). Conclusion ABSR can be used to improve the antioxidant activity of laying hens without affecting laying performance.
Collapse
Affiliation(s)
- Bowen Yang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Guoxian Zhao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Lin Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Shujing Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Jie Tang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
59
|
Liu H, Yu Q, Fang C, Chen S, Tang X, Ajuwon KM, Fang R. Effect of Selenium Source and Level on Performance, Egg Quality, Egg Selenium Content, and Serum Biochemical Parameters in Laying Hens. Foods 2020; 9:foods9010068. [PMID: 31936314 PMCID: PMC7023415 DOI: 10.3390/foods9010068] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/04/2020] [Accepted: 01/07/2020] [Indexed: 01/14/2023] Open
Abstract
The objective of this study was to compare the effect of sodium selenite (SS) and selenium yeast (SY) on performance, egg quality, and selenium concentration in eggs and serum biochemical indices in laying hens. Seven hundred twenty healthy Roman laying hens (21 weeks old, 18 weeks in lay) with a similar laying rate (90.27% ± 1.05%) were randomly divided into 5 groups with 6 replicates of 24 hens each. Five diets were prepared as a 1+2×2 factorial arrangement with control and two sources of Se at two levels. Control diet (control) was prepared without adding exogenous selenium (analyzed basal Se content of 0.178 mg/kg). The other four diets were prepared with the control diet supplemented with SY or SS at 0.3 mg/kg (low; L) or 0.5 mg/kg (high; H) to give 5 diets designated as control, SY-L, SY-H, SS-L, and SS-H. The analyzed selenium content in the SY-L, SY-H, SS-L, and SS-H diets were 0.362, 0.572, 0.323, and 0.533 mg/kg respectively. The pre-trial period lasted 7 d, and the experimental period lasted 56 d (30 weeks old), during which the egg production, egg quality, and hen serum parameters were measured. Results showed that selenium source and level had no effect (P > 0.05) on average daily egg weight and feed conversion ratio (FCR). However, the laying rate was different at the L and H levels of supplementation, regardless of source, such that hens that were supplemented had a higher performance than that of the control, and the H level of supplementation lead to a higher laying rate than that of the L level (P < 0.05). There was a difference in average daily feed intake (ADFI) with an interaction in selenium source and level (P < 0.05), such that SS-L was higher than other selenium supplemented treatment or control. There were no significant differences in egg quality (P > 0.05); at the high level, SY had higher egg yolk selenium compared with SS. However, within SY, adding 0.5 mg/kg selenium led to higher egg yolk selenium than 0.3 mg/kg selenium (P < 0.05). Moreover, adding 0.3 mg/kg SY, 0.3 mg/kg, or 0.5 mg/kg SS to the basal diet had no significant effect on the selenium content in the egg (P > 0.05). There were no significant differences in serum biochemical indices among the five groups (P > 0.05). In conclusion, adding a high level of selenium in the diet of laying hens significantly increased egg production, and addition of a high level of selenium in the form of SY led to a higher deposition of selenium in the yolk than that of SS. These results indicate that adding 0.5 mg/kg of SY in the diet of laying hens would result in Se-enriched eggs.
Collapse
Affiliation(s)
- Hu Liu
- College of Animal Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha 410128, China; (H.L.); (Q.Y.); (C.F.); (S.C.); (X.T.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Qifang Yu
- College of Animal Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha 410128, China; (H.L.); (Q.Y.); (C.F.); (S.C.); (X.T.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Chengkun Fang
- College of Animal Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha 410128, China; (H.L.); (Q.Y.); (C.F.); (S.C.); (X.T.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Sijia Chen
- College of Animal Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha 410128, China; (H.L.); (Q.Y.); (C.F.); (S.C.); (X.T.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Xiaopeng Tang
- College of Animal Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha 410128, China; (H.L.); (Q.Y.); (C.F.); (S.C.); (X.T.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Kolapo M. Ajuwon
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907-2054, USA;
| | - Rejun Fang
- College of Animal Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha 410128, China; (H.L.); (Q.Y.); (C.F.); (S.C.); (X.T.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
- Correspondence:
| |
Collapse
|
60
|
Barbé F, Chevaux E, Castex M, Elcoso G, Bach A. Comparison of selenium bioavailability in milk and serum in dairy cows fed different sources of organic selenium. ANIMAL PRODUCTION SCIENCE 2020. [DOI: 10.1071/an18719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Selenium (Se) bioavailability is an important parameter to consider when supplementing trace minerals to optimise animal health and performance.
Aims
To assess the biological transfer of Se in milk and serum of three sources of organic Se in dairy cattle: two different pure selenomethionines (SM1, SM2) and Se-yeast (SY) containing selenomethionine, selenocysteine and other forms of organic Se.
Methods
Forty-five lactating Holstein dairy cows were randomly distributed in nine groups (three sources of organic Se supplemented at three doses: 0.1, 0.2 and 0.3 ppm organic Se in addition to 0.3 ppm of inorganic Se) and the Se concentrations in milk and serum were analysed at different times over 34 days of supplementation. Dry matter intake, milk yield, as well as milk fat and protein contents were recorded daily for each cow. Selenium bioavailability in milk was assessed as the ratio between amount of Se secreted in milk and amount of Se consumed.
Key results
The lowest Se dose (0.1 ppm), independent of source, did not allow detection a different pattern of transfer into milk and serum, suggesting that at this level, the Se supplied was mainly used to cover the animal needs. Supplementing SY at 0.2 and 0.3 ppm resulted in the most consistent secretion of Se into milk, whereas SM2 was most effective at increasing serum Se concentrations.
Conclusions
At the supplementing doses of 0.2 and 0.3 ppm, SY elicits an increased transfer of Se into milk concentrations compared with SM1 and SM2, whereas SM2 induces the greatest increase in Se serum concentrations.
Implications
SY is more effective than SM1 and SM2 at increasing Se transfer into milk. Supplementation of SM2 induces a pattern of Se transfer into milk and serum that differs from the other Se sources suggesting a different metabolism of this particular Se source.
Collapse
|
61
|
LPS-induced sickness behavior is not affected by selenium but is switched off by psychogenic stress in rats. Vet Res Commun 2019; 43:239-247. [PMID: 31760569 DOI: 10.1007/s11259-019-09766-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/02/2019] [Indexed: 01/03/2023]
Abstract
Sickness behavior (SB) is considered part of the adaptive behavioral and neuroimmune changes that occur in response to inflammatory processes. However, SB is a motivational state modulated by the environmental context. The objective of this study was to evaluate if selenium could ameliorate symptoms of SB and if stress would affect these responses. We induced SB in rats using lipopolysaccharide (LPS). We choose selenium based on our findings of LPS-exposure decreasing selenium levels in rats. We exposed these rats to a psychogenic stress and studied motivational modulation paradigms, such as cure of the organism, preservation of the species, and fight or flight. We studied ultrasonic vocalizations, open-field behaviors, body weight, and IL-1 beta and IFN-gamma serum levels. LPS-induced SB was evidenced by decreased motor/exploratory activity and increased proinflammatory mediators' levels. Selenium treatment did not exert beneficial effects on SB, revealing that probably the selenium deficiency was not related to SB. When analyzed with the stress paradigm, the behavior of rats was differentially affected. LPS did not affect behavior in the presence of stress. SB was abrogated during stressor events to prioritize survival behaviors, such as fight-or-flight. Contrarily, the association of LPS, selenium, and stress induced SB even during stressor events, revealing that this combination induced a cumulative toxic effect.
Collapse
|
62
|
Sun LH, Huang JQ, Deng J, Lei XG. Avian selenogenome: response to dietary Se and vitamin E deficiency and supplementation. Poult Sci 2019; 98:4247-4254. [DOI: 10.3382/ps/pey408] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
63
|
Borilova G, Fasiangova M, Harustiakova D, Kumprechtova D, Illek J, Auclair E, Raspoet R. Effects of selenium feed supplements on functional properties of eggs. Journal of Food Science and Technology 2019; 57:32-40. [PMID: 31975705 DOI: 10.1007/s13197-019-04026-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/30/2019] [Accepted: 08/12/2019] [Indexed: 11/26/2022]
Abstract
The aim of the present study was to assess the effects of selenium feed supplements on the functional properties of eggs. The hens in experimental groups were fed diets supplemented with 0.2 mg/kg selenium from sodium selenite (Group 1), selenium-enriched yeast (Group 2), synthetic L-selenomethionine (Group 3), or hydroxy analog of selenomethionine (Group 4). The Control Group (Group C) was fed with basal feed without supplementation. The highest values of albumen gel firmness were shown in Group C eggs; differences with all experimental groups were significant (p < 0.001 to p = 0.009). It was ascertained that albumen gel firmness correlated with albumen pH (rs = 0.490; p < 0.001), which was highest in eggs from non-supplemented hens. Group 1 eggs and Group C eggs showed lower albumen foaming capacity (p < 0.001) compared to eggs from other groups. Both albumen foaming capacity and albumen foam stability were higher in Group 2 eggs than in Group C eggs (p < 0.001). The highest yolk foaming capacity was found in Group 2 eggs (p < 0.001). Sponge cakes baked with Group C eggs had a smaller volume than those baked with eggs from Group 2 (p = 0.005), Group 3 (p = 0.004) and Group 4 (p = 0.024). The results of the study confirmed that selenium added to the laying hen feed significantly affected the monitored functional properties of both albumen and yolk. The most distinctive effect of selenium was shown in eggs from the group supplemented with selenium-enriched yeast, for which the results of albumen foam capacity and stability and yolk foaming capacity were the best.
Collapse
Affiliation(s)
- Gabriela Borilova
- 1Department of Meat Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 61242 Brno, Czech Republic
| | - Miroslava Fasiangova
- 1Department of Meat Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 61242 Brno, Czech Republic
| | - Danka Harustiakova
- 2Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Kamenice 3, 62500 Brno, Czech Republic
- 3Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Dana Kumprechtova
- 4Department of Animal Nutrition, Institute of Animal Science Prague, Pratelstvi 815, 10400 Prague, Czech Republic
| | - Josef Illek
- 5Large Animal Clinical Laboratory, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 61242 Brno, Czech Republic
| | - Eric Auclair
- Phileo by Lesaffre, 137 rue Gabriel Péri, 59700 Marcq-en-Baroeul, France
| | - Ruth Raspoet
- Phileo by Lesaffre, 137 rue Gabriel Péri, 59700 Marcq-en-Baroeul, France
| |
Collapse
|
64
|
Meng T, Liu YL, Xie CY, Zhang B, Huang YQ, Zhang YW, Yao Y, Huang R, Wu X. Effects of Different Selenium Sources on Laying Performance, Egg Selenium Concentration, and Antioxidant Capacity in Laying Hens. Biol Trace Elem Res 2019; 189:548-555. [PMID: 30232747 DOI: 10.1007/s12011-018-1490-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/21/2018] [Indexed: 12/21/2022]
Abstract
Supplementation of selenium (Se) is a common practice in the poultry industry via sodium selenite (SS) and selenium yeast (SY), while the effects of nano-selenium (NS) on laying hens are poorly known. This study aimed to compare the effects of NS, SS, and SY on productivity; selenium (Se) deposition in eggs; and antioxidant capacity in laying hens. A total of 288 30-week-old Brown Hy-line laying hens were randomly assigned into four dietary treatments, which included corn-soybean meal basal diet (Con) without Se sources and basal diets supplemented with 0.3 mg Se/kg as SS, SY, or NS, respectively. The results exhibited that Se-supplemented treatments achieved greater egg production, egg weight, and daily egg mass, also better feed conversion ratio than Con group (p < 0.05). Se supplementation significant increased egg Se concentration and decreased the egg Se deposition efficiency (p < 0.05), while SY or NS supplementation had higher Se deposition efficiency than SS group at 35 days (p < 0.05). Moreover, serum glutathione peroxidase (GSH-Px) activity increased in SS or NS group compared to Con group (p < 0.05). The glutathione peroxidase 4 (GPX-4) mRNA levels in liver were significantly higher (p < 0.05) in SS or SY group than in NS group, and mRNA levels of the methionine (Met) metabolism gene glycine N-methyltranserfase (GNMT) were markedly upregulated (p < 0.05) in SY group compared to SS or NS group. Taken together, the results revealed Se from SY is deposited into eggs more efficiently than Se from NS or SS, probably via enhancing the route of Met metabolism. Meanwhile, it might be concluded that SS or SY supplementation directly regulated GSH-Px activity via enhancing GPx4 level, whereas NS via GPx1, thus affecting body oxidation and development.
Collapse
Affiliation(s)
- Tiantian Meng
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan, 410125, People's Republic of China
| | - Yi-Lin Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan, 410125, People's Republic of China
| | - Chun-Yan Xie
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| | - Bin Zhang
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Yi-Qiang Huang
- Xingjia Bio-Engineering Co., Ltd., Changsha, 410300, China
| | - Ya-Wei Zhang
- Xingjia Bio-Engineering Co., Ltd., Changsha, 410300, China
| | - Yajun Yao
- Xingjia Bio-Engineering Co., Ltd., Changsha, 410300, China
| | - Ruilin Huang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan, 410125, People's Republic of China
| | - Xin Wu
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan, 410125, People's Republic of China.
| |
Collapse
|
65
|
Lu J, Qu L, Shen M, Wang X, Guo J, Hu Y, Dou T, Wang K. Effects of high-dose selenium-enriched yeast on laying performance, egg quality, clinical blood parameters, organ development, and selenium deposition in laying hens. Poult Sci 2019; 98:2522-2530. [DOI: 10.3382/ps/pey597] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 01/21/2019] [Indexed: 01/11/2023] Open
|
66
|
Yang J, Zhang M, Zhou Y. Effects of selenium-enriched Bacillus sp. compounds on growth performance, antioxidant status, and lipid parameters breast meat quality of Chinese Huainan partridge chicks in winter cold stress. Lipids Health Dis 2019; 18:63. [PMID: 30871550 PMCID: PMC6417213 DOI: 10.1186/s12944-019-1015-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/10/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Both selenium (Se) and probiotic Bacillus regulate the metabolism to help defense clod stress and improve the meat quality in breeding chicks. The purpose of this study was to evaluate the effect of supplemental Se and Bacillus in the form of Se-enriched Bacillus (SECB) on the growth performance, lipid parameters, breast Se and antibiotic levels, and breast meat quality of chicken in winter cold stress. METHODS Five hundred 1-d-old chickens were divided into five groups randomly: Control, inorganic Se, compound Bacillus, SECB, and antibiotic. The feed duration was 56 d. RESULTS After 28 d of treatment, chicks feed SECB or compound Bacillus had higher body weights than the control, and after 56 d, chicks given either SECB or compound Bacillus had higher body weights than the control chicks or those given inorganic Se. Adding SECB to feed significantly increased the lightness, redness, and yellowness of breast meat, improved the water-holding capacity, and reduced the shear force and cooking loss. The concentration of Se in the breast muscle very significantly increased after SECB and inorganic Se supplementation, which was opposite to the concentration of flavomycin in antibiotic supplemented chicks. The antioxidative status of plasma and breast meat was significantly improved with added compound Bacillus and SECB: the total antioxidant capacity, total superoxide dismutase, and glutathione peroxidase ability in the breast muscle significantly improved, and the malondialdehyde concentration in plasma decreased. The levels of total cholesterol plasma triglyceride and very-low-density lipoprotein cholesterol in the plasma and breast muscle was decreased compared to that of the control, while the plasma high-density lipoprotein cholesterol concentration increased. CONCLUSIONS In conclusion, SECB supplementation promoted the body growth, antioxidative status, and Se concentrations in the plasma and breast meat, and also improved the breast meat quality.
Collapse
Affiliation(s)
- Jiajun Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Yuanminyuan West Road, Haidian District, Beijing, 100094, China
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agriculture Science, NongKe South of Road, Hefei, 230031, Anhui, China
| | - Minhong Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Yuanminyuan West Road, Haidian District, Beijing, 100094, China.
| | - Ying Zhou
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Yuanminyuan West Road, Haidian District, Beijing, 100094, China
| |
Collapse
|
67
|
Haug A, Vhile SG, Berg J, Hove K, Egelandsdal B. Feeding potentially health promoting nutrients to finishing bulls changes meat composition and allow for product health claims. Meat Sci 2018; 145:461-468. [DOI: 10.1016/j.meatsci.2018.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/27/2018] [Accepted: 07/11/2018] [Indexed: 01/07/2023]
|