51
|
Jung E, Song N, Lee Y, Kwon G, Kwon S, Lee D. H2O2-activatable hybrid prodrug nanoassemblies as a pure nanodrug for hepatic ischemia/reperfusion injury. Biomaterials 2022; 284:121515. [DOI: 10.1016/j.biomaterials.2022.121515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 11/02/2022]
|
52
|
Yang Y, Gao J, Wang S, Wang W, Zhu FL, Wang X, Liang S, Feng Z, Lin S, Zhang L, Chen X, Cai G. Efficacy of umbilical cord mesenchymal stem cell transfusion for the treatment of severe AKI: a protocol for a randomised controlled trial. BMJ Open 2022; 12:e047622. [PMID: 35190406 PMCID: PMC8862499 DOI: 10.1136/bmjopen-2020-047622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Acute kidney injury (AKI) is a common and severe clinical problem that is associated with high mortality, a long hospital stays and high healthcare resource consumption. Approximately a quarter of AKI survivors will develop chronic kidney disease. Mesenchymal stem cells (MSCs) are multipotent stem cells with antiapoptotic, immunomodulatory, antioxidative and proangiogenic properties. Therefore, MSCs have been considered as a potential new therapy for the treatment of AKI. Several clinical trials have been performed, but the results have been inconsistent. This trial investigated whether MSCs can improve renal recovery and mortality in patients with severe AKI. METHODS AND ANALYSIS One hundred subjects suffering from severe AKI will participate in this patient-blinded, randomised, placebo-controlled, parallel design clinical trial. Participants will be randomly assigned to receive two doses of MSCs or placebo (saline) on days 0 and 7. Urinary biomarkers of renal injury and repair will be measured using commercially available ELISA kits. The main outcome measures are changes in renal function levels within the first 28 days following MSC infusion. ETHICS AND DISSEMINATION The study was approved by the Ethics Committee of the Chinese PLA General Hospital. The findings of the study will be disseminated through public and scientific channels. TRIAL REGISTRATION NUMBER NCT04194671.
Collapse
Affiliation(s)
- Yuanjun Yang
- Department of Nephrology, Chinese PLA General Hospital, Beijing, China
| | - Jianjun Gao
- Department of Nephrology, Chinese PLA General Hospital, Beijing, China
| | - Siyang Wang
- Department of Nephrology, Chinese PLA General Hospital, Beijing, China
| | - Wenjuan Wang
- Department of Nephrology, Chinese PLA General Hospital, Beijing, China
| | - Fang-Lei Zhu
- Department of Nephrology, Chinese PLA General Hospital, Beijing, China
| | - Xiaolong Wang
- Department of Nephrology, Chinese PLA General Hospital, Beijing, China
| | - Shuang Liang
- Department of Nephrology, Chinese PLA General Hospital, Beijing, China
| | - Zhe Feng
- Department of Nephrology, Chinese PLA General Hospital, Beijing, China
| | - Shupeng Lin
- Department of Nephrology, Chinese PLA General Hospital, Beijing, China
| | - Li Zhang
- Department of Nephrology, Chinese PLA General Hospital, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
53
|
Kim HM, Jeong SG, Hwang IM, Park HW. Efficient Citrus ( Citrus unshiu) Byproduct Extract-Based Approach for Lactobacillus sakei WiKim31 Shelf-Life Extension. ACS OMEGA 2021; 6:35334-35341. [PMID: 34984265 PMCID: PMC8717389 DOI: 10.1021/acsomega.1c04335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/07/2021] [Indexed: 05/09/2023]
Abstract
Lactic acid bacteria produce various bioactive compounds widely used in human healthcare. However, studies on cryoprotective agents for the efficient storage of lactic acid bacteria after freeze-drying are still lacking. Here, we report the shelf-life extension effects of a highly efficient and eco-friendly cryoprotective agent and a cold adaptation method on Lactobacillus sakei WiKim31. Cold adaptation of L. sakei WiKim31 increased exopolysaccharide expression in response to abiotic stress. As a possible cryoprotective agent, the citrus byproduct (CP) contains a variety of sugars, amino acids, and cations, exhibiting high antioxidant activity. L. sakei WiKim31 powders formulated with CP or a mixture of soy powder (SP) and CP exhibited high cell viability at 58.3 and 76.3%, respectively, after 56 days of storage. These results indicate that CP can be efficiently used as a novel cryoprotective agent either alone or in combination with SP to improve the storage conditions of L. sakei WiKim31 and preserve it longer.
Collapse
|
54
|
Jia G, Mao H, Zhang Y, Ni Y, Chen Y. Apigenin alleviates neomycin-induced oxidative damage via the Nrf2 signaling pathway in cochlear hair cells. Front Med 2021; 16:637-650. [PMID: 34921675 DOI: 10.1007/s11684-021-0864-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/25/2021] [Indexed: 10/19/2022]
Abstract
Oxidative stress plays an important role in the pathogenesis of aminoglycoside-induced hearing loss and represents a promising target for treatment. We tested the potential effect of apigenin, a natural flavonoid with anticancer, anti-inflammatory, and antioxidant activities, on neomycin-induced ototoxicity in cochlear hair cells in vitro. Results showed that apigenin significantly ameliorated the loss of hair cells and the accumulation of reactive oxygen species upon neomycin injury. Further evidence suggested that the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway was activated by apigenin treatment. Disruption of the Nrf2 axis abolished the effects of apigenin on the alleviation of oxidative stress and subsequent apoptosis of hair cells. This study provided evidence of the protective effect of apigenin on cochlear hair cells and its underlying mechanism.
Collapse
Affiliation(s)
- Gaogan Jia
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Huanyu Mao
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Yanping Zhang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Yusu Ni
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China. .,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China.
| | - Yan Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China. .,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
55
|
Makled MN, El-Awady MS, Abdel-Aziz RR, Shehab El-Din AB, Ammar EM, Gameil NM. Pomegranate extract ameliorates renal ischemia/reperfusion injury in rats via suppressing NF-κB pathway. Hum Exp Toxicol 2021; 40:S573-S582. [PMID: 34802289 DOI: 10.1177/09603271211041998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Inflammation and oxidative stress are the major pathways involved in ischemia-reperfusion (I/R)-induced renal injury. This study was designed to evaluate the potential effect of pomegranate against I/R-induced renal injury. I/R injury was induced in nephrectomized rats by unilateral occlusion of the left renal pedicle for 45 min followed by 24 h of perfusion. Pomegranate succeeded to decrease serum levels of creatinine, potassium, and urea nitrogen, along with increasing creatinine clearance. Pomegranate also decreased I/R-induced changes in histopathological examination. Pomegranate attenuated the renal inflammatory response reflected by the suppression of nuclear factor κB p65 DNA binding activity, the upregulation of inhibitory protein kappa B-alpha mRNA expression, the downregulation of mRNA and protein expression of tumor necrosis factor α, in addition to the reduced myeloperoxidase activity and mRNA expression. Additionally, pomegranate attenuated oxidative stress likely through the modulation of lipid peroxidation and antioxidant levels reflected by the decreased MDA content and the increased glutathione level and superoxide dismutase activity. Results confirm the potential protective effect of pomegranate against I/R-induced renal injury through its anti-inflammatory and anti-oxidant effects mediated through the upregulation of inhibitory protein kappa B-alpha, the inhibition of NF-κB activity, and the associated TNF-α release, neutrophil infiltration, and oxidative stress.
Collapse
Affiliation(s)
- Mirhan N Makled
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, 158395Mansoura University, Mansoura, Egypt
| | - Mohammed S El-Awady
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, 158395Mansoura University, Mansoura, Egypt
| | - Rania R Abdel-Aziz
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, 158395Mansoura University, Mansoura, Egypt
| | - Ahmed B Shehab El-Din
- Nephrology and Urology Center, Faculty of Medicine, 158395Mansoura University, Mansoura, Egypt
| | - Elsayed M Ammar
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, 158395Mansoura University, Mansoura, Egypt
| | - Nariman M Gameil
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, 158395Mansoura University, Mansoura, Egypt
| |
Collapse
|
56
|
Zheng S, Chen Y, Wang Z, Che Y, Wu Q, Yuan S, Zhong X. Combination of matrine and tacrolimus alleviates acute rejection in murine heart transplantation by inhibiting DCs maturation through ROS/ERK/NF-κB pathway. Int Immunopharmacol 2021; 101:108218. [PMID: 34673300 DOI: 10.1016/j.intimp.2021.108218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/29/2022]
Abstract
Matrine, an alkaloid derived from traditional Chinese herbs, has been confirmed to regulate immunity and exert anti-inflammatory effects. Matrine injection has been widely used in clinic therapy for anti-tumor and anti-inflammatory diseases. Heart transplantation(HT) is the only solution for the end-stage heart failure, but it is restricted by the cardiac allograft rejection. One of the important pathophysiological processes of post-transplantation rejection is inflammatory cell infiltration. Matrine has been shown to exert a positive protective effect against oxidative stress injury and inflammation, which likely benefits allograft survival. However, it remains unclear whether matrine inhibits alloimmunity or allograft rejection. In this study, we established the heart transplantation model in mouse and extracted bone marrow-derived dendritic cells (BMDCs) to explore the function and mechanism of matrine in heart transplantation. Moreover, combination treatment with matrine and tacrolimus(FK506) had a synergistic effect in preventing acute rejection of heart transplants. Here we found that matrine can prolong the survival of post-transplant and inhibit inflammatory cell infiltration in transplanted hearts of mice. At the same time, matrine increased Treg ratio and decreased CD4+/CD8 + ratio in mice. More importantly, matrine inhibited DCs maturation in mice and reduced oxidative damage and apoptosis in allograft hearts. Furthermore, matrine also downregulated NF-κB pathway and upregulated ERK1/2 signaling pathway. Overall, our study reveals a novel immunosuppressive agent that has the potential to reduce the side effects of existing immunosuppressive agents when used in combination with them.
Collapse
Affiliation(s)
- Sihao Zheng
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan 430060, Hubei, China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, China
| | - Yuanyang Chen
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan 430060, Hubei, China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, China
| | - Zhiwei Wang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan 430060, Hubei, China.
| | - Yanjia Che
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan 430060, Hubei, China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, China
| | - Qi Wu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan 430060, Hubei, China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, China
| | - Shun Yuan
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan 430060, Hubei, China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, China
| | - Xiaohan Zhong
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan 430060, Hubei, China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, China
| |
Collapse
|
57
|
Yang D, Yang R, Shen J, Huang L, Men S, Wang T. Sinensetin attenuates oxygen-glucose deprivation/reperfusion-induced neurotoxicity by MAPK pathway in human cerebral microvascular endothelial cells. J Appl Toxicol 2021; 42:683-693. [PMID: 34664717 DOI: 10.1002/jat.4250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 11/10/2022]
Abstract
Sinensetin is a polymethoxylated flavone with anti-inflammatory and anti-oxidative activities. This work aimed to explore the function and mechanism of sinensetin in oxygen and glucose deprivation/reperfusion (OGD/R)-induced neurotoxicity. The overlapping target genes of cerebral stroke and sinensetin were determined according to GeneCards and ParmMapper tools and were subjected to Gene Ontology (GO) annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Human cerebral microvascular endothelial cells (HCMECs) were stimulated with OGD/R. Neurotoxicity was investigated by Cell Counting Kit-8, lactate dehydrogenase (LDH) release, reactive oxygen species (ROS) level, qRT-PCR, and TUNEL analysis. The proteins (p38, JNK, and ERK) in mitogen-activated protein kinase (MAPK) signaling were measured using Western blotting. Total of 50 overlapping target genes of cerebral stroke and sinensetin were predicted. Pathway analysis showed they might be involved in the MAPK pathway. Sinensetin attenuated OGD/R-induced neurotoxicity by mitigating viability reduction, LDH release, ROS generation, inflammatory response, and apoptosis in HCMECs. Sinensetin weakened OGD/R-induced activation of the MAPK pathway via decreasing the phosphorylation of p38, JNK, and ERK. The pathway inhibitors mitigated the activation of the MAPK signaling, and sinensetin exacerbated this effect. The inhibitors reversed OGD/R-induced neurotoxicity in HCMECs, and sinensetin contributed to this role. Overall, sinensetin prevents OGD/R-induced neurotoxicity through decreasing the activation of MAPK pathway.
Collapse
Affiliation(s)
- Dong Yang
- Department of Critical Care Medicine, Nanshi Hospital of Nanyang, Nanyang, China
| | - Ronggang Yang
- Department of Critical Care Medicine, Nanshi Hospital of Nanyang, Nanyang, China
| | - Jiangyi Shen
- Department of Critical Care Medicine, Nanshi Hospital of Nanyang, Nanyang, China
| | - Lu Huang
- Department of Critical Care Medicine, Nanshi Hospital of Nanyang, Nanyang, China
| | - Shuai Men
- Department of Critical Care Medicine, Nanshi Hospital of Nanyang, Nanyang, China
| | - Tiancai Wang
- Department of Critical Care Medicine, Nanshi Hospital of Nanyang, Nanyang, China
| |
Collapse
|
58
|
Keskin H, Keskin F, Tavaci T, Halici H, Yuksel TN, Ozkaraca M, Bilen A, Halici Z. Neuroprotective effect of roflumilast under cerebral ischaemia/reperfusion injury in juvenile rats through NLRP-mediated inflammatory response inhibition. Clin Exp Pharmacol Physiol 2021; 48:1103-1110. [PMID: 33686709 DOI: 10.1111/1440-1681.13493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/24/2022]
Abstract
This study aims to investigate the protective effect of roflumilast, a phosphodiesterase (PDE)-4 enzyme inhibitor, and demonstrate its possible role in the development prevention of cerebral ischemia/reperfusion injury (CI/RI) after stroke induced by carotid artery ligation in juvenile rats. The rats were randomly divided into five groups: healthy group without any treatment, healthy group administered with 1 mg/kg roflumilast, CI group not administered with roflumilast, CI group administered with 0.5 mg/kg roflumilast, and CI group administered with 1 mg/kg roflumilast. In the CI groups, reperfusion was achieved 2h after ischemia induction; in the roflumilast groups, this drug was intraperitoneally administered immediately after reperfusion and at the 12th hour. At the end of 24h, the rats were sacrificed and their brain tissues removed for examination. The mRNA expressions obtained with real-time PCR of IL-1β, TNF-α, and NLRP3 significantly increased in the CI/RI-induced groups compared with the control group, and this increase was significantly lower in the groups administered with roflumilast compared with the CI/RI-induced groups. Moreover, ELISA revealed that both IL-1 β and IL-6 brain levels were significantly higher in the CI/RI-induced groups than in the controls. This increase was significantly lower in the groups administered with roflumilast compared with the CI/RI-induced groups. Histopathological studies revealed that the values closest to those of the healthy group were obtained from the roflumilast groups. Nissl staining revealed that the Nissl bodies manifested normal density in the healthy and roflumilast-administered healthy groups, but were rare in the CI/RI-induced groups. Roflumilast treatment increased these decreased Nissl bodies with increasing doses. Observations indicated that the Nissl body density was close to the value in the healthy group in the CI/RI-induced group administered with 1 mg/kg roflumilast. Overall, roflumilast reduced cellular damage caused by CI/RI in juvenile rats, and this effect may be mediated by NLRP3.
Collapse
Affiliation(s)
- Halil Keskin
- Division of Paediatric Intensive Care Unit, Department of Paediatrics, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Filiz Keskin
- Division of Paediatric Neurology, Department of Paediatrics, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Taha Tavaci
- Department of Pharmacology, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Hamza Halici
- Department of Pharmacology, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Tugba Nurcan Yuksel
- Department of Pharmacology, Namik Kemal University Faculty of Medicine, Tekirdag, Turkey
| | - Mustafa Ozkaraca
- Department of Pathology, Cumhuriyet University Faculty of Veterinary, Sivas, Turkey
| | - Arzu Bilen
- Division of Endocrinology, Department of Internal Medicine, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Zekai Halici
- Department of Pharmacology, Ataturk University Faculty of Medicine, Erzurum, Turkey
- Clinical Research, Development and Design Application and Research Center, Ataturk University, Erzurum, Turkey
| |
Collapse
|
59
|
Zhang H, Zhang RH, Liao XM, Yang D, Wang YC, Zhao YL, Xu GB, Liu CH, Li YJ, Liao SG, Zhou M. Discovery of β-Carboline Derivatives as a Highly Potent Cardioprotectant against Myocardial Ischemia-Reperfusion Injury. J Med Chem 2021; 64:9166-9181. [PMID: 34132541 DOI: 10.1021/acs.jmedchem.1c00384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Timely myocardial reperfusion salvages ischemic myocardium from infarction, whereas reperfusion itself induces cardiomyocyte death, which is called myocardial ischemia/reperfusion (MI/R) injury. Herein, β-carboline derivative 17c was designed and synthesized with obvious myocardial protective activity for the first time. Pretreatment of 17c effectively protected the cardiomyocyte H9c2 cells from H2O2-induced lactate dehydrogenase leakage and restored the endogenous antioxidants, superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Besides, 17c effectively protected the mitochondria through decreasing the reactive oxygen species overproduction and enhancing the mitochondrial membrane potential. As a result, 17c significantly reduced the necrosis of cardiomyocytes in H2O2-induced oxidative stress, which was more potent than polydatin. In MI/R injury rats, 17c pretreatment obviously increased the levels of SOD and GSH-Px and inhibited the apoptosis of cardiomyocytes. Through this way, the size of myocardial infarction was significantly reduced after MI/R injury in vivo, better than that of polydatin, suggesting that 17c is a promising cardioprotectant for the prevention of MI/R injury.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P. R. China.,School of Pharmacy, Guizhou Medical University, Guian New District, , Guizhou 550025, P. R. China
| | - Rong-Hong Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P. R. China.,Center for Tissue Engineering and Stem Cell Research, Key Laboratory of Regenerative Medicine of Guizhou Province, Guizhou Medical University, Guiyang 550004, P. R. China
| | - Xiang-Ming Liao
- School of Pharmacy, Guizhou Medical University, Guian New District, , Guizhou 550025, P. R. China
| | - Dan Yang
- School of Pharmacy, Guizhou Medical University, Guian New District, , Guizhou 550025, P. R. China
| | - Yu-Chan Wang
- School of Pharmacy, Guizhou Medical University, Guian New District, , Guizhou 550025, P. R. China
| | - Yong-Long Zhao
- School of Pharmacy, Guizhou Medical University, Guian New District, , Guizhou 550025, P. R. China
| | - Guo-Bo Xu
- School of Pharmacy, Guizhou Medical University, Guian New District, , Guizhou 550025, P. R. China
| | - Chun-Hua Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P. R. China.,School of Pharmacy, Guizhou Medical University, Guian New District, , Guizhou 550025, P. R. China
| | - Yong-Jun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P. R. China.,School of Pharmacy, Guizhou Medical University, Guian New District, , Guizhou 550025, P. R. China
| | - Shang-Gao Liao
- School of Pharmacy, Guizhou Medical University, Guian New District, , Guizhou 550025, P. R. China
| | - Meng Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P. R. China.,School of Pharmacy, Guizhou Medical University, Guian New District, , Guizhou 550025, P. R. China
| |
Collapse
|
60
|
Yang Y, Geng X, Chi K, Liu C, Liu R, Chen X, Hong Q, Cai G. Ultrasound enhances the therapeutic potential of mesenchymal stem cells wrapped in greater omentum for aristolochic acid nephropathy. Stem Cell Res Ther 2021; 12:261. [PMID: 33941258 PMCID: PMC8091698 DOI: 10.1186/s13287-021-02243-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) have been reported to promote regeneration in both subjects with acute kidney injury (AKI) and chronic kidney disease (CKD), but their efficacy remains limited, probably because most of the cells accumulate in the lungs, liver, and spleen after an intravenous infusion. Therefore, ultrasound-guided administration of MSCs represents a possible approach to solve this problem. The greater omentum is used to promote cell survival due to its rich vasculature. We hypothesized that ultrasound-guided administration of MSCs combined with greater omentum might be more curative than currently available approaches. Methods In this study, we established an aristolochic acid nephropathy (AAN) model by intraperitoneally administering aristolochic acid I sodium salt (AA-I) at a dose of 5 mg/kg body weight on alternate days for 4 weeks. Subsequently, a laparotomy was performed, and the left kidney from which the capsule had been removed was wrapped with the greater omentum. A dose of 2 × 107 MSCs was injected into the space between the greater omentum and the left kidney. Equal amounts of MSCs were administered under ultrasound guidance every second week for a total of 4 treatments. Mice were sacrificed 4 weeks after surgery. Serum creatinine and blood urea levels were measured to assess renal function. qPCR, Western blot, and histological analyses were conducted to further investigate the therapeutic mechanism of MSCs. Results Ultrasound-guided injection of MSCs into the greater omentum that surrounds the kidney enriched cells in the kidney region for up to 5 days. Renal function tests indicated that MSCs improved renal function to a great extent, as reflected by decreased blood urea nitrogen and serum creatinine levels. In addition, histological analyses showed that MSCs noticeably attenuated kidney injury, as evidenced by the amelioration of tubular necrosis and peritubular interstitial fibrosis. Mitigation of renal interstitial fibrosis was further confirmed by immunohistochemistry, qPCR, and western blotting after MSC treatment. Moreover, immunofluorescence staining revealed that MSCs alleviated inflammatory responses by increasing the counts of CD206+ cells and decreasing the counts of CD68+ cells. MSC migration was initiated in response to AA-I-treated renal epithelial cells in an in vitro migration assay. Conclusions These findings suggested that administration of MSCs into the cavity formed by the injured kidney and the greater omentum under ultrasound guidance improved renal function, attenuated kidney injury, and mitigated renal interstitial fibrosis and inflammatory responses. Thus, this approach might be a safe and effective therapy for CKD. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02243-7.
Collapse
Affiliation(s)
- Yuanjun Yang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing, 100853, China
| | - Xiaodong Geng
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing, 100853, China
| | - Kun Chi
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing, 100853, China
| | - Chao Liu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing, 100853, China
| | - Ran Liu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing, 100853, China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing, 100853, China
| | - Quan Hong
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing, 100853, China.
| | - Guangyan Cai
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing, 100853, China.
| |
Collapse
|
61
|
Liu X, Xu Y, Liu F, Pan Y, Miao L, Zhu Q, Tan S. The Feasibility of Antioxidants Avoiding Oxidative Damages from Reactive Oxygen Species in Cryopreservation. Front Chem 2021; 9:648684. [PMID: 33718331 PMCID: PMC7952315 DOI: 10.3389/fchem.2021.648684] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Cryopreservation prolongs the storage time of cells and plays an important role in modern biology, agriculture, plant science and medicine. During cryopreservation, cells may suffer many damages, such as osmotic dehydration, large ice puncture and oxidative damages from reactive oxygen species (ROS). Classic cryoprotectants (CPAs) are failing to dispose of ROS, while antioxidants can turn ROS into harmless materials and regulate oxidative stress. The combination of antioxidants and CPAs can improve the efficiency of cryopreservation while negative results may occur by misuse of antioxidants. This paper discussed the feasibility of antioxidants in cryopreservation.
Collapse
Affiliation(s)
- Xiangjian Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yiming Xu
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China
| | - Fenglin Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yuxin Pan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Lu Miao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
62
|
Chang X, Zhao Z, Zhang W, Liu D, Ma C, Zhang T, Meng Q, Yan P, Zou L, Zhang M. Natural Antioxidants Improve the Vulnerability of Cardiomyocytes and Vascular Endothelial Cells under Stress Conditions: A Focus on Mitochondrial Quality Control. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6620677. [PMID: 33552385 PMCID: PMC7847351 DOI: 10.1155/2021/6620677] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/08/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease has become one of the main causes of human death. In addition, many cardiovascular diseases are accompanied by a series of irreversible damages that lead to organ and vascular complications. In recent years, the potential therapeutic strategy of natural antioxidants in the treatment of cardiovascular diseases through mitochondrial quality control has received extensive attention. Mitochondria are the main site of energy metabolism in eukaryotic cells, including myocardial and vascular endothelial cells. Mitochondrial quality control processes ensure normal activities of mitochondria and cells by maintaining stable mitochondrial quantity and quality, thus protecting myocardial and endothelial cells against stress. Various stresses can affect mitochondrial morphology and function. Natural antioxidants extracted from plants and natural medicines are becoming increasingly common in the clinical treatment of diseases, especially in the treatment of cardiovascular diseases. Natural antioxidants can effectively protect myocardial and endothelial cells from stress-induced injury by regulating mitochondrial quality control, and their safety and effectiveness have been preliminarily verified. This review summarises the damage mechanisms of various stresses in cardiomyocytes and vascular endothelial cells and the mechanisms of natural antioxidants in improving the vulnerability of these cell types to stress by regulating mitochondrial quality control. This review is aimed at paving the way for novel treatments for cardiovascular diseases and the development of natural antioxidant drugs.
Collapse
Affiliation(s)
- Xing Chang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, China
- Guang'anmen Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Zhenyu Zhao
- Wangjing Hospital, China Academy of Chinese Medical Sciences, China
| | - Wenjin Zhang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, China
- College of Pharmacy, Ningxia Medical University, Ningxia, China
| | - Dong Liu
- China Academy of Chinese Medical Sciences, Institute of the History of Chinese Medicine and Medical Literature, Beijing, China
| | - Chunxia Ma
- Shandong Analysis and Test Centre, Qilu University of Technology, Jinan, China
| | - Tian Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Qingyan Meng
- College of Pharmacy, Ningxia Medical University, Ningxia, China
| | - Peizheng Yan
- College of Pharmacy, Ningxia Medical University, Ningxia, China
| | - Longqiong Zou
- Chongqing Sanxia Yunhai Pharmaceutical Co., Ltd., Chongqing, China
| | - Ming Zhang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, China
| |
Collapse
|
63
|
Rossier MF. The Cardiac Mineralocorticoid Receptor (MR): A Therapeutic Target Against Ventricular Arrhythmias. Front Endocrinol (Lausanne) 2021; 12:694758. [PMID: 34262530 PMCID: PMC8274808 DOI: 10.3389/fendo.2021.694758] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/10/2021] [Indexed: 01/03/2023] Open
Abstract
Mineralocorticoid antagonists have been shown to be useful in the treatment of severe heart failure and may even save lives in this context. However, the reason for the beneficial action of these drugs, as well as the physiological role played by the cardiac mineralocorticoid receptor (MR), are still poorly understood. While the proinflammatory action of aldosterone on the heart and the resulting fibrosis partly explain the improvement due to the anti-mineralocorticoid therapy, the reduction in sudden death is probably related to a lower occurrence of ventricular arrhythmias. In this review, the author explains the physiological mechanism linking the positive chronotropic response induced by aldosterone observed in vitro with isolated ventricular cardiomyocytes and the increased risk of ventricular arrhythmias reported in vivo in hyperaldosteronism. He describes the molecular steps involved between MR activation and acceleration of spontaneous myocyte contractions, including expression of a specific micro RNA (miR204), down-regulation of a silencing transcription factor (NRSF), and re-expression of a fetal gene encoding a low threshold voltage-gated calcium channel (CaV3.2). Finally, he provides evidence suggesting aldosterone-independent and redox-sensitive mechanisms of MR activation in cardiac myocytes. Taken together, this information suggests that the use of anti-mineralocorticoid therapy could benefit the heart by preventing ventricular arrhythmias, not only in established hyperaldosteronism, but also in various pathological situations such as Cushing's disease, oxidative stress, or even diabetes mellitus.
Collapse
Affiliation(s)
- Michel F. Rossier
- Service of Clinical Chemistry & Toxicology, Hospital of Valais, Sion, Switzerland
- Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- *Correspondence: Michel F. Rossier,
| |
Collapse
|