51
|
Hu Z, Cano I, D’Amore PA. Update on the Role of the Endothelial Glycocalyx in Angiogenesis and Vascular Inflammation. Front Cell Dev Biol 2021; 9:734276. [PMID: 34532323 PMCID: PMC8438194 DOI: 10.3389/fcell.2021.734276] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/12/2021] [Indexed: 12/21/2022] Open
Abstract
The endothelial glycocalyx is a negatively charged, carbohydrate-rich structure that arises from the luminal surface of the vascular endothelium and is comprised of proteoglycans, glycoproteins, and glycolipids. The glycocalyx, which sits at the interface between the endothelium and the blood, is involved in a wide array of physiological and pathophysiological processes, including as a mechanotransducer and as a regulator of inflammation. Most recently, components of the glycocalyx have been shown to play a key role in controlling angiogenesis. In this review, we briefly summarize the structure and function of the endothelial glycocalyx. We focus on its role and functions in vascular inflammation and angiogenesis and discuss the important unanswered questions in this field.
Collapse
Affiliation(s)
- Zhengping Hu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, United States
- Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Issahy Cano
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, United States
- Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Patricia A. D’Amore
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, United States
- Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
- Department of Pathology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
52
|
Rattila S, Kleefeldt F, Ballesteros A, Beltrame JS, L Ribeiro M, Ergün S, Dveksler G. Pro-angiogenic effects of pregnancy-specific glycoproteins in endothelial and extravillous trophoblast cells. Reproduction 2021; 160:737-750. [PMID: 33065549 DOI: 10.1530/rep-20-0169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/20/2020] [Indexed: 01/23/2023]
Abstract
We previously reported that binding to heparan sulfate (HS) is required for the ability of the placentally secreted pregnancy-specific glycoprotein 1 (PSG1) to induce endothelial tubulogenesis. PSG1 is composed of four immunoglobulin-like domains but which domains of the protein bind to HS remains unknown. To analyze the interaction of PSG1 with HS, we generated several recombinant proteins, including the individual domains, chimeric proteins between two PSG1 domains, and mutants. Using flow cytometric and surface plasmon resonance studies, we determined that the B2 domain of PSG1 binds to HS and that the positively charged amino acids encompassed between amino acids 43-59 are required for this interaction. Furthermore, we showed that the B2 domain of PSG1 is required for the increase in the formation of tubes by endothelial cells (EC) including a human endometrial EC line and two extravillous trophoblast (EVT) cell lines and for the pro-angiogenic activity of PSG1 observed in an aortic ring assay. PSG1 enhanced the migration of ECs while it increased the expression of matrix metalloproteinase-2 in EVTs, indicating that the pro-angiogenic effect of PSG1 on these two cell types may be mediated by different mechanisms. Despite differences in amino acid sequence, we observed that all human PSGs bound to HS proteoglycans and confirmed that at least two other members of the family, PSG6 and PSG9, induce tube formation. These findings contribute to a better understanding of the pro-angiogenic activity of human PSGs and strongly suggest conservation of this function among all PSG family members.
Collapse
Affiliation(s)
- Shemona Rattila
- Department of Pathology, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Angela Ballesteros
- Molecular Physiology and Biophysics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Jimena S Beltrame
- Laboratory of Physiology and Pharmacology of Reproduction, Centre for Pharmacological and Botanical Studies (CONICET - School of Medicine, University of Buenos Aires), Buenos Aires, Argentina
| | - Maria L Ribeiro
- Laboratory of Physiology and Pharmacology of Reproduction, Centre for Pharmacological and Botanical Studies (CONICET - School of Medicine, University of Buenos Aires), Buenos Aires, Argentina
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
53
|
Alshammari FOFO, Al-Saraireh YM, Youssef AMM, Al-Sarayra YM, Alrawashdeh HM. Glypican-1 Overexpression in Different Types of Breast Cancers. Onco Targets Ther 2021; 14:4309-4318. [PMID: 34366675 PMCID: PMC8334627 DOI: 10.2147/ott.s315200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose Treatment of metastatic breast cancer patients is challenging and remains a major underlying cause of female mortality. Understanding molecular alterations in tumor development is critical to identify novel biomarkers and targets for cancer diagnosis and therapy. One of the aberrant cancer expressions gaining recent research interest is glypican-1. Several studies reported strong glypican-1 expression in various types of human cancers. However, none of these investigated glypican-1 expression in a large cohort of breast cancer histopathological subtypes. Patients and Methods Immunohistochemistry was used to assess glypican-1 expression in 220 breast cancer patients and its relation to demographic and clinical features, as well as important prognostic immunohistochemical markers for breast cancer. Results Intense glypican-1 expression was recognized in all breast cancer histopathological subtypes. Normal, healthy breast tissue displayed a heterogeneous low expression (20%). Importantly, a strong differential in glypican-1 expression was determined between normal and malignant breast tissues. Moreover, there was a significantly high rate of glypican-1 expression in advanced grades of breast cancer patients and larger tumor sizes. Unfortunately, the glypican-1 expression demonstrated no obvious relationship with the expression of various biomarkers in breast cancer. Conclusion This study may establish glypican-1 as a promising new therapeutic target for the development of therapy in breast cancer.
Collapse
Affiliation(s)
- Fatemah O F O Alshammari
- Department of Medical Lab technology, Faculty of health sciences, The Public Authority for Applied Education and Training, Kuwait, Kuwait
| | - Yousef M Al-Saraireh
- Department of Pharmacology, Faculty of Medicine, Mutah University, Al-karak, Jordan
| | - Ahmed M M Youssef
- Department of Pharmacology, Faculty of Pharmacy, Mutah University, Al-karak, Jordan
| | | | | |
Collapse
|
54
|
Heparan sulfate analogues regulate tumor-derived exosome formation that attenuates exosome functions in tumor processes. Int J Biol Macromol 2021; 187:481-491. [PMID: 34298051 DOI: 10.1016/j.ijbiomac.2021.07.110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/03/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022]
Abstract
Heparan sulfate (HS) is involved in many biological activities, including the biogenesis and uptake of exosomes, which are related to the occurrence and development of tumors. This study investigated the role of HS analogues (heparin, low molecular weight heparin, and 6-O-desulfated heparin) in modulating exosome secretion, composition and functions. Exosomes derived from B16F10 cells exposed to different HS analogues were isolated and characterized by TEM, western blotting and Nanosight analyses. The number, size and protein cargo of exosomes secreted by HS analogues-induced B16F10 cells were detected. The findings indicated the reduced tumor-derived exosome secretion and protein cargo as reflected by lower levels of CD63, TSG101, heparinase and IL-6 in exosomes derived from heparin-induced B16F10 cells as compared with 6-O-desulfated heparin-induced tumor cells. Further functional assays demonstrated that exosomes from tumor cells exposed to heparin weakened tumor proliferation, migration and invasion most significantly among various exosomes derived from B16F10 cells treated with different HS analogues. Moreover, the sulfate group at 6-O position of heparan sulfate has been proved to play an important role in tumor-derived exosome formation and functions. This study suggested a vital view to develop more specific and efficient HS-based strategies in cancer treatment for targeting tumor-derived exosomes.
Collapse
|
55
|
Douek AM, Amiri Khabooshan M, Henry J, Stamatis SA, Kreuder F, Ramm G, Änkö ML, Wlodkowic D, Kaslin J. An Engineered sgsh Mutant Zebrafish Recapitulates Molecular and Behavioural Pathobiology of Sanfilippo Syndrome A/MPS IIIA. Int J Mol Sci 2021; 22:ijms22115948. [PMID: 34073041 PMCID: PMC8197930 DOI: 10.3390/ijms22115948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/29/2022] Open
Abstract
Mucopolysaccharidosis IIIA (MPS IIIA, Sanfilippo syndrome type A), a paediatric neurological lysosomal storage disease, is caused by impaired function of the enzyme N-sulfoglucosamine sulfohydrolase (SGSH) resulting in impaired catabolism of heparan sulfate glycosaminoglycan (HS GAG) and its accumulation in tissues. MPS IIIA represents a significant proportion of childhood dementias. This condition generally leads to patient death in the teenage years, yet no effective therapy exists for MPS IIIA and a complete understanding of the mechanisms of MPS IIIA pathogenesis is lacking. Here, we employ targeted CRISPR/Cas9 mutagenesis to generate a model of MPS IIIA in the zebrafish, a model organism with strong genetic tractability and amenity for high-throughput screening. The sgshΔex5-6 zebrafish mutant exhibits a complete absence of Sgsh enzymatic activity, leading to progressive accumulation of HS degradation products with age. sgshΔex5-6 zebrafish faithfully recapitulate diverse CNS-specific features of MPS IIIA, including neuronal lysosomal overabundance, complex behavioural phenotypes, and profound, lifelong neuroinflammation. We further demonstrate that neuroinflammation in sgshΔex5-6 zebrafish is largely dependent on interleukin-1β and can be attenuated via the pharmacological inhibition of Caspase-1, which partially rescues behavioural abnormalities in sgshΔex5-6 mutant larvae in a context-dependent manner. We expect the sgshΔex5-6 zebrafish mutant to be a valuable resource in gaining a better understanding of MPS IIIA pathobiology towards the development of timely and effective therapeutic interventions.
Collapse
Affiliation(s)
- Alon M. Douek
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; (A.M.D.); (M.A.K.); (S.-A.S.); (F.K.)
| | - Mitra Amiri Khabooshan
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; (A.M.D.); (M.A.K.); (S.-A.S.); (F.K.)
| | - Jason Henry
- Neurotoxicology Lab, School of Science (Biosciences), RMIT University, Bundoora, VIC 3083, Australia; (J.H.); (D.W.)
| | - Sebastian-Alexander Stamatis
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; (A.M.D.); (M.A.K.); (S.-A.S.); (F.K.)
| | - Florian Kreuder
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; (A.M.D.); (M.A.K.); (S.-A.S.); (F.K.)
| | - Georg Ramm
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, VIC 3800, Australia;
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Minna-Liisa Änkö
- Centre for Reproductive Health and Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia;
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Donald Wlodkowic
- Neurotoxicology Lab, School of Science (Biosciences), RMIT University, Bundoora, VIC 3083, Australia; (J.H.); (D.W.)
| | - Jan Kaslin
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; (A.M.D.); (M.A.K.); (S.-A.S.); (F.K.)
- Correspondence: ; Tel.: +61-3-9902-9613; Fax: +61-3-9902-9729
| |
Collapse
|
56
|
Abstract
INTRODUCTION The high failure rate in drug discovery remains a costly and time-consuming challenge. Improving the odds of success in the early steps of drug development requires disease models with high biological relevance for biomarker discovery and drug development. The adoption of three-dimensional (3D) cell culture systems over traditional monolayers in cell-based assays is considered a promising step toward improving the success rate in drug discovery. AREAS COVERED In this article, the author focuses on new technologies for 3D cell culture and their applications in cancer drug discovery. Besides the most common 3D cell-culture systems for tumor cells, the article emphasizes the need for 3D cell culture technologies that can mimic the complex tumor microenvironment and cancer stem cell niche. EXPERT OPINION There has been a rapid increase in 3D cell culture technologies in recent years in an effort to more closely mimic in vivo physiology. Each 3D cell culture system has its own strengths and weaknesses with regard to in vivo tumor growth and the tumor microenvironment. This requires careful consideration of which 3D cell culture system is chosen for drug discovery and should be based on factors like drug target and tumor origin.
Collapse
Affiliation(s)
- Sigrid A Langhans
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE
| |
Collapse
|
57
|
Mang D, Roy SR, Zhang Q, Hu X, Zhang Y. Heparan Sulfate-Instructed Self-Assembly Selectively Inhibits Cancer Cell Migration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17236-17242. [PMID: 33830729 DOI: 10.1021/acsami.1c00934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Heparan sulfate (HS) has important emerging roles in oncogenesis, which represents potential therapeutic strategies for human cancers. However, due to the complexity of the HS signaling network, HS-targeted synthetic cancer therapeutics has never been successfully devised. To conquer the challenge, we developed HS-instructed self-assembling peptides by decorating the "Cardin-Weintraub" sequence with aromatic amino acids. The HS-binding interactions induce localized accumulation of synthetic peptides triggering molecular self-assembly in the vicinity of highly expressed Heparan sulfate proteoglycans (HSPGs) on the cancer cell membrane. The nanostructures hinder the binding of HSPG with metastasis promoting protein-heparin-binding EGF-like growth factor (HBEGF) inhibiting the activation of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK). Our study proved that HS-instructed self-assembly is a promising synthetic therapeutic strategy for targeted cancer migration inhibition.
Collapse
Affiliation(s)
- Dingze Mang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna son, Okinawa 904-0495, Japan
| | - Sona Rani Roy
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna son, Okinawa 904-0495, Japan
| | - Qizheng Zhang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna son, Okinawa 904-0495, Japan
| | - Xunwu Hu
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna son, Okinawa 904-0495, Japan
| | - Ye Zhang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna son, Okinawa 904-0495, Japan
| |
Collapse
|
58
|
Hoekstra ME, Vijver SV, Schumacher TN. Modulation of the tumor micro-environment by CD8 + T cell-derived cytokines. Curr Opin Immunol 2021; 69:65-71. [PMID: 33862306 DOI: 10.1016/j.coi.2021.03.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 01/01/2023]
Abstract
Upon their activation, CD8+ T cells in the tumor micro-environment (TME) secrete cytokines such as IFNγ, TNFα, and IL-2. While over the past years a major interest has developed in the antigenic signals that induce such cytokine release, our understanding of the cells that subsequently sense these CD8+ T-cell secreted cytokines is modest. Here, we review the current insights into the spreading behavior of CD8+ T-cell-secreted cytokines in the TME. We argue for a model in which variation in the mode of cytokine secretion, cytokine half-life, receptor-mediated clearance, cytokine binding to extracellular components, and feedback or forward loops, between different cytokines or between individual tumors, sculpts the local tissue response to natural and therapy-induced T-cell activation in human cancer.
Collapse
Affiliation(s)
- Mirjam E Hoekstra
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Saskia V Vijver
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ton N Schumacher
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
59
|
Syndecan-4 as a Pathogenesis Factor and Therapeutic Target in Cancer. Biomolecules 2021; 11:biom11040503. [PMID: 33810567 PMCID: PMC8065655 DOI: 10.3390/biom11040503] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is an important cause of morbidity and mortality worldwide. Advances in research on the biology of cancer revealed alterations in several key pathways underlying tumorigenesis and provided molecular targets for developing new and improved existing therapies. Syndecan-4, a transmembrane heparan sulfate proteoglycan, is a central mediator of cell adhesion, migration and proliferation. Although several studies have demonstrated important roles of syndecan-4 in cell behavior and its interactions with growth factors, extracellular matrix (ECM) molecules and cytoskeletal signaling proteins, less is known about its role and expression in multiple cancer. The data summarized in this review demonstrate that high expression of syndecan-4 is an unfavorable biomarker for estrogen receptor-negative breast cancer, glioma, liver cancer, melanoma, osteosarcoma, papillary thyroid carcinoma and testicular, kidney and bladder cancer. In contrast, in neuroblastoma and colorectal cancer, syndecan-4 is downregulated. Interestingly, syndecan-4 expression is modulated by anticancer drugs. It is upregulated upon treatment with zoledronate and this effect reduces invasion of breast cancer cells. In our recent work, we demonstrated that the syndecan-4 level was reduced after trastuzumab treatment. Similarly, syndecan-4 levels are also reduced after panitumumab treatment. Together, the data found suggest that syndecan-4 level is crucial for understanding the changes involving in malignant transformation, and also demonstrate that syndecan-4 emerges as an important target for cancer therapy and diagnosis.
Collapse
|
60
|
Sterling JD, Jiang W, Botello-Smith WM, Luo YL. Ion Pairing and Dielectric Decrement in Glycosaminoglycan Brushes. J Phys Chem B 2021; 125:2771-2780. [PMID: 33662212 DOI: 10.1021/acs.jpcb.0c11571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cell-surface polysaccharides are essential to many aspects of physiology, serving as a highly conserved evolutionary feature of life and as an important part of the innate immune system in mammals. Here, as simplified biophysical models of these sugar coatings, we present results of molecular dynamics simulations of hyaluronic acid and heparin brushes that show important effects of ion pairing, water dielectric decrease, and coion exclusion. As in prior studies of macromolecular crowding under physiologically relevant salt concentrations, our results show equilibria with electroneutrality attained through screening and pairing of brush anionic charges by monovalent cations at the atomistic detail. Most surprising is the reversal of the Donnan potential obtained from both nonpolarizable and Drude polarizable force fields, in contrast to what would be expected based on electrostatic Boltzmann partitioning alone. Water dielectric decrement within the brush domain is also associated with Born hydration-driven cation exclusion from the brush. We observe that the primary partition energy attracting cations to attain brush electroneutrality is the ion pairing or salt-bridge energy. Potassium and sodium pairings to glycosaminoglycan carboxylates and sulfates show similar abundance of contact-pairing and solvent-separated pairing. We conclude that in these crowded macromolecular brushes, ion-pairing, Born-hydration, and electrostatic potential energies all contribute to attain electroneutrality and should therefore contribute in mean-field models to accurately represent brush electrostatics.
Collapse
Affiliation(s)
- James D Sterling
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, 535 Watson Dr., Claremont, California 91711, United States
| | - Wenjuan Jiang
- College of Pharmacy, Western University of Health Sciences, 309 E. Second Street, Pomona, California 91766, United States
| | - Wesley M Botello-Smith
- College of Pharmacy, Western University of Health Sciences, 309 E. Second Street, Pomona, California 91766, United States
| | - Yun L Luo
- College of Pharmacy, Western University of Health Sciences, 309 E. Second Street, Pomona, California 91766, United States
| |
Collapse
|
61
|
Byrne DP, London JA, Eyers PA, Yates EA, Cartmell A. Mobility shift-based electrophoresis coupled with fluorescent detection enables real-time enzyme analysis of carbohydrate sulfatase activity. Biochem J 2021; 478:735-748. [PMID: 33480417 PMCID: PMC7897442 DOI: 10.1042/bcj20200952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
Sulfated carbohydrate metabolism is a fundamental process, which occurs in all domains of life. Carbohydrate sulfatases are enzymes that remove sulfate groups from carbohydrates and are essential to the depolymerisation of complex polysaccharides. Despite their biological importance, carbohydrate sulfatases are poorly studied and challenges remain in accurately assessing the enzymatic activity, specificity and kinetic parameters. Most notably, the separation of desulfated products from sulfated substrates is currently a time-consuming process. In this paper, we describe the development of rapid capillary electrophoresis coupled to substrate fluorescence detection as a high-throughput and facile means of analysing carbohydrate sulfatase activity. The approach has utility for the determination of both kinetic and inhibition parameters and is based on existing microfluidic technology coupled to a new synthetic fluorescent 6S-GlcNAc carbohydrate substrate. Furthermore, we compare this technique, in terms of both time and resources, to high-performance anion exchange chromatography and NMR-based methods, which are the two current 'gold standards' for enzymatic carbohydrate sulfation analysis. Our study clearly demonstrates the advantages of mobility shift assays for the quantification of near real-time carbohydrate desulfation by purified sulfatases, and will support the search for small molecule inhibitors of these disease-associated enzymes.
Collapse
Affiliation(s)
- Dominic P. Byrne
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Biosciences Building, Crown Street, University of Liverpool, Liverpool L69 7ZB, U.K
| | - James A. London
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Biosciences Building, Crown Street, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Patrick A. Eyers
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Biosciences Building, Crown Street, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Edwin A. Yates
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Biosciences Building, Crown Street, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Alan Cartmell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Biosciences Building, Crown Street, University of Liverpool, Liverpool L69 7ZB, U.K
| |
Collapse
|
62
|
Al-Zayed Z, Al-Rijjal RA, Al-Ghofaili L, BinEssa HA, Pant R, Alrabiah A, Al-Hussainan T, Zou M, Meyer BF, Shi Y. Mutation spectrum of EXT1 and EXT2 in the Saudi patients with hereditary multiple exostoses. Orphanet J Rare Dis 2021; 16:100. [PMID: 33632255 PMCID: PMC7905910 DOI: 10.1186/s13023-021-01738-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hereditary Multiple Exostoses (HME), also known as Multiple Osteochondromas (MO) is a rare genetic disorder characterized by multiple benign cartilaginous bone tumors, which are caused by mutations in the genes for exostosin glycosyltransferase 1 (EXT1) and exostosin glycosyltransferase 2 (EXT2). The genetic defects have not been studied in the Saudi patients. AIM OF STUDY We investigated mutation spectrum of EXT1 and EXT2 in 22 patients from 17 unrelated families. METHODS Genomic DNA was extracted from peripheral leucocytes. The coding regions and intron-exon boundaries of both EXT1 and EXT2 genes were screened for mutations by PCR-sequencing analysis. Gross deletions were analyzed by MLPA analysis. RESULTS EXT1 mutations were detected in 6 families (35%) and 3 were novel mutations: c.739G > T (p. E247*), c.1319delG (p.R440Lfs*4), and c.1786delA (p.S596Afs*25). EXT2 mutations were detected in 7 families (41%) and 3 were novel mutations: c.541delG (p.D181Ifs*89), c.583delG (p.G195Vfs*75), and a gross deletion of approximately 10 kb including promoter and exon 1. Five patients from different families had no family history and carried de novo mutations (29%, 5/17). No EXT1 and EXT2 mutations were found in the remaining four families. In total, EXT1 and EXT2 mutations were found in 77% (13/17) of Saudi HME patients. CONCLUSION EXT1 and EXT2 mutations contribute significantly to the pathogenesis of HME in the Saudi population. In contrast to high mutation rate in EXT 1 (65%) and low mutation rate in EXT2 (25%) in other populations, the frequency of EXT2 mutations are much higher (41%) and comparable to that of EXT1 among Saudi patients. De novo mutations are also common and the six novel EXT1/EXT2 mutations further expands the mutation spectrum of HME.
Collapse
Affiliation(s)
- Zayed Al-Zayed
- Department of Orthopedics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Roua A Al-Rijjal
- Department of Genetics, MBC 3, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | | | - Huda A BinEssa
- Department of Genetics, MBC 3, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Rajeev Pant
- Department of Orthopedics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Anwar Alrabiah
- Department of Orthopedics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Thamer Al-Hussainan
- Department of Orthopedics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Minjing Zou
- Department of Genetics, MBC 3, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Brian F Meyer
- Department of Genetics, MBC 3, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Yufei Shi
- Department of Genetics, MBC 3, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh, 11211, Saudi Arabia.
| |
Collapse
|
63
|
Betriu N, Bertran-Mas J, Andreeva A, Semino CE. Syndecans and Pancreatic Ductal Adenocarcinoma. Biomolecules 2021; 11:biom11030349. [PMID: 33669066 PMCID: PMC7996579 DOI: 10.3390/biom11030349] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 01/18/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is a fatal disease with poor prognosis because patients rarely express symptoms in initial stages, which prevents early detection and diagnosis. Syndecans, a subfamily of proteoglycans, are involved in many physiological processes including cell proliferation, adhesion, and migration. Syndecans are physiologically found in many cell types and their interactions with other macromolecules enhance many pathways. In particular, extracellular matrix components, growth factors, and integrins collect the majority of syndecans associations acting as biochemical, physical, and mechanical transducers. Syndecans are transmembrane glycoproteins, but occasionally their extracellular domain can be released from the cell surface by the action of matrix metalloproteinases, converting them into soluble molecules that are capable of binding distant molecules such as extracellular matrix (ECM) components, growth factor receptors, and integrins from other cells. In this review, we explore the role of syndecans in tumorigenesis as well as their potential as therapeutic targets. Finally, this work reviews the contribution of syndecan-1 and syndecan-2 in PDAC progression and illustrates its potential to be targeted in future treatments for this devastating disease.
Collapse
|
64
|
Agrawal S, Ransom RF, Saraswathi S, Garcia-Gonzalo E, Webb A, Fernandez-Martinez JL, Popovic M, Guess AJ, Kloczkowski A, Benndorf R, Sadee W, Smoyer WE. Sulfatase 2 Is Associated with Steroid Resistance in Childhood Nephrotic Syndrome. J Clin Med 2021; 10:523. [PMID: 33540508 PMCID: PMC7867139 DOI: 10.3390/jcm10030523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 01/17/2023] Open
Abstract
Glucocorticoid (GC) resistance complicates the treatment of ~10-20% of children with nephrotic syndrome (NS), yet the molecular basis for resistance remains unclear. We used RNAseq analysis and in silico algorithm-based approaches on peripheral blood leukocytes from 12 children both at initial NS presentation and after ~7 weeks of GC therapy to identify a 12-gene panel able to differentiate steroid resistant NS (SRNS) from steroid-sensitive NS (SSNS). Among this panel, subsequent validation and analyses of one biologically relevant candidate, sulfatase 2 (SULF2), in up to a total of 66 children, revealed that both SULF2 leukocyte expression and plasma arylsulfatase activity Post/Pre therapy ratios were greater in SSNS vs. SRNS. However, neither plasma SULF2 endosulfatase activity (measured by VEGF binding activity) nor plasma VEGF levels, distinguished SSNS from SRNS, despite VEGF's reported role as a downstream mediator of SULF2's effects in glomeruli. Experimental studies of NS-related injury in both rat glomeruli and cultured podocytes also revealed decreased SULF2 expression, which were partially reversible by GC treatment of podocytes. These findings together suggest that SULF2 levels and activity are associated with GC resistance in NS, and that SULF2 may play a protective role in NS via the modulation of downstream mediators distinct from VEGF.
Collapse
Affiliation(s)
- Shipra Agrawal
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA; (R.F.R.); (M.P.); (A.J.G.); (R.B.)
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA;
| | - Richard F. Ransom
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA; (R.F.R.); (M.P.); (A.J.G.); (R.B.)
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA;
| | - Saras Saraswathi
- Battelle Center for Mathematical Medicine at Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
| | | | - Amy Webb
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH 43210, USA;
| | | | - Milan Popovic
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA; (R.F.R.); (M.P.); (A.J.G.); (R.B.)
| | - Adam J. Guess
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA; (R.F.R.); (M.P.); (A.J.G.); (R.B.)
| | - Andrzej Kloczkowski
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA;
- Battelle Center for Mathematical Medicine at Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
| | - Rainer Benndorf
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA; (R.F.R.); (M.P.); (A.J.G.); (R.B.)
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA;
| | - Wolfgang Sadee
- Department of Cancer Biology and Genetics, Center for Pharmacogenomics, The Ohio State University College of Medicine, Columbus, OH 43210, USA;
| | - William E. Smoyer
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA; (R.F.R.); (M.P.); (A.J.G.); (R.B.)
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA;
| | | |
Collapse
|
65
|
López de Maturana E, Rodríguez JA, Alonso L, Lao O, Molina-Montes E, Martín-Antoniano IA, Gómez-Rubio P, Lawlor R, Carrato A, Hidalgo M, Iglesias M, Molero X, Löhr M, Michalski C, Perea J, O'Rorke M, Barberà VM, Tardón A, Farré A, Muñoz-Bellvís L, Crnogorac-Jurcevic T, Domínguez-Muñoz E, Gress T, Greenhalf W, Sharp L, Arnes L, Cecchini L, Balsells J, Costello E, Ilzarbe L, Kleeff J, Kong B, Márquez M, Mora J, O'Driscoll D, Scarpa A, Ye W, Yu J, García-Closas M, Kogevinas M, Rothman N, Silverman DT, Albanes D, Arslan AA, Beane-Freeman L, Bracci PM, Brennan P, Bueno-de-Mesquita B, Buring J, Canzian F, Du M, Gallinger S, Gaziano JM, Goodman PJ, Gunter M, LeMarchand L, Li D, Neale RE, Peters U, Petersen GM, Risch HA, Sánchez MJ, Shu XO, Thornquist MD, Visvanathan K, Zheng W, Chanock SJ, Easton D, Wolpin BM, Stolzenberg-Solomon RZ, Klein AP, Amundadottir LT, Marti-Renom MA, Real FX, Malats N. A multilayered post-GWAS assessment on genetic susceptibility to pancreatic cancer. Genome Med 2021; 13:15. [PMID: 33517887 PMCID: PMC7849104 DOI: 10.1186/s13073-020-00816-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is a complex disease in which both non-genetic and genetic factors interplay. To date, 40 GWAS hits have been associated with PC risk in individuals of European descent, explaining 4.1% of the phenotypic variance. METHODS We complemented a new conventional PC GWAS (1D) with genome spatial autocorrelation analysis (2D) permitting to prioritize low frequency variants not detected by GWAS. These were further expanded via Hi-C map (3D) interactions to gain additional insight into the inherited basis of PC. In silico functional analysis of public genomic information allowed prioritization of potentially relevant candidate variants. RESULTS We identified several new variants located in genes for which there is experimental evidence of their implication in the biology and function of pancreatic acinar cells. Among them is a novel independent variant in NR5A2 (rs3790840) with a meta-analysis p value = 5.91E-06 in 1D approach and a Local Moran's Index (LMI) = 7.76 in 2D approach. We also identified a multi-hit region in CASC8-a lncRNA associated with pancreatic carcinogenesis-with a lowest p value = 6.91E-05. Importantly, two new PC loci were identified both by 2D and 3D approaches: SIAH3 (LMI = 18.24), CTRB2/BCAR1 (LMI = 6.03), in addition to a chromatin interacting region in XBP1-a major regulator of the ER stress and unfolded protein responses in acinar cells-identified by 3D; all of them with a strong in silico functional support. CONCLUSIONS This multi-step strategy, combined with an in-depth in silico functional analysis, offers a comprehensive approach to advance the study of PC genetic susceptibility and could be applied to other diseases.
Collapse
Affiliation(s)
- Evangelina López de Maturana
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO), C/Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Juan Antonio Rodríguez
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Lola Alonso
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO), C/Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Oscar Lao
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Esther Molina-Montes
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO), C/Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Isabel Adoración Martín-Antoniano
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO), C/Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Paulina Gómez-Rubio
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO), C/Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Rita Lawlor
- ARC-Net Centre for Applied Research on Cancer and Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Alfredo Carrato
- CIBERONC, Madrid, Spain
- Department of Oncology, Ramón y Cajal University Hospital, IRYCIS, Alcala University, Madrid, Spain
| | - Manuel Hidalgo
- Madrid-Norte-Sanchinarro Hospital, Madrid, Spain
- Weill Cornell Medicine, New York, USA
| | - Mar Iglesias
- CIBERONC, Madrid, Spain
- Hospital del Mar-Parc de Salut Mar, Barcelona, Spain
| | - Xavier Molero
- Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Universitat Autònoma de Barcelona and CIBEREHD, Barcelona, Spain
| | - Matthias Löhr
- Gastrocentrum, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Christopher Michalski
- Department of Surgery, Technical University of Munich, Munich, Germany
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-WittenberHalle (Saale), Halle, Germany
| | - José Perea
- Department of Surgery, Hospital 12 de Octubre, and Department of Surgery and Health Research Institute, Fundación Jiménez Díaz, Madrid, Spain
| | - Michael O'Rorke
- Centre for Public Health, Queen's University Belfast, Belfast, UK
- College of Public Health, The University of Iowa, Iowa City, IA, USA
| | | | - Adonina Tardón
- Department of Medicine, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- CIBERESP, Madrid, Spain
| | - Antoni Farré
- Department of Gastroenterology and Clinical Biochemistry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Luís Muñoz-Bellvís
- CIBERONC, Madrid, Spain
- Department of Surgery, Hospital Universitario de Salamanca - IBSAL, Universidad de Salamanca, Salamanca, Spain
| | - Tanja Crnogorac-Jurcevic
- Barts Cancer Institute, Centre for Molecular Oncology, Queen Mary University of London, London, UK
| | - Enrique Domínguez-Muñoz
- Department of Gastroenterology, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Thomas Gress
- Department of Gastroenterology, University Hospital of Giessen and Marburg, Marburg, Germany
| | - William Greenhalf
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Linda Sharp
- National Cancer Registry Ireland and HRB Clinical Research Facility, University College Cork, Cork, Ireland
- Newcastle University, Institute of Health & Society, Newcastle, UK
| | - Luís Arnes
- Centre for Stem Cell Research and Developmental Biology, University of Copenhagen, Copenhagen, Denmark
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
| | - Lluís Cecchini
- CIBERONC, Madrid, Spain
- Hospital del Mar-Parc de Salut Mar, Barcelona, Spain
| | - Joaquim Balsells
- Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Universitat Autònoma de Barcelona and CIBEREHD, Barcelona, Spain
| | - Eithne Costello
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Lucas Ilzarbe
- CIBERONC, Madrid, Spain
- Hospital del Mar-Parc de Salut Mar, Barcelona, Spain
| | - Jörg Kleeff
- Department of Surgery, Technical University of Munich, Munich, Germany
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-WittenberHalle (Saale), Halle, Germany
| | - Bo Kong
- Department of Surgery, Technical University of Munich, Munich, Germany
| | - Mirari Márquez
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO), C/Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Josefina Mora
- Department of Gastroenterology and Clinical Biochemistry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Damian O'Driscoll
- National Cancer Registry Ireland and HRB Clinical Research Facility, University College Cork, Cork, Ireland
| | - Aldo Scarpa
- ARC-Net Centre for Applied Research on Cancer and Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Weimin Ye
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stokholm, Sweden
| | - Jingru Yu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stokholm, Sweden
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Manolis Kogevinas
- CIBERESP, Madrid, Spain
- Institut Municipal d'Investigació Mèdica - Hospital del Mar, Centre de Recerca en Epidemiologia Ambiental (CREAL), Barcelona, Spain
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Debra T Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alan A Arslan
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, USA
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
- Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Laura Beane-Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paige M Bracci
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Paul Brennan
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Bas Bueno-de-Mesquita
- Deparment for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Julie Buring
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ, Heidelberg, Germany
| | - Margaret Du
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Steve Gallinger
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - J Michael Gaziano
- Departments of Medicine, Brigham and Women's Hospital, VA Boston and Harvard Medical School, Boston, MA, USA
| | - Phyllis J Goodman
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Marc Gunter
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Loic LeMarchand
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Donghui Li
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rachael E Neale
- Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Ulrika Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Gloria M Petersen
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Harvey A Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Maria José Sánchez
- Escuela Andaluza de Salud Pública (EASP), Granada, Spain
- Instituto de Investigación Biosanitaria Granada, Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Universidad de Granada, Granada, Spain
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mark D Thornquist
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kala Visvanathan
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Douglas Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Brian M Wolpin
- Department Medical Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - Rachael Z Stolzenberg-Solomon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alison P Klein
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Laufey T Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marc A Marti-Renom
- National Centre for Genomic Analysis (CNAG), Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Universitat Pompeu Fabra (UPF), ICREA, Baldiri Reixac 4, 08028, Barcelona, Spain.
| | - Francisco X Real
- CIBERONC, Madrid, Spain
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO), C/Melchor Fernandez Almagro 3, 28029, Madrid, Spain.
- CIBERONC, Madrid, Spain.
| |
Collapse
|
66
|
Faria-Ramos I, Poças J, Marques C, Santos-Antunes J, Macedo G, Reis CA, Magalhães A. Heparan Sulfate Glycosaminoglycans: (Un)Expected Allies in Cancer Clinical Management. Biomolecules 2021; 11:136. [PMID: 33494442 PMCID: PMC7911160 DOI: 10.3390/biom11020136] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
In an era when cancer glycobiology research is exponentially growing, we are witnessing a progressive translation of the major scientific findings to the clinical practice with the overarching aim of improving cancer patients' management. Many mechanistic cell biology studies have demonstrated that heparan sulfate (HS) glycosaminoglycans are key molecules responsible for several molecular and biochemical processes, impacting extracellular matrix properties and cellular functions. HS can interact with a myriad of different ligands, and therefore, hold a pleiotropic role in regulating the activity of important cellular receptors and downstream signalling pathways. The aberrant expression of HS glycan chains in tumours determines main malignant features, such as cancer cell proliferation, angiogenesis, invasion and metastasis. In this review, we devote particular attention to HS biological activities, its expression profile and modulation in cancer. Moreover, we highlight HS clinical potential to improve both diagnosis and prognosis of cancer, either as HS-based biomarkers or as therapeutic targets.
Collapse
Affiliation(s)
- Isabel Faria-Ramos
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Juliana Poças
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Molecular Biology Department, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Catarina Marques
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Molecular Biology Department, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - João Santos-Antunes
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Pathology Department, Faculdade de Medicina, University of Porto, 4200-319 Porto, Portugal;
- Gastroenterology Department, Centro Hospitalar S. João, 4200-319 Porto, Portugal
| | - Guilherme Macedo
- Pathology Department, Faculdade de Medicina, University of Porto, 4200-319 Porto, Portugal;
- Gastroenterology Department, Centro Hospitalar S. João, 4200-319 Porto, Portugal
| | - Celso A. Reis
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Molecular Biology Department, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Pathology Department, Faculdade de Medicina, University of Porto, 4200-319 Porto, Portugal;
| | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
| |
Collapse
|
67
|
Han M, Yan H, Yang K, Fan B, Liu P, Yang H. Identification of biomarkers and construction of a microRNA‑mRNA regulatory network for clear cell renal cell carcinoma using integrated bioinformatics analysis. PLoS One 2021; 16:e0244394. [PMID: 33434215 PMCID: PMC7802940 DOI: 10.1371/journal.pone.0244394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022] Open
Abstract
With the recent research development, the importance of microRNAs (miRNAs) in renal clear cell carcinoma (CCRCC) has become widely known. The purpose of this study is to screen out the potential biomarkers of renal clear cell carcinoma (CCRCC) by microarray analysis. The miRNA chip (GSE16441) and mRNA chip (GSE66270) related to CCRCC were downloaded from the Gene Expression Omnibus (GEO) database. After data filtering and pretreating, R platform and a series of analysis tools (funrich3.1.3, string, Cytoscape_ 3.2.1, David, etc.) were used to analyze chip data and identify the specific and highly sensitive biomarkers. Finally, by constructing the miRNA -mRNA interaction network, it was determined that five miRNAs (hsa-mir-199a-5p, hsa-mir-199b-5p, hsa-mir-532-3p and hsa-mir-429) and two key genes (ETS1 and hapln1) are significantly related to the overall survival rate of patients.
Collapse
Affiliation(s)
- Miaoru Han
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Haifeng Yan
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Kang Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Boya Fan
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Panying Liu
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Hongtao Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- * E-mail:
| |
Collapse
|
68
|
Bekkhus T, Martikainen T, Olofsson A, Franzén Boger M, Vasiliu Bacovia D, Wärnberg F, Ulvmar MH. Remodeling of the Lymph Node High Endothelial Venules Reflects Tumor Invasiveness in Breast Cancer and is Associated with Dysregulation of Perivascular Stromal Cells. Cancers (Basel) 2021; 13:cancers13020211. [PMID: 33430113 PMCID: PMC7827313 DOI: 10.3390/cancers13020211] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 01/02/2023] Open
Abstract
The tumor-draining lymph nodes (TDLNs) are primary sites for induction of tumor immunity. They are also common sites of metastasis, suggesting that tumor-induced mechanisms can subvert anti-tumor immune responses and promote metastatic seeding. The high endothelial venules (HEVs) together with CCL21-expressing fibroblastic reticular cells (FRCs) are essential for lymphocyte recruitment into the LNs. We established multicolor antibody panels for evaluation of HEVs and FRCs in TDLNs from breast cancer (BC) patients. Our data show that patients with invasive BC display extensive structural and molecular remodeling of the HEVs, including vessel dilation, thinning of the endothelium and discontinuous expression of the HEV-marker PNAd. Remodeling of the HEVs was associated with dysregulation of CCL21 in perivascular FRCs and with accumulation of CCL21-saturated lymphocytes, which we link to loss of CCL21-binding heparan sulfate in FRCs. These changes were rare or absent in LNs from patients with non-invasive BC and cancer-free organ donors and were observed independent of nodal metastasis. Thus, pre-metastatic dysregulation of core stromal and vascular functions within TDLNs reflect the primary tumor invasiveness in BC. This adds to the understanding of cancer-induced perturbation of the immune response and opens for prospects of vascular and stromal changes in TDLNs as potential biomarkers.
Collapse
Affiliation(s)
- Tove Bekkhus
- The Beijer Laboratory, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Dag Hammarskjölds väg 20, Uppsala University, 75185 Uppsala, Sweden; (T.B.); (T.M.); (A.O.); (M.F.B.); (D.V.B.)
| | - Teemu Martikainen
- The Beijer Laboratory, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Dag Hammarskjölds väg 20, Uppsala University, 75185 Uppsala, Sweden; (T.B.); (T.M.); (A.O.); (M.F.B.); (D.V.B.)
| | - Anna Olofsson
- The Beijer Laboratory, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Dag Hammarskjölds väg 20, Uppsala University, 75185 Uppsala, Sweden; (T.B.); (T.M.); (A.O.); (M.F.B.); (D.V.B.)
| | - Mathias Franzén Boger
- The Beijer Laboratory, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Dag Hammarskjölds väg 20, Uppsala University, 75185 Uppsala, Sweden; (T.B.); (T.M.); (A.O.); (M.F.B.); (D.V.B.)
| | - Daniel Vasiliu Bacovia
- The Beijer Laboratory, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Dag Hammarskjölds väg 20, Uppsala University, 75185 Uppsala, Sweden; (T.B.); (T.M.); (A.O.); (M.F.B.); (D.V.B.)
| | - Fredrik Wärnberg
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, 41345 Gothenburg, Sweden;
| | - Maria H. Ulvmar
- The Beijer Laboratory, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Dag Hammarskjölds väg 20, Uppsala University, 75185 Uppsala, Sweden; (T.B.); (T.M.); (A.O.); (M.F.B.); (D.V.B.)
- Correspondence: ; Tel.: +46-737834297
| |
Collapse
|
69
|
Houvast RD, Vankemmelbeke M, Durrant LG, Wuhrer M, Baart VM, Kuppen PJK, de Geus-Oei LF, Vahrmeijer AL, Sier CFM. Targeting Glycans and Heavily Glycosylated Proteins for Tumor Imaging. Cancers (Basel) 2020; 12:cancers12123870. [PMID: 33371487 PMCID: PMC7767531 DOI: 10.3390/cancers12123870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Distinguishing malignancy from healthy tissue is essential for oncologic surgery. Targeted imaging during an operation aids the surgeon to operate better. The present tracers for detecting cancer are directed against proteins that are overexpressed on the membrane of tumor cells. This review evaluates the use of tumor-associated sugar molecules as an alternative for proteins to image cancer tissue. These sugar molecules are present as glycans on glycosylated membrane proteins and glycolipids. Due to their location and large numbers per cell, these sugar molecules might be better targets for tumor imaging than proteins. Abstract Real-time tumor imaging techniques are increasingly used in oncological surgery, but still need to be supplemented with novel targeted tracers, providing specific tumor tissue detection based on intra-tumoral processes or protein expression. To maximize tumor/non-tumor contrast, targets should be highly and homogenously expressed on tumor tissue only, preferably from the earliest developmental stage onward. Unfortunately, most evaluated tumor-associated proteins appear not to meet all of these criteria. Thus, the quest for ideal targets continues. Aberrant glycosylation of proteins and lipids is a fundamental hallmark of almost all cancer types and contributes to tumor progression. Additionally, overexpression of glycoproteins that carry aberrant glycans, such as mucins and proteoglycans, is observed. Selected tumor-associated glyco-antigens are abundantly expressed and could, thus, be ideal candidates for targeted tumor imaging. Nevertheless, glycan-based tumor imaging is still in its infancy. In this review, we highlight the potential of glycans, and heavily glycosylated proteoglycans and mucins as targets for multimodal tumor imaging by discussing the preclinical and clinical accomplishments within this field. Additionally, we describe the major advantages and limitations of targeting glycans compared to cancer-associated proteins. Lastly, by providing a brief overview of the most attractive tumor-associated glycans and glycosylated proteins in association with their respective tumor types, we set out the way for implementing glycan-based imaging in a clinical practice.
Collapse
Affiliation(s)
- Ruben D. Houvast
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (V.M.B.); (P.J.K.K.); (A.L.V.)
| | - Mireille Vankemmelbeke
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (M.V.); (L.G.D.)
| | - Lindy G. Durrant
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (M.V.); (L.G.D.)
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Victor M. Baart
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (V.M.B.); (P.J.K.K.); (A.L.V.)
| | - Peter J. K. Kuppen
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (V.M.B.); (P.J.K.K.); (A.L.V.)
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
- Biomedical Photonic Imaging Group, University of Twente, 7500 AE Enschede, The Netherlands
| | - Alexander L. Vahrmeijer
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (V.M.B.); (P.J.K.K.); (A.L.V.)
| | - Cornelis F. M. Sier
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (V.M.B.); (P.J.K.K.); (A.L.V.)
- Percuros BV, 2333 ZA Leiden, The Netherlands
- Correspondence: ; Tel.: +31-752662610
| |
Collapse
|
70
|
Sulfated glycosaminoglycans mediate prion-like behavior of p53 aggregates. Proc Natl Acad Sci U S A 2020; 117:33225-33234. [PMID: 33318190 DOI: 10.1073/pnas.2009931117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Sulfated glycosaminoglycans (GAGs) such as heparan sulfate (HS) are heteropolysaccharides implicated in the pathology of protein aggregation diseases including localized and systemic forms of amyloidosis. Among subdomains of sulfated GAGs, highly sulfated domains of HS, called HS S-domains, have been highlighted as being critical for HS function in amyloidoses. Recent studies suggest that the tumor suppressor p53 aggregates to form amyloid fibrils and propagates in a prion-like manner; however, molecules and mechanisms that are involved in the prion-like behavior of p53 aggregates have not been addressed. Here, we identified sulfated GAGs as molecules that mediate prion-like behavior of p53 aggregates. Sulfated GAGs at the cell surface were required for cellular uptake of recombinant and cancer cell-derived p53 aggregates and extracellular release of p53 from cancer cells. We further showed that HS S-domains accumulated within p53 deposits in human ovarian cancer tissues, and enzymatic remodeling of HS S-domains by Sulf-2 extracellular sulfatase down-regulated cellular uptake of p53 aggregates. Finally, sulfated GAG-dependent cellular uptake of p53 aggregates was critical for subsequent extracellular release of the aggregates and gain of oncogenic function in recipient cells. Our work provides a mechanism of prion-like behavior of p53 aggregates and will shed light on sulfated GAGs as a common mediator of prions.
Collapse
|
71
|
Heparan sulfate binds the extracellular Annexin A1 and blocks its effects on pancreatic cancer cells. Biochem Pharmacol 2020; 182:114252. [DOI: 10.1016/j.bcp.2020.114252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022]
|
72
|
Ravikumar M, Smith RAA, Nurcombe V, Cool SM. Heparan Sulfate Proteoglycans: Key Mediators of Stem Cell Function. Front Cell Dev Biol 2020; 8:581213. [PMID: 33330458 PMCID: PMC7710810 DOI: 10.3389/fcell.2020.581213] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are an evolutionarily ancient subclass of glycoproteins with exquisite structural complexity. They are ubiquitously expressed across tissues and have been found to exert a multitude of effects on cell behavior and the surrounding microenvironment. Evidence has shown that heterogeneity in HSPG composition is crucial to its functions as an essential scaffolding component in the extracellular matrix as well as a vital cell surface signaling co-receptor. Here, we provide an overview of the significance of HSPGs as essential regulators of stem cell function. We discuss the various roles of HSPGs in distinct stem cell types during key physiological events, from development through to tissue homeostasis and regeneration. The contribution of aberrant HSPG production to altered stem cell properties and dysregulated cellular homeostasis characteristic of cancer is also reviewed. Finally, we consider approaches to better understand and exploit the multifaceted functions of HSPGs in influencing stem cell characteristics for cell therapy and associated culture expansion strategies.
Collapse
Affiliation(s)
- Maanasa Ravikumar
- Glycotherapeutics Group, Institute of Medical Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Raymond Alexander Alfred Smith
- Glycotherapeutics Group, Institute of Medical Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Victor Nurcombe
- Glycotherapeutics Group, Institute of Medical Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University-Imperial College London, Singapore, Singapore
| | - Simon M Cool
- Glycotherapeutics Group, Institute of Medical Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
73
|
Cheudjeu A. Correlation of D-xylose with severity and morbidity-related factors of COVID-19 and possible therapeutic use of D-xylose and antibiotics for COVID-19. Life Sci 2020; 260:118335. [PMID: 32846167 PMCID: PMC7443215 DOI: 10.1016/j.lfs.2020.118335] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 01/08/2023]
Abstract
The SARS-Cov-2 pandemic that currently affects the entire world has been shown to be especially dangerous in the elderly (≥65 years) and in smokers, with notably strong comorbidity in patients already suffering from chronic diseases, such as Type 2 diabetes, cancers, chronic respiratory diseases, obesity, and hypertension. Inflammation of the lungs is the main factor leading to respiratory distress in patients with chronic respiratory disease and in patients with severe COVID-19. Several studies have shown that inflammation of the lungs in general and Type 2 diabetes are accompanied by the degradation of glycosaminoglycans (GAGs), especially heparan sulfate (HS). Several studies have also shown the importance of countering the degradation of HS in lung infections and Type 2 diabetes. D-xylose, which is the initiating element for different sulfate GAG chains (especially HS), has shown regeneration properties for GAGs. D-xylose and xylitol have demonstrated anti-inflammatory, antiglycemic, antiviral, and antibacterial properties in lung infections, alone or in combination with antibiotics. Considering the existing research on COVID-19 and related to D-xylose/xylitol, this review offers a perspective on why the association between D-xylose and antibiotics may contribute to significantly reducing the duration of treatment of COVID-19 patients and why some anti-inflammatory drugs may increase the severity of COVID-19. A strong correlation with scurvy, based on gender, age, ethnicity, smoking status, and obesity status, is also reviewed. Related to this, the effects of treatment with plants such as Artemisia are also addressed. CHEMICAL COMPOUNDS: D-xylose; xylitol; l-ascorbic Acid; D-glucuronic acid; N-acetylglucosamine; D-N-acetylglucosamine; N-acetylgalactosamine; galactose.
Collapse
|
74
|
Chandrasekhar G, Rajasekaran R. Investigating the pernicious effects of heparan sulfate in serum amyloid A1 protein aggregation: a structural bioinformatics approach. J Biomol Struct Dyn 2020; 40:1776-1790. [PMID: 33050843 DOI: 10.1080/07391102.2020.1833756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Amyloid-A mediated (AA) amyloidosis is the pathogenic byproduct of body's prolonged exposure to inflammatory conditions. It is described by the aggregation of mutated/misfolded serum amyloid A1 (SAA1) protein in various tissues and organs. Genetic polymorphism G90D is suspected to cause AA amyloidosis, although the causal mechanism remains cryptic. Recent experimental findings insinuate that heparan sulphate (HS), a glycosaminoglycans, exhibits binding with SAA1 to promote its aggregation. To foster the enhanced binding of HS, we computationally determined the pernicious modifications in G90D mutant SAA1 protein. Also, we examined the influence of HS on the dynamic conformation of mutant SAA1 that could potentially succor amyloidosis. Accordingly, the protein-ligand binding studies indicate that upon SNP G90D, SAA1 protein exhibited an augmented association with HS. Further, the simulation of HS bound mutant SAA1 complex delineates an increase in RMSD, Rg, and RMSF. Also, both RMSD and Rg evinced a fluctuating trajectory. Further, the complex showed increase of beta turn in its secondary structural composition. Additionally, the free energy landscape of mutant SAA1-HS complex posits the occurrence of multiple global minima conformers as opposed to the presence of a single global energy minima conformation in native SAA1 protein. In conclusion, the aforementioned conformational ramifications induced by HS on SAA1 could potentially be the proteopathic incendiary behind AA amyloidosis; this incendiary will need to be considered in future studies for developing effective therapeutics against AA amyloidosis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- G Chandrasekhar
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (Deemed to be University), Vellore, Tamil Nadu, India
| | - R Rajasekaran
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (Deemed to be University), Vellore, Tamil Nadu, India
| |
Collapse
|
75
|
Du J, Yang J, Meng L. Screening and Identification of Differentially Expressed Genes Between Diabetic Nephropathy Glomerular and Normal Glomerular via Bioinformatics Technology. Comb Chem High Throughput Screen 2020; 24:645-655. [PMID: 32954999 DOI: 10.2174/1386207323999200821163314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diabetes is a chronic metabolic disease characterized by disorders of glucose and lipid metabolism. Its most serious microvascular complication is diabetic nephropathy (DN), which is characterized by varying degrees of proteinuria and progressive glomerulosclerosis, eventually progressing to end-stage renal failure. OBJECTIVE The aim of this research is to identify hub genes that might serve as genetic markers to enhance the diagnosis, treatment, and prognosis of DN. METHODS The procedures of the study include access to public data, identification of differentially expressed genes (DEGs) by GEO2R, and functional annotation of DEGs using enrichment analysis. Subsequently, the construction of the protein-protein interaction (PPI) network and identification of significant modules were performed. Finally, the hub genes were identified and analyzed, including clustering analysis, Pearson's correlation coefficient analysis, and multivariable linear regression analysis. RESULTS Between the GSE30122 and GSE1009 datasets, a total of 142 DEGs were identified, which were mainly enriched in cell migration, platelet activation, glomerulus development, glomerular basement membrane development, focal adhesion, regulation of actin cytoskeleton, and the PI3K-AKT signaling pathway. The PPI network was composed of 205 edges and 142 nodes. A total of 10 hub genes (VEGFA, NPHS1, WT1, PODXL, TJP1, FYN, SULF1, ITGA3, COL4A3, and FGF1) were identified from the PPI network. CONCLUSION The DEGs between DN and control glomeruli samples may be involved in the occurrence and development of DN. It was speculated that hub genes might be important inhibitory genes in the pathogenesis of diabetic nephropathy, therefore, they are expected to become the new gene targets for the treatment of DN.
Collapse
Affiliation(s)
- Junjie Du
- Nephrology Department, Beijing Hospital, National Center of Gerontology, No.1 Dahua Road, Dong Dan, Beijing 100730, China
| | - Jihong Yang
- Nephrology Department, Beijing Hospital, National Center of Gerontology, No.1 Dahua Road, Dong Dan, Beijing 100730, China
| | - Lingbing Meng
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing 100730, China
| |
Collapse
|
76
|
Heparan Sulfate Proteoglycan Signaling in Tumor Microenvironment. Int J Mol Sci 2020; 21:ijms21186588. [PMID: 32916872 PMCID: PMC7554799 DOI: 10.3390/ijms21186588] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
In the last few decades, heparan sulfate (HS) proteoglycans (HSPGs) have been an intriguing subject of study for their complex structural characteristics, their finely regulated biosynthetic machinery, and the wide range of functions they perform in living organisms from development to adulthood. From these studies, key roles of HSPGs in tumor initiation and progression have emerged, so that they are currently being explored as potential biomarkers and therapeutic targets for cancers. The multifaceted nature of HSPG structure/activity translates in their capacity to act either as inhibitors or promoters of tumor growth and invasion depending on the tumor type. Deregulation of HSPGs resulting in malignancy may be due to either their abnormal expression levels or changes in their structure and functions as a result of the altered activity of their biosynthetic or remodeling enzymes. Indeed, in the tumor microenvironment, HSPGs undergo structural alterations, through the shedding of proteoglycan ectodomain from the cell surface or the fragmentation and/or desulfation of HS chains, affecting HSPG function with significant impact on the molecular interactions between cancer cells and their microenvironment, and tumor cell behavior. Here, we overview the structural and functional features of HSPGs and their signaling in the tumor environment which contributes to tumorigenesis and cancer progression.
Collapse
|
77
|
Galat Y, Perepitchka M, Elcheva I, Iannaccone S, Iannaccone PM, Galat V. iPSC-derived progenitor stromal cells provide new insights into aberrant musculoskeletal development and resistance to cancer in down syndrome. Sci Rep 2020; 10:13252. [PMID: 32764607 PMCID: PMC7414019 DOI: 10.1038/s41598-020-69418-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
Down syndrome (DS) is a congenital disorder caused by trisomy 21 (T21). It is associated with cognitive impairment, muscle hypotonia, heart defects, and other clinical anomalies. At the same time, individuals with Down syndrome have lower prevalence of solid tumor formation. To gain new insights into aberrant DS development during early stages of mesoderm formation and its possible connection to lower solid tumor prevalence, we developed the first model of two types of DS iPSC-derived stromal cells. Utilizing bioinformatic and functional analyses, we identified over 100 genes with coordinated expression among mesodermal and endothelial cell types. The most significantly down-regulated processes in DS mesodermal progenitors were associated with decreased stromal progenitor performance related to connective tissue organization as well as muscle development and functionality. The differentially expressed genes included cytoskeleton-related genes (actin and myosin), ECM genes (Collagens, Galectin-1, Fibronectin, Heparan Sulfate, LOX, FAK1), cell cycle genes (USP16, S1P complexes), and DNA damage repair genes. For DS endothelial cells, our analysis revealed most down-regulated genes associated with cellular response to external stimuli, cell migration, and immune response (inflammation-based). Together with functional assays, these results suggest an impairment in mesodermal development capacity during early stages, which likely translates into connective tissue impairment in DS patients. We further determined that, despite differences in functional processes and characteristics, a significant number of differentially regulated genes involved in tumorigenesis were expressed in a highly coordinated manner across endothelial and mesodermal cells. These findings strongly suggest that microRNAs (miR-24-4, miR-21), cytoskeleton remodeling, response to stimuli, and inflammation can impact resistance to tumorigenesis in DS patients. Furthermore, we also show that endothelial cell functionality is impaired, and when combined with angiogenic inhibition, it can provide another mechanism for decreased solid tumor development. We propose that the same processes, which specify the basis of connective tissue impairment observed in DS patients, potentially impart a resistance to cancer by hindering tumor progression and metastasis. We further establish that cancer-related genes on Chromosome 21 are up-regulated, while genome-wide cancer-related genes are down-regulated. These results suggest that trisomy 21 induces a modified regulation and compensation of many biochemical pathways across the genome. Such downstream interactions may contribute toward promoting tumor resistant mechanisms.
Collapse
Affiliation(s)
- Yekaterina Galat
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA.
- Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Mariana Perepitchka
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA.
| | - Irina Elcheva
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA
- Pediatrics, Division of Hematology and Oncology, Penn State Hershey College of Medicine, Hershey, PA, USA
| | - Stephen Iannaccone
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA
| | - Philip M Iannaccone
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA
- Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Vasiliy Galat
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA.
- Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- ARTEC Biotech Inc, Chicago, IL, USA.
| |
Collapse
|
78
|
Yan Z, Wang S. Proteoglycans as Therapeutic Targets in Brain Cancer. Front Oncol 2020; 10:1358. [PMID: 32850434 PMCID: PMC7419654 DOI: 10.3389/fonc.2020.01358] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 06/29/2020] [Indexed: 12/18/2022] Open
Abstract
Proteoglycans (PGs) are heavily glycosylated diverse proteins consisting of a "core protein" covalently attached to glycosaminoglycans (GAGs) and present on the cell surface, extracellular matrix, and intracellular milieu. Extracellular proteoglycans play crucial roles in facilitating cell signaling and migration, interacting with growth factor receptors, intracellular enzymes, extracellular ligands, and matrix components, as well as structural proteins and promoting significant tumor-microenvironment interactions in cancerous settings. As a result of their highly regulated expression patterns, recent research has focused on the role of proteoglycans in the development of nervous tissue, such as their effect on neurite outgrowth, participation in the development of precursor cell types, and regulation of cell behaviors. The present review summarizes current progress for the studies of proteoglycan function in brain cancer and explains recent research involving brain glycoproteins as modulators of migration, cell adhesion, glial tumor invasion, and neurite outgrowth. Furthermore, we highlight the correlations between specific proteoglycan alterations and the suggested cancer-associated proteoglycans as novel biomarkers for therapeutic targets.
Collapse
Affiliation(s)
- Zoya Yan
- Horace Greeley High School, Chappaqua, NY, United States
| | - Shanzhi Wang
- Chemistry Department, University of Arkansas at Little Rock, Little Rock, AR, United States
| |
Collapse
|
79
|
Receptor tyrosine kinases and heparan sulfate proteoglycans: Interplay providing anticancer targeting strategies and new therapeutic opportunities. Biochem Pharmacol 2020; 178:114084. [DOI: 10.1016/j.bcp.2020.114084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022]
|
80
|
Huang X, Reye G, Momot KI, Blick T, Lloyd T, Tilley WD, Hickey TE, Snell CE, Okolicsanyi RK, Haupt LM, Ferro V, Thompson EW, Hugo HJ. Heparanase Promotes Syndecan-1 Expression to Mediate Fibrillar Collagen and Mammographic Density in Human Breast Tissue Cultured ex vivo. Front Cell Dev Biol 2020; 8:599. [PMID: 32760722 PMCID: PMC7373078 DOI: 10.3389/fcell.2020.00599] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/19/2020] [Indexed: 01/06/2023] Open
Abstract
Mammographic density (MD) is a strong and independent factor for breast cancer (BC) risk and is increasingly associated with BC progression. We have previously shown in mice that high MD, which is characterized by the preponderance of a fibrous stroma, facilitates BC xenograft growth and metastasis. This stroma is rich in extracellular matrix (ECM) factors, including heparan sulfate proteoglycans (HSPGs), such as the BC-associated syndecan-1 (SDC1). These proteoglycans tether growth factors, which are released by heparanase (HPSE). MD is positively associated with estrogen exposure and, in cell models, estrogen has been implicated in the upregulation of HPSE, the activity of which promotes SDC expression. Herein we describe a novel measurement approach (single-sided NMR) using a patient-derived explant (PDE) model of normal human (female) mammary tissue cultured ex vivo to investigate the role(s) of HPSE and SDC1 on MD. Relative HSPG gene and protein analyses determined in patient-paired high vs. low MD tissues identified SDC1 and SDC4 as potential mediators of MD. Using the PDE model we demonstrate that HPSE promotes SDC1 rather than SDC4 expression and cleavage, leading to increased MD. In this model system, synstatin (SSTN), an SDC1 inhibitory peptide designed to decouple SDC1-ITGαvβ3 parallel collagen alignment, reduced the abundance of fibrillar collagen as assessed by picrosirius red viewed under polarized light, and reduced MD. Our results reveal a potential role for HPSE in maintaining MD via its direct regulation of SDC1, which in turn physically tethers collagen into aligned fibers characteristic of MD. We propose that inhibitors of HPSE and/or SDC1 may afford an opportunity to reduce MD in high BC risk individuals and reduce MD-associated BC progression in conjunction with established BC therapies.
Collapse
Affiliation(s)
- Xuan Huang
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia.,School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Gina Reye
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia.,School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Konstantin I Momot
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Faculty of Science and Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Tony Blick
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia.,School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Thomas Lloyd
- Radiology Department, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Cameron E Snell
- Cancer Pathology Research Group, Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia.,Mater Pathology, Mater Hospital Brisbane, South Brisbane, QLD, Australia
| | - Rachel K Okolicsanyi
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia.,Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Larisa M Haupt
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia.,Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia.,School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Honor J Hugo
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia.,School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
81
|
Teixeira FCOB, Götte M. Involvement of Syndecan-1 and Heparanase in Cancer and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:97-135. [PMID: 32274708 DOI: 10.1007/978-3-030-34521-1_4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cell surface heparan sulfate proteoglycan Syndecan-1 acts as an important co-receptor for receptor tyrosine kinases and chemokine receptors, and as an adhesion receptor for structural glycoproteins of the extracellular matrix. It serves as a substrate for heparanase, an endo-β-glucuronidase that degrades specific domains of heparan sulfate carbohydrate chains and thereby alters the functional status of the proteoglycan and of Syndecan-1-bound ligands. Syndecan-1 and heparanase show multiple levels of functional interactions, resulting in mutual regulation of their expression, processing, and activity. These interactions are of particular relevance in the context of inflammation and malignant disease. Studies in animal models have revealed a mechanistic role of Syndecan-1 and heparanase in the regulation of contact allergies, kidney inflammation, multiple sclerosis, inflammatory bowel disease, and inflammation-associated tumorigenesis. Moreover, functional interactions between Syndecan-1 and heparanase modulate virtually all steps of tumor progression as defined in the Hallmarks of Cancer. Due to their prognostic value in cancer, and their mechanistic involvement in tumor progression, Syndecan-1 and heparanase have emerged as important drug targets. Data in preclinical models and preclinical phase I/II studies have already yielded promising results that provide a translational perspective.
Collapse
Affiliation(s)
- Felipe C O B Teixeira
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.
| |
Collapse
|
82
|
Abstract
Glypicans are a family of heparan sulfate proteoglycans that are attached to the cell membrane via a glycosylphosphatidylinositol anchor. Glypicans interact with multiple ligands, including morphogens, growth factors, chemokines, ligands, receptors, and components of the extracellular matrix through their heparan sulfate chains and core protein. Therefore, glypicans can function as coreceptors to regulate cell proliferation, cell motility, and morphogenesis. In addition, some glypicans are abnormally expressed in cancers, possibly involved in tumorigenesis, and have the potential to be cancer-specific biomarkers. Here, we provide a brief review focusing on the expression of glypicans in various cancers and their potential to be targets for cancer therapy.
Collapse
Affiliation(s)
- Nan Li
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Madeline R Spetz
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
83
|
Wu C, Hua Q, Zheng L. Generation of Myeloid Cells in Cancer: The Spleen Matters. Front Immunol 2020; 11:1126. [PMID: 32582203 PMCID: PMC7291604 DOI: 10.3389/fimmu.2020.01126] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023] Open
Abstract
Myeloid cells are key components of the tumor microenvironment and critical regulators of disease progression. These innate immune cells are usually short-lived and require constant replenishment. Emerging evidence indicates that tumors alter the host hematopoietic system and induce the biased differentiation of myeloid cells to tip the balance of the systemic immune activities toward tumor-promoting functions. Altered myelopoiesis is not restricted to the bone marrow and also occurs in extramedullary organs. In this review, we outline the recent advances in the field of cancer-associated myelopoiesis, with a focus on the spleen, the major site of extramedullary hematopoiesis in the cancer setting. We discuss the functional specialization, distinct mechanisms, and clinical relevance of cancer-associated myeloid cell generation from early progenitors in the spleen and its potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Chong Wu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiaomin Hua
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Limin Zheng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
84
|
Leung KK, Wilson GM, Kirkemo LL, Riley NM, Coon JJ, Wells JA. Broad and thematic remodeling of the surfaceome and glycoproteome on isogenic cells transformed with driving proliferative oncogenes. Proc Natl Acad Sci U S A 2020; 117:7764-7775. [PMID: 32205440 PMCID: PMC7148585 DOI: 10.1073/pnas.1917947117] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The cell surface proteome, the surfaceome, is the interface for engaging the extracellular space in normal and cancer cells. Here we apply quantitative proteomics of N-linked glycoproteins to reveal how a collection of some 700 surface proteins is dramatically remodeled in an isogenic breast epithelial cell line stably expressing any of six of the most prominent proliferative oncogenes, including the receptor tyrosine kinases, EGFR and HER2, and downstream signaling partners such as KRAS, BRAF, MEK, and AKT. We find that each oncogene has somewhat different surfaceomes, but the functions of these proteins are harmonized by common biological themes including up-regulation of nutrient transporters, down-regulation of adhesion molecules and tumor suppressing phosphatases, and alteration in immune modulators. Addition of a potent MEK inhibitor that blocks MAPK signaling brings each oncogene-induced surfaceome back to a common state reflecting the strong dependence of the oncogene on the MAPK pathway to propagate signaling. Cell surface protein capture is mediated by covalent tagging of surface glycans, yet current methods do not afford sequencing of intact glycopeptides. Thus, we complement the surfaceome data with whole cell glycoproteomics enabled by a recently developed technique called activated ion electron transfer dissociation (AI-ETD). We found massive oncogene-induced changes to the glycoproteome and differential increases in complex hybrid glycans, especially for KRAS and HER2 oncogenes. Overall, these studies provide a broad systems-level view of how specific driver oncogenes remodel the surfaceome and the glycoproteome in a cell autologous fashion, and suggest possible surface targets, and combinations thereof, for drug and biomarker discovery.
Collapse
Affiliation(s)
- Kevin K Leung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143
| | - Gary M Wilson
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Lisa L Kirkemo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143
| | - Nicholas M Riley
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143;
| |
Collapse
|
85
|
Ashdown CP, Johns SC, Aminov E, Unanian M, Connacher W, Friend J, Fuster MM. Pulsed Low-Frequency Magnetic Fields Induce Tumor Membrane Disruption and Altered Cell Viability. Biophys J 2020; 118:1552-1563. [PMID: 32142642 PMCID: PMC7136334 DOI: 10.1016/j.bpj.2020.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/12/2019] [Accepted: 02/10/2020] [Indexed: 12/03/2022] Open
Abstract
Tumor cells express a unique cell surface glycocalyx with upregulation of sulfated glycosaminoglycans and charged glycoproteins. Little is known about how electromagnetic fields interact with this layer, particularly with regard to harnessing unique properties for therapeutic benefit. We applied a pulsed 20-millitesla (mT) magnetic field with rate of rise (dB/dt) in the msec range to cultured tumor cells to assess whether this affects membrane integrity as measured using cytolytic assays. A 10-min exposure of A549 human lung cancer cells to sequential 50- and 385-Hz oscillating magnetic fields was sufficient to induce intracellular protease release, suggesting altered membrane integrity after the field exposure. Heparinase treatment, which digests anionic sulfated glycan polymers, before exposure rendered cells insensitive to this effect. We further examined a non-neoplastic human primary cell line (lung lymphatic endothelial cells) as a typical normal host cell from the lung cancer microenvironment and found no effect of field exposure on membrane integrity. The field exposure was also sufficient to alter proliferation of tumor cells in culture, but not that of normal lymphatic cells. Pulsed magnetic field exposure of human breast cancer cells that express a sialic-acid rich glycocalyx also induced protease release, and this was partially abrogated by sialidase pretreatment, which removes cell surface anionic sialic acid. Scanning electron microscopy showed that field exposure may induce unique membrane “rippling” along with nanoscale pores on A549 cells. These effects were caused by a short exposure to pulsed 20-mT magnetic fields, and future work may examine greater magnitude effects. The proof of concept herein points to a mechanistic basis for possible applications of pulsed magnetic fields in novel anticancer strategies.
Collapse
Affiliation(s)
- Christopher P Ashdown
- VA San Diego Healthcare System, San Diego, California; Division of Biological Sciences, University of California, San Diego, La Jolla, California
| | - Scott C Johns
- VA San Diego Healthcare System, San Diego, California; Veterans Medical Research Foundation, San Diego, California
| | - Edward Aminov
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California
| | - Michael Unanian
- School of Electrical Engineering, Columbia University, New York, New York
| | - William Connacher
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California
| | - James Friend
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California
| | - Mark M Fuster
- VA San Diego Healthcare System, San Diego, California; Veterans Medical Research Foundation, San Diego, California; Department of Medicine, Division of Pulmonary & Critical Care, University of California, San Diego, La Jolla, California; Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California.
| |
Collapse
|
86
|
Rossi GR, Trindade ES, Souza-Fonseca-Guimaraes F. Tumor Microenvironment-Associated Extracellular Matrix Components Regulate NK Cell Function. Front Immunol 2020; 11:73. [PMID: 32063906 PMCID: PMC7000552 DOI: 10.3389/fimmu.2020.00073] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 01/13/2020] [Indexed: 12/22/2022] Open
Abstract
The tumor microenvironment (TME) is composed of multiple infiltrating host cells (e.g., endothelial cells, fibroblasts, lymphocytes, and myeloid cells), extracellular matrix, and various secreted or cell membrane-presented molecules. Group 1 innate lymphoid cells (ILCs), which includes natural killer (NK) cells and ILC1, contribute to protecting the host against cancer and infection. Both subsets are able to quickly produce cytokines such as interferon gamma (IFN-γ), chemokines, and other growth factors in response to activating signals. However, the TME provides many molecules that can prevent the potential effector function of these cells, thereby protecting the tumor. For example, TME-derived tumor growth factor (TGF)-β and associated members of the superfamily downregulate NK cell cytotoxicity, cytokine secretion, metabolism, proliferation, and induce effector NK cells to upregulate ILC1-like characteristics. In concert, a family of carbohydrate-binding proteins called galectins, which can be produced by different cells composing the TME, can downregulate NK cell function. Matrix metalloproteinase (MMP) and a disintegrin and metalloproteinase (ADAM) are also enzymes that can remodel the extracellular matrix and shred receptors from the tumor cell surface, impairing the activation of NK cells and leading to less effective effector functions. Gaining a better understanding of the characteristics of the TME and its associated factors, such as infiltrating cells and extracellular matrix, could lead to tailoring of new personalized immunotherapy approaches. This review provides an overview of our current knowledge on the impact of the TME and extracellular matrix-associated components on differentiation, impairment, and function of NK cells.
Collapse
Affiliation(s)
| | - Edvaldo S Trindade
- Cellular Biology Department, Federal University of Paraná, Curitiba, Brazil
| | | |
Collapse
|
87
|
Heparanase: A Potential Therapeutic Target in Sarcomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:405-431. [PMID: 32274719 DOI: 10.1007/978-3-030-34521-1_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sarcomas comprise a heterogeneous group of rare malignancies of mesenchymal origin including more than 70 subtypes. They may arise in muscle, bone, cartilage and other connective tissues. Their high histological and genetic heterogeneity makes diagnosis and treatment very challenging. Deregulation of heparanase has been found in several sarcoma subtypes and high expression levels have been correlated with poor prognosis in Ewing's sarcoma and osteosarcoma. Altered expression of specific heparan sulfate proteoglycans and heparan sulfate biosynthetic enzymes has also been observed. Advances in molecular pathogenesis of sarcomas have evidenced the critical role of several heparan sulfate binding growth factors and receptor tyrosine kinases, highly interconnected with the microenvironment, in sustaining tumor growth and progression. Interference with heparanase/heparan sulfate functions represents a potential therapeutic approach in sarcoma. In this chapter, we summarize the current knowledge about the biological significance of heparanase expression and its potential as a therapeutic target in subtypes of both soft tissue and bone sarcomas. Particular emphasis is given to the involvement of heparan sulfate proteoglycans and their synthesizing and modifying enzymes in bone physiology and disorders leading up to the pathobiology of bone sarcomas. The chapter also describes the cooperation between exostin loss-of-function and heparanase upregulation in hereditary Multiple Osteochondroma syndrome as a paradigmatic example of constitutive alteration of the heparanase/heparan sulfate proteoglycan system which may contribute to progression to malignant secondary chondrosarcoma. Preclinical evidence of the role of heparanase as a promising therapeutic target in various sarcoma subtypes is finally resumed.
Collapse
|
88
|
Shukla RP, Dewangan J, Urandur S, Banala VT, Diwedi M, Sharma S, Agrawal S, Rath SK, Trivedi R, Mishra PR. Multifunctional hybrid nanoconstructs facilitate intracellular localization of doxorubicin and genistein to enhance apoptotic and anti-angiogenic efficacy in breast adenocarcinoma. Biomater Sci 2020; 8:1298-1315. [DOI: 10.1039/c9bm01246j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The progressive development of tumors leading to angiogenesis marks the advancement of cancer which requires specific targeted treatment preferably with combination chemotherapy.
Collapse
Affiliation(s)
- Ravi Prakash Shukla
- Division of Pharmaceutics and Pharmacokinetics
- CSIR-Central Drug Research Institute Lucknow
- India
| | - Jayant Dewangan
- Division of Toxicology
- CSIR-Central Drug Research Institute Lucknow
- India
| | - Sandeep Urandur
- Division of Pharmaceutics and Pharmacokinetics
- CSIR-Central Drug Research Institute Lucknow
- India
| | - Venkatesh Teja Banala
- Division of Pharmaceutics and Pharmacokinetics
- CSIR-Central Drug Research Institute Lucknow
- India
| | - Monika Diwedi
- Division of Pharmaceutics and Pharmacokinetics
- CSIR-Central Drug Research Institute Lucknow
- India
| | - Shweta Sharma
- Division of Pharmaceutics and Pharmacokinetics
- CSIR-Central Drug Research Institute Lucknow
- India
| | - Sristi Agrawal
- Division of Pharmaceutics and Pharmacokinetics
- CSIR-Central Drug Research Institute Lucknow
- India
| | | | - Ritu Trivedi
- Division of Endocrinology
- CSIR-Central Drug Research Institute Lucknow
- India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics
- CSIR-Central Drug Research Institute Lucknow
- India
| |
Collapse
|
89
|
Cruz LA, Tellman TV, Farach-Carson MC. Flipping the Molecular Switch: Influence of Perlecan and Its Modifiers in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1245:133-146. [PMID: 32266656 DOI: 10.1007/978-3-030-40146-7_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The tumor microenvironment (TME) is rich in matrix components, growth factors, cytokines, and enzymatic modifiers that respond to changing conditions, to alter the fundamental properties of the tumor bed. Perlecan/HSPG2, a large, multi-domain heparan sulfate proteoglycan, is concentrated in the reactive stroma that surrounds tumors. Depending on its state in the TME, perlecan can either prevent or promote the progression of cancers to metastatic disease. Breast, prostate, lung, and renal cancers all preferentially metastasize to bone, a dense, perlecan-rich environment that is initially a "hostile" niche for cancer cells. Driven by inflammation, production of perlecan and its enzyme modifiers, which include matrix metalloproteinases (MMPs), sulfatases (SULFs), and heparanase (HPSE), increases in the reactive stroma surrounding growing and invading tumors. MMPs act upon the perlecan core protein, releasing bioactive fragments of the protein, primarily from C-terminal domains IV and V. These fragments influence cell adhesion, invasion, and angiogenesis. Sulfatases and heparanases act directly upon the heparan sulfate chains, releasing growth factors from reservoirs to reach receptors on the cancer cell surface. We propose that perlecan modifiers, by promoting the degradation of the perlecan-rich stroma, "flip the molecular switch" and convert the "hostile" stroma into a welcoming one that supports cancer dissemination and metastasis. Targeted therapies that prevent this molecular conversion of the TME should be considered as potential new therapeutics to limit metastasis.
Collapse
Affiliation(s)
- Lissette A Cruz
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Tristen V Tellman
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mary C Farach-Carson
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
90
|
Changes in heparan sulfate sulfotransferases and cell-surface heparan sulfate during SKM-1 cells granulocytic differentiation and A549 cells epithelial-mesenchymal transition. Glycoconj J 2019; 37:151-164. [DOI: 10.1007/s10719-019-09903-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/24/2019] [Accepted: 12/11/2019] [Indexed: 01/03/2023]
|
91
|
Kryza T, Bock N, Lovell S, Rockstroh A, Lehman ML, Lesner A, Panchadsaram J, Silva LM, Srinivasan S, Snell CE, Williams ED, Fazli L, Gleave M, Batra J, Nelson C, Tate EW, Harris J, Hooper JD, Clements JA. The molecular function of kallikrein-related peptidase 14 demonstrates a key modulatory role in advanced prostate cancer. Mol Oncol 2019; 14:105-128. [PMID: 31630475 PMCID: PMC6944120 DOI: 10.1002/1878-0261.12587] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/06/2019] [Accepted: 10/18/2019] [Indexed: 12/20/2022] Open
Abstract
Kallikrein-related peptidase 14 (KLK14) is one of the several secreted KLK serine proteases involved in prostate cancer (PCa) pathogenesis. While relatively understudied, recent reports have identified KLK14 as overexpressed during PCa development. However, the modulation of KLK14 expression during PCa progression and the molecular and biological functions of this protease in the prostate tumor microenvironment remain unknown. To determine the modulation of KLK14 expression during PCa progression, we analyzed the expression levels of KLK14 in patient samples using publicly available databases and immunohistochemistry. In order to delineate the molecular mechanisms involving KLK14 in PCa progression, we integrated proteomic, transcriptomic, and in vitro assays with the goal to identify substrates, related-signaling pathways, and functional roles of this protease. We showed that KLK14 expression is elevated in advanced PCa, and particularly in metastasis. Additionally, KLK14 levels were found to be decreased in PCa tissues from patients responsive to neoadjuvant therapy compared to untreated patients. Furthermore, we also identified that KLK14 expression reoccurred in patients who developed castrate-resistant PCa. The combination of proteomic and transcriptomic analysis as well as functional assays revealed several new KLK14 substrates (agrin, desmoglein 2, vitronectin, laminins) and KLK14-regulated genes (Interleukin 32, midkine, SRY-Box 9), particularly an involvement of the mitogen-activated protein kinase 1 and interleukin 1 receptor pathways, and an involvement of KLK14 in the regulation of cellular migration, supporting its involvement in aggressive features of PCa progression. In conclusion, our work showed that KLK14 expression is associated with the development of aggressive PCa suggesting that targeting this protease could offer a novel route to limit the progression of prostate tumors. Additional work is necessary to determine the benefits and implications of targeting/cotargeting KLK14 in PCa as well as to determine the potential use of KLK14 expression as a predictor of PCa aggressiveness or response to treatment.
Collapse
Affiliation(s)
- Thomas Kryza
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Institute of Health & Biomedical Innovation, Queensland University of Technology, Woolloongabba, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Woolloongabba, Australia.,Translational Research Institute, Woolloongabba, Australia.,Mater Research Institute - The University of Queensland, Brisbane, Australia
| | - Nathalie Bock
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Institute of Health & Biomedical Innovation, Queensland University of Technology, Woolloongabba, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Woolloongabba, Australia.,Translational Research Institute, Woolloongabba, Australia
| | - Scott Lovell
- Department of Chemistry, Imperial College London, UK
| | - Anja Rockstroh
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Institute of Health & Biomedical Innovation, Queensland University of Technology, Woolloongabba, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Woolloongabba, Australia.,Translational Research Institute, Woolloongabba, Australia
| | - Melanie L Lehman
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Institute of Health & Biomedical Innovation, Queensland University of Technology, Woolloongabba, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Woolloongabba, Australia.,Translational Research Institute, Woolloongabba, Australia.,Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Canada
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, Poland
| | - Janaththani Panchadsaram
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Institute of Health & Biomedical Innovation, Queensland University of Technology, Woolloongabba, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Woolloongabba, Australia.,Translational Research Institute, Woolloongabba, Australia
| | - Lakmali Munasinghage Silva
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Woolloongabba, Australia.,Translational Research Institute, Woolloongabba, Australia
| | - Srilakshmi Srinivasan
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Institute of Health & Biomedical Innovation, Queensland University of Technology, Woolloongabba, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Woolloongabba, Australia.,Translational Research Institute, Woolloongabba, Australia
| | - Cameron E Snell
- Mater Research Institute - The University of Queensland, Brisbane, Australia.,Mater Health Services, South Brisbane, Australia
| | - Elizabeth D Williams
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Institute of Health & Biomedical Innovation, Queensland University of Technology, Woolloongabba, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Woolloongabba, Australia.,Translational Research Institute, Woolloongabba, Australia
| | - Ladan Fazli
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Canada
| | - Martin Gleave
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Canada
| | - Jyotsna Batra
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Institute of Health & Biomedical Innovation, Queensland University of Technology, Woolloongabba, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Woolloongabba, Australia.,Translational Research Institute, Woolloongabba, Australia
| | - Colleen Nelson
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Institute of Health & Biomedical Innovation, Queensland University of Technology, Woolloongabba, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Woolloongabba, Australia.,Translational Research Institute, Woolloongabba, Australia
| | - Edward W Tate
- Department of Chemistry, Imperial College London, UK
| | - Jonathan Harris
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Woolloongabba, Australia
| | - John D Hooper
- Mater Research Institute - The University of Queensland, Brisbane, Australia.,Mater Health Services, South Brisbane, Australia
| | - Judith A Clements
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Institute of Health & Biomedical Innovation, Queensland University of Technology, Woolloongabba, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Woolloongabba, Australia.,Translational Research Institute, Woolloongabba, Australia
| |
Collapse
|
92
|
Cheng Q, Huang C, Cao H, Lin J, Gong X, Li J, Chen Y, Tian Z, Fang Z, Huang J. A Novel Prognostic Signature of Transcription Factors for the Prediction in Patients With GBM. Front Genet 2019; 10:906. [PMID: 31632439 PMCID: PMC6779830 DOI: 10.3389/fgene.2019.00906] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 08/27/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Although the diagnosis and treatment of glioblastoma (GBM) is significantly improved with recent progresses, there is still a large heterogeneity in therapeutic effects and overall survival. The aim of this study is to analyze gene expressions of transcription factors (TFs) in GBM so as to discover new tumor markers. Methods: Differentially expressed TFs are identified by data mining using public databases. The GBM transcriptome profile is downloaded from The Cancer Genome Atlas (TCGA). The nonnegative matrix factorization (NMF) method is used to cluster the differentially expressed genes to discover hub genes and signal pathways. The TFs affecting the prognosis of GBM are screened by univariate and multivariate COX regression analysis, and the receiver operating characteristic (ROC) curve is determined. The GBM hazard model and nomogram map are constructed by integrating the clinical data. Finally, the TFs involving potential signaling pathways in GBM are screened by Gene Set Enrichment Analysis (GSEA), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Results: There are 68 differentially expressed TFs in GBM, of which 43 genes are upregulated and 25 genes are downregulated. NMF clustering analysis suggested that GBM patients are divided into three groups: Clusters A, B, and C. LHX2, MEOX2, SNAI2, and ZNF22 are identified from the above differential genes by univariate/multivariate regression analysis. The risk score of those four genes are calculated based on the beta coefficient of each gene, and we found that the predictive ability of the risk score gradually increased with the prolonged predicted termination time by time-dependent ROC curve analysis. The nomogram results have showed that the integration of risk score, age, gender, chemotherapy, radiotherapy, and 1p/19q can further improve predictive ability towards the survival of GBM. The pathways in cancer, phosphoinositide 3-kinases (PI3K)–Akt signaling, Hippo signaling, and proteoglycans, are highly enriched in high-risk groups by GSEA. These genes are mainly involved in cell migration, cell adhesion, epithelial–mesenchymal transition (EMT), cell cycle, and other signaling pathways by GO and KEGG analysis. Conclusion: The four-factor combined scoring model of LHX2, MEOX2, SNAI2, and ZNF22 can precisely predict the prognosis of patients with GBM.
Collapse
Affiliation(s)
- Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Chunhai Huang
- Department of Neurosurgery, First Affiliated Hospital of Jishou University, Jishou, China
| | - Hui Cao
- Clinical Medical Research Center of Hunan Provincial Mental Behavioral Disorder, Clinical Medical School of Hunan University of Chinese Medicine, Hunan Provincial Brain Hospital, Changsha, China
| | - Jinhu Lin
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xuan Gong
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanbing Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Tian
- Department of Neurosurgery, First Affiliated Hospital of Jishou University, Jishou, China
| | - Zhenyu Fang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jun Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
93
|
Sundberg EL, Deng Y, Burd CG. Syndecan-1 Mediates Sorting of Soluble Lipoprotein Lipase with Sphingomyelin-Rich Membrane in the Golgi Apparatus. Dev Cell 2019; 51:387-398.e4. [PMID: 31543446 DOI: 10.1016/j.devcel.2019.08.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/05/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022]
Abstract
In the secretory pathway, budding of vesicular transport carriers from the trans-Golgi network (TGN) must coordinate specification of lipid composition with selection of secreted proteins. We elucidate a mechanism of soluble protein cargo sorting into secretory vesicles with a sphingomyelin-rich membrane; the integral membrane proteoglycan Syndecan-1 (SDC1) acts as a sorting receptor, capturing the soluble enzyme lipoprotein lipase (LPL) during export from the TGN. Sorting of LPL requires bivalent interactions between LPL and SDC1-linked heparan sulfate chains and between LPL and the Golgi membrane. Physical features of the SDC1 transmembrane domain, rather than a specific sequence, confer targeting of SDC1 and bound LPL into the sphingomyelin secretion pathway. This study establishes that physicochemical properties of a protein transmembrane domain that drive lateral heterogeneity of the plasma membrane also operate at the TGN to confer sorting of an integral membrane protein and its ligand within the biosynthetic secretory pathway.
Collapse
Affiliation(s)
- Emma L Sundberg
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Yongqiang Deng
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Christopher G Burd
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
94
|
Bittkau KS, Dörschmann P, Blümel M, Tasdemir D, Roider J, Klettner A, Alban S. Comparison of the Effects of Fucoidans on the Cell Viability of Tumor and Non-Tumor Cell Lines. Mar Drugs 2019; 17:E441. [PMID: 31357497 PMCID: PMC6722501 DOI: 10.3390/md17080441] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/15/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022] Open
Abstract
Fucoidans extracted from brown algae exert manifold biological activities paving the way for the development of numerous applications including treatments outside tumor therapy such as age-related macular degeneration or tissue engineering. In this study, we investigated the antiproliferative effects of fucoidans extracted from six different algae (Fucus vesiculosus, F. serratus, F. distichus subsp. evanescens, Dictyosiphon foeniculaceus, Laminaria digitata, Saccharina latissima) as well as three reference compounds (Sigma fucoidan, heparin, enoxaparin) on tumor (HL-60, Raji, HeLa, OMM-1, A-375, HCT-116, Hep G2) and non-tumor (ARPE-19, HaCaT) cell lines. All fucoidans were extracted according to a standardized procedure and tested in a commercially available MTS assay. Cell viability was measured after 24 h incubation with test compounds (1-100 µg/mL). Apart from few exceptions, fucoidans and heparins did not impair cell viability. In contrast, fucoidans significantly increased cell viability of suspension cell lines, but not of adherent cells. Fucoidans slightly increased viability of tumor cells and had no impact on the viability of non-tumor cells. The cell viability of HeLa and ARPE-19 cells negatively correlated with protein content and total phenolic content (TPC) of fucoidans, respectively. In summary, none of the tested fucoidans turned out to be anti-proliferative, rendering them interesting for future studies and applications.
Collapse
Affiliation(s)
- Kaya Saskia Bittkau
- Pharmaceutical Institute, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany
| | - Philipp Dörschmann
- University of Kiel, University Medical Center, Department of Ophthalmology, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany
| | - Martina Blümel
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany
- Faculty of Mathematics and Natural Sciences, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Johann Roider
- University of Kiel, University Medical Center, Department of Ophthalmology, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany
| | - Alexa Klettner
- University of Kiel, University Medical Center, Department of Ophthalmology, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany.
| | - Susanne Alban
- Pharmaceutical Institute, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany.
| |
Collapse
|
95
|
Masola V, Zaza G, Gambaro G, Franchi M, Onisto M. Role of heparanase in tumor progression: Molecular aspects and therapeutic options. Semin Cancer Biol 2019; 62:86-98. [PMID: 31348993 DOI: 10.1016/j.semcancer.2019.07.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/11/2019] [Accepted: 07/22/2019] [Indexed: 02/08/2023]
Abstract
Heparanase (HPSE) is an endoglycosidase that catalyses the cutting of the side chains of heparan-sulphate proteoglycans (HS), thus determining the remodelling of the extracellular matrix and basement membranes, as well as promoting the release of different HS-related molecules as growth factors, cytokines and enzymes. Ever since the HPSE was identified in the late 1980s, several experimental studies have shown that its overexpression was instrumental in increasing tumor growth, metastatic dissemination, angiogenesis and inflammation. More recently, HPSE involvment has also been demonstrated in mediating tumor-host crosstalk, in inducing gene transcription, in the activation of signaling pathways and in the formation of exosomes and in autophagy. All of these activities (enzymatic and non-enzymatic) together make heparanase a multifunctional molecule that increases the aggressiveness and chemo-resistance of tumor cells. Conversely, heparanase gene-silencing or tumor treatment with compounds that inhibit heparanase activity have been shown to significantly attenuate tumor progression in different animal models of tumorigenesis, further emphasizing the therapeutic potential of anti-heparanase therapy for several types of neoplasms. This review focuses on present knowledge and recent development in the study of heparanase in cancer progression as well as on novel mechanisms by which heparanase regulates tumor metastasis and chemo-resistance. Moreover, recent advances in strategies for its inhibition as a potential therapeutic option will be discussed.
Collapse
Affiliation(s)
- Valentina Masola
- Dept. of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy; Dept. of Medicine, University of Verona, 37134, Verona, Italy
| | - Gianluigi Zaza
- Dept. of Medicine, University of Verona, 37134, Verona, Italy
| | | | - Marco Franchi
- Dept. of Life Quality Sciences, University of Bologna, Corso D'Augusto 237, 47921, Rimini, Italy
| | - Maurizio Onisto
- Dept. of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy.
| |
Collapse
|
96
|
Wang S, Qiu Y, Bai B. The Expression, Regulation, and Biomarker Potential of Glypican-1 in Cancer. Front Oncol 2019; 9:614. [PMID: 31355137 PMCID: PMC6640540 DOI: 10.3389/fonc.2019.00614] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/21/2019] [Indexed: 12/31/2022] Open
Abstract
Glypican-1 (GPC-1) and other glypicans are a family of heparan sulfate proteoglycans. These proteins are highly expressed on the cell membrane and in the extracellular matrix, functioning mainly as modulators of growth factor signaling. Some of them are abnormally expressed in cancer, possibly involved in tumorigenesis, and detectable in blood as potential clinical biomarkers. GPC-1 is another glypican member that has been found to be associated with some cancers, and has increasingly interested the cancer field. Here we provide a brief review about GPC-1 in its expression, signaling and potential as a cancer biomarker.
Collapse
Affiliation(s)
- Sen Wang
- Department of Clinical Laboratory Medicine, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yudong Qiu
- Department of Hepatopancreatobiliary Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Bing Bai
- Department of Clinical Laboratory Medicine, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
97
|
Denys A, Allain F. The Emerging Roles of Heparan Sulfate 3- O-Sulfotransferases in Cancer. Front Oncol 2019; 9:507. [PMID: 31249810 PMCID: PMC6582251 DOI: 10.3389/fonc.2019.00507] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/28/2019] [Indexed: 12/14/2022] Open
Abstract
Alteration in the expression of heparan sulfate (HS)-modifying enzymes has been frequently observed in cancer. Consequently, dysregulation of the HS biosynthetic machinery results in dramatic changes in the HS structure, thereby impacting a range of pivotal cellular processes involved in tumorigenesis and cancer progression including proliferation, migration, apoptosis, and immune escape. HS 3-O-sulfotransferases (HS3STs) catalyse the maturation step of glucosaminyl 3-O-sulfation within HS chains. Although seven HS3ST isozymes have been described in human, 3-O-sulfation is a rare modification and only a few biological processes have been described to be influenced by 3-O-sulfated HS. An aberrant expression of HS3STs has been reported in a variety of cancers. Thus, it was suggested that changes in the expression of these enzymes as a result of tumorigenesis or tumor growth may critically influence cancer cell behavior. In accordance with this assumption, a number of studies have documented the epigenetic repression of HS3ST2 and HS3ST3A in many cancers. However, the situation is not so clear, and there is accumulating evidence that HS3ST2, HS3ST3A, HS3ST3B, and HS3ST4 may also act as tumor-promoting enzymes in a number of cancer cells depending on their phenotypes and molecular signatures. In this mini-review, we focus on the recent insights regarding the abnormal expression of HS3STs in cancer and discuss the functional consequences on tumor cell behavior. In term of clinical outcome, further investigations are needed to explore the potential value of HS3STs and/or their 3-O-sulfated products as targets for therapeutic strategies in cancer treatment.
Collapse
Affiliation(s)
- Agnès Denys
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Fabrice Allain
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
98
|
Bång-Rudenstam A, Cerezo-Magaña M, Belting M. Pro-metastatic functions of lipoproteins and extracellular vesicles in the acidic tumor microenvironment. Cancer Metastasis Rev 2019; 38:79-92. [PMID: 30767150 PMCID: PMC6647379 DOI: 10.1007/s10555-019-09786-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Although the overall mortality in cancer is steadily decreasing, major groups of patients still respond poorly to available treatments. The key clinical challenge discussed here relates to the inherent capacity of cancer cells to metabolically adapt to hypoxic and acidic stress, resulting in treatment resistance and a pro-metastatic behavior. Hence, a detailed understanding of stress adaptive responses is critical for the design of more rational therapeutic strategies for cancer. We will focus on the emerging role of extracellular vesicles (EVs) and lipoprotein particles in cancer cell metabolic stress adaptation and how these pathways may constitute potential Achilles' heels of the cancer cell machinery and alternative treatment targets of metastasis. In this context, common extracellular lipid uptake mechanisms, involving specific cell-surface receptors and endocytic pathways, may operate during remodeling of acidic atherosclerotic plaques as well as the tumor microenvironment. The role of endocytosis in regulating the cellular response to hypoxic and acidic stress through spatial coordination of receptor proteins may be exploited for therapeutic purposes. As a consequence, molecular mechanisms of endocytosis have attracted increasing attention as potential targets for tumor specific delivery of therapeutic substances, such as antibody-drug conjugates. The identification of internalizing surface proteins specific to the acidic tumor niche remains an unmet need of high clinical relevance. Among the currently explored, acidosis-related, internalizing target proteins, we will focus on the cell-surface proteoglycan carbonic anhydrase 9.
Collapse
Affiliation(s)
- Anna Bång-Rudenstam
- Department of Clinical Sciences Lund, Section of Oncology and Pathology, Lund University, Barngatan 4, SE-221 85, Lund, Sweden
| | - Myriam Cerezo-Magaña
- Department of Clinical Sciences Lund, Section of Oncology and Pathology, Lund University, Barngatan 4, SE-221 85, Lund, Sweden
| | - Mattias Belting
- Department of Clinical Sciences Lund, Section of Oncology and Pathology, Lund University, Barngatan 4, SE-221 85, Lund, Sweden.
| |
Collapse
|
99
|
Mulloy B. The non-anticoagulant promise of heparin and its mimetics. Curr Opin Pharmacol 2019; 46:50-54. [PMID: 31009826 DOI: 10.1016/j.coph.2019.03.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/17/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022]
Abstract
Heparin, the widely used anticoagulant and antithrombotic polysaccharide, has other potential therapeutic uses that arise from its similarity to heparan sulfate. This review provides a brief overview of the most recent developments in this field, paying particular respect to pulmonary and respiratory pharmacology. It has often been said that heparin, with its mimetics and derivatives, shows great promise in the treatment of inflammatory, infectious, and malignant conditions. Difficulties are encountered, however, in translating this promise into worthwhile treatment strategies for patients in some conditions. Several clinical trials of low molecular weight heparins as adjuvant therapy to standard treatment of lung cancers have recently provided no evidence to support the supposed beneficial effects of low molecular weight heparin.
Collapse
Affiliation(s)
- Barbara Mulloy
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
100
|
Poma AM, Condello V, Denaro M, Torregrossa L, Elisei R, Vitti P, Basolo F. DICER1 somatic mutations strongly impair miRNA processing even in benign thyroid lesions. Oncotarget 2019; 10:1785-1797. [PMID: 30956758 PMCID: PMC6442996 DOI: 10.18632/oncotarget.26639] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/16/2019] [Indexed: 01/08/2023] Open
Abstract
The alteration of miRNA processing is a driver event in several tumors including thyroid cancer. In particular, somatic DICER1 mutations, reported in follicular-patterned lesions, are shared by benign as well as malignant tumors. In the present study, we investigated the effects of alterations in the miRNA processing genes on the miRNA profile. The study included 19 follicular adenomas (FAs) and 22 follicular variant of papillary thyroid carcinomas (FVPTCs). The mutational status in the hot spot regions of DICER1, DROSHA, TARBP2, DGCR8 and the most commonly affected genes in thyroid tumors was investigated on both tumor and paired normal tissues. The miRNA profile and the mRNA expression levels of DICER1, DROSHA, TARBP2, DGCR8 and XPO5 were also evaluated. Two DICER1 RNase IIIb domain mutations were found in FAs. These lesions presented a considerable loss of 5p miRNAs. Fifteen miRNAs were specifically deregulated in DICER1-mutant lesions compared to FAs and FVPTCs. These miRNAs regulate crucial pathways in cancer such as Hippo, p53 and TGF-beta signalling. DICER1 somatic mutations in the RNase IIIb domain are not specific for malignancy, but the miRNA imbalance that they cause is remarkable, especially with regard to the loss of 5p miRNAs. DICER1-mutant lesions have a characteristic miRNA deregulation, which is different from that of FVPTCs; nevertheless, this impairment is consistent with malignant transformation. Further studies providing the real risk of malignancy associated with DICER1 mutations and the evolution of DICER1-mutant lesions are needed to make them useful in the clinical practice.
Collapse
Affiliation(s)
- Anello Marcello Poma
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Vincenzo Condello
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Maria Denaro
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | | | - Rossella Elisei
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University of Pisa, Pisa, Italy
| | - Paolo Vitti
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University of Pisa, Pisa, Italy
| | - Fulvio Basolo
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| |
Collapse
|