51
|
Shishkin SS, Kovalev LI, Pashintseva NV, Kovaleva MA, Lisitskaya K. Heterogeneous Nuclear Ribonucleoproteins Involved in the Functioning of Telomeres in Malignant Cells. Int J Mol Sci 2019; 20:E745. [PMID: 30744200 PMCID: PMC6387250 DOI: 10.3390/ijms20030745] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are structurally and functionally distinct proteins containing specific domains and motifs that enable the proteins to bind certain nucleotide sequences, particularly those found in human telomeres. In human malignant cells (HMCs), hnRNP-A1-the most studied hnRNP-is an abundant multifunctional protein that interacts with telomeric DNA and affects telomerase function. In addition, it is believed that other hnRNPs in HMCs may also be involved in the maintenance of telomere length. Accordingly, these proteins are considered possible participants in the processes associated with HMC immortalization. In our review, we discuss the results of studies on different hnRNPs that may be crucial to solving molecular oncological problems and relevant to further investigations of these proteins in HMCs.
Collapse
Affiliation(s)
- Sergey S Shishkin
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| | - Leonid I Kovalev
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| | - Natalya V Pashintseva
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| | - Marina A Kovaleva
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| | - Ksenia Lisitskaya
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| |
Collapse
|
52
|
Chuang HH, Wang PH, Niu SW, Zhen YY, Huang MS, Hsiao M, Yang CJ. Inhibition of FAK Signaling Elicits Lamin A/C-Associated Nuclear Deformity and Cellular Senescence. Front Oncol 2019; 9:22. [PMID: 30761269 PMCID: PMC6363943 DOI: 10.3389/fonc.2019.00022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/08/2019] [Indexed: 01/07/2023] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor kinase that facilitates tumor aggressiveness. The effects of FAK inhibition include arresting proliferation, limiting metastasis, and inhibiting angiogenesis. PF-573228 is an ATP-competitive inhibitor of FAK. Treating lung cancer cells with PF-573228 resulted in FAK inactivation and changes in the expressions of lamin A/C and nuclear deformity. Since lamin A/C downregulation or deficiency was associated with cellular senescence, the senescence-associated β-galactosidase (SA-β-gal) assay was used to investigate whether PF-573228 treatment drove cellular senescence, which showed more SA-β-gal-positive cells in culture. p53 is known to play a pivotal role in mediating the progression of cellular senescence, and the PF-573228-treated lung cancer cells resulted in a higher p53 expression level. Subsequently, the FAK depletion in lung cancer cells was employed to confirm the role of FAK inhibition on cellular senescence. FAK depletion and pharmacological inhibition of lung cancer cells elicited similar patterns of cellular senescence, lamin A/C downregulation, and p53 upregulation, implying that FAK signaling is associated with the expression of p53 and the maintenance of lamin A/C levels to shape regular nuclear morphology and manage anti-senescence. Conversely, FAK inactivation led to p53 upregulation, disorganization of the nuclear matrix, and consequently cellular senescence. Our data suggest a new FAK signaling pathway, in that abolishing FAK signaling can activate the senescence program in cells. Triggering cellular senescence could be a new therapeutic approach to limit tumor growth.
Collapse
Affiliation(s)
- Hsiang-Hao Chuang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Hui Wang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sheng-Wen Niu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Yi Zhen
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Shyan Huang
- Department of Internal Medicine, E-Da Cancer Hospital, School of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Jen Yang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
53
|
Oncogenic Metabolism Acts as a Prerequisite Step for Induction of Cancer Metastasis and Cancer Stem Cell Phenotype. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1027453. [PMID: 30671168 PMCID: PMC6323533 DOI: 10.1155/2018/1027453] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023]
Abstract
Metastasis is a major obstacle to the efficient and successful treatment of cancer. Initiation of metastasis requires epithelial-mesenchymal transition (EMT) that is regulated by several transcription factors, including Snail and ZEB1/2. EMT is closely linked to the acquisition of cancer stem cell (CSC) properties and chemoresistance, which contribute to tumor malignancy. Tumor suppressor p53 inhibits EMT and metastasis by negatively regulating several EMT-inducing transcription factors and regulatory molecules; thus, its inhibition is crucial in EMT, invasion, metastasis, and stemness. Metabolic alterations are another hallmark of cancer. Most cancer cells are more dependent on glycolysis than on mitochondrial oxidative phosphorylation for their energy production, even in the presence of oxygen. Cancer cells enhance other oncogenic metabolic pathways, such as glutamine metabolism, pentose phosphate pathway, and the synthesis of fatty acids and cholesterol. Metabolic reprogramming in cancer is regulated by the activation of oncogenes or loss of tumor suppressors that contribute to tumor progression. Oncogenic metabolism has been recently linked closely with the induction of EMT or CSC phenotypes by the induction of several metabolic enzyme genes. In addition, several transcription factors and molecules involved in EMT or CSCs, including Snail, Dlx-2, HIF-1α, STAT3, TGF-β, Wnt, and Akt, regulate oncogenic metabolism. Moreover, p53 induces metabolic change by directly regulating several metabolic enzymes. The collective data indicate the importance of oncogenic metabolism in the regulation of EMT, cell invasion and metastasis, and adoption of the CSC phenotype, which all contribute to malignant transformation and tumor development. In this review, we highlight the oncogenic metabolism as a key regulator of EMT and CSC, which is related with tumor progression involving metastasis and chemoresistance. Targeting oncometabolism might be a promising strategy for the development of effective anticancer therapy.
Collapse
|
54
|
Masouminia M, Gelfand R, Kovanecz I, Vernet D, Tsao J, Salas R, Castro K, Loni L, Rajfer J, Gonzalez-Cadavid NF. Dyslipidemia Is a Major Factor in Stem Cell Damage Induced by Uncontrolled Long-Term Type 2 Diabetes and Obesity in the Rat, as Suggested by the Effects on Stem Cell Culture. J Sex Med 2018; 15:1678-1697. [PMID: 30527052 PMCID: PMC6645779 DOI: 10.1016/j.jsxm.2018.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/04/2018] [Accepted: 09/28/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Previous work showed that muscle-derived stem cells (MDSCs) exposed long-term to the milieu of uncontrolled type 2 diabetes (UC-T2D) in male obese Zucker (OZ) rats, were unable to correct the associated erectile dysfunction and the underlying histopathology when implanted into the corpora cavernosa, and were also imprinted with a noxious gene global transcriptional signature (gene-GTS), suggesting that this may interfere with their use as autografts in stem cell therapy. AIM To ascertain the respective contributions of dyslipidemia and hyperglycemia to this MDSC damage, clarify its mechanism, and design a bioassay to identify the damaged stem cells. METHODS Early diabetes MDSCs and late diabetes MDSCs were respectively isolated from nearly normal young OZ rats and moderately hyperglycemic and severely dyslipidemic/obese aged rats with erectile dysfunction. Monolayer cultures of early diabetic MDSCs were incubated 4 days in DMEM/10% fetal calf serum + or - aged OZ or lean Zucker serum from non-diabetic lean Zucker rats (0.5-5%) or with soluble palmitic acid (PA) (0.5-2 mM), cholesterol (CHOL) (50-400 mg/dL), or glucose (10-25 mM). MAIN OUTCOME MEASURE Fat infiltration was estimated by Oil red O, apoptosis by TUNEL, protein expression by Western blots, and gene-GTS and microRNA (miR)-GTS were determined in these stem cells' RNA. RESULTS Aged OZ serum caused fat infiltration, apoptosis, myostatin overexpression, and impaired differentiation. Some of these changes, and also a proliferation decrease occurred with PA and CHOL. The gene-GTS changes by OZ serum did not resemble the in vivo changes, but some occurred with PA and CHOL. The miR-GTS changes by OZ serum, PA, and CHOL resembled most of the in vivo changes. Hyperglycemia did not replicate most alterations. CLINICAL IMPLICATIONS MDSCs may be damaged in long-term UC-T2D/obese patients and be ineffective in autologous human stem cell therapy, which may be prevented by excluding the damaged MDSCs. STRENGTH & LIMITATIONS The in vitro test of MDSCs is innovative and fast to define dyslipidemic factors inducing stem cell damage, its mechanism, prevention, and counteraction. Confirmation is required in other T2D/obesity rat models and stem cells (including human), as well as miR-GTS biomarker validation as a stem cell damage biomarker. CONCLUSION Serum from long-term UC-T2D/obese rats or dyslipidemic factors induces a noxious phenotype and miR-GTS on normal MDSCs, which may lead in vivo to the repair inefficacy of late diabetic MDSCs. This suggests that autograft therapy with MDSCs in long-term UT-T2D obese patients may be ineffective, albeit this may be predictable by prior stem cell miR-GTS tests. Masouminia M, Gelfand R, Kovanecz I, et al. Dyslipidemia Is a Major Factor in Stem Cell Damage Induced by Uncontrolled Long-Term Type 2 Diabetes and Obesity in the Rat, as Suggested by the Effects on Stem Cell Culture. J Sex Med 2018;15:1678-1697.
Collapse
Affiliation(s)
- Maryam Masouminia
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - Robert Gelfand
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - Istvan Kovanecz
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA; Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Dolores Vernet
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - James Tsao
- Department of Medicine, Charles Drew University of Medicine and Science, Los Angeles, CA, USA
| | - Ruben Salas
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - Kenny Castro
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - Leila Loni
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - Jacob Rajfer
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - Nestor F Gonzalez-Cadavid
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA; Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Medicine, Charles Drew University of Medicine and Science, Los Angeles, CA, USA.
| |
Collapse
|
55
|
Leysen H, van Gastel J, Hendrickx JO, Santos-Otte P, Martin B, Maudsley S. G Protein-Coupled Receptor Systems as Crucial Regulators of DNA Damage Response Processes. Int J Mol Sci 2018; 19:E2919. [PMID: 30261591 PMCID: PMC6213947 DOI: 10.3390/ijms19102919] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 12/11/2022] Open
Abstract
G protein-coupled receptors (GPCRs) and their associated proteins represent one of the most diverse cellular signaling systems involved in both physiological and pathophysiological processes. Aging represents perhaps the most complex biological process in humans and involves a progressive degradation of systemic integrity and physiological resilience. This is in part mediated by age-related aberrations in energy metabolism, mitochondrial function, protein folding and sorting, inflammatory activity and genomic stability. Indeed, an increased rate of unrepaired DNA damage is considered to be one of the 'hallmarks' of aging. Over the last two decades our appreciation of the complexity of GPCR signaling systems has expanded their functional signaling repertoire. One such example of this is the incipient role of GPCRs and GPCR-interacting proteins in DNA damage and repair mechanisms. Emerging data now suggest that GPCRs could function as stress sensors for intracellular damage, e.g., oxidative stress. Given this role of GPCRs in the DNA damage response process, coupled to the effective history of drug targeting of these receptors, this suggests that one important future activity of GPCR therapeutics is the rational control of DNA damage repair systems.
Collapse
Affiliation(s)
- Hanne Leysen
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium.
| | - Jaana van Gastel
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium.
- Translational Neurobiology Group, Center of Molecular Neurology, VIB, 2610 Antwerp, Belgium.
| | - Jhana O Hendrickx
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium.
- Translational Neurobiology Group, Center of Molecular Neurology, VIB, 2610 Antwerp, Belgium.
| | - Paula Santos-Otte
- Institute of Biophysics, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
| | - Bronwen Martin
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium.
| | - Stuart Maudsley
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium.
- Translational Neurobiology Group, Center of Molecular Neurology, VIB, 2610 Antwerp, Belgium.
| |
Collapse
|