51
|
Yoon HA, Riska PF, Jain R, Morales C, Pirofski LA. Unexpected case of cryptococcal meningoencephalitis in a patient with long-standing well-controlled HIV infection. Med Mycol Case Rep 2021; 32:14-16. [PMID: 33552883 PMCID: PMC7851412 DOI: 10.1016/j.mmcr.2021.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 11/30/2022] Open
Abstract
Cryptococcal meningoencephalitis (CM) classically occurs in individuals with advanced HIV infection, solid organ transplants, or other immunocompromising conditions. We report a case of fatal CM in a 78-year-old woman with well-controlled HIV infection who had delayed diagnosis, persistently elevated intracranial pressure and pleocytosis of the cerebrospinal fluid. Initial suspicion for CM was low due to her relatively high CD4+ T cell counts, which likely contributed to greater inflammation.
Collapse
Affiliation(s)
- Hyun Ah Yoon
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Paul F Riska
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Ruchika Jain
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Cariane Morales
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Liise-Anne Pirofski
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| |
Collapse
|
52
|
Rodrigo AP, Grosso AR, Baptista PV, Fernandes AR, Costa PM. A Transcriptomic Approach to the Recruitment of Venom Proteins in a Marine Annelid. Toxins (Basel) 2021; 13:toxins13020097. [PMID: 33525375 PMCID: PMC7911839 DOI: 10.3390/toxins13020097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/19/2022] Open
Abstract
The growing number of known venomous marine invertebrates indicates that chemical warfare plays an important role in adapting to diversified ecological niches, even though it remains unclear how toxins fit into the evolutionary history of these animals. Our case study, the Polychaeta Eulalia sp., is an intertidal predator that secretes toxins. Whole-transcriptome sequencing revealed proteinaceous toxins secreted by cells in the proboscis and delivered by mucus. Toxins and accompanying enzymes promote permeabilization, coagulation impairment and the blocking of the neuromuscular activity of prey upon which the worm feeds by sucking pieces of live flesh. The main neurotoxins ("phyllotoxins") were found to be cysteine-rich proteins, a class of substances ubiquitous among venomous animals. Some toxins were phylogenetically related to Polychaeta, Mollusca or more ancient groups, such as Cnidaria. Some toxins may have evolved from non-toxin homologs that were recruited without the reduction in molecular mass and increased specificity of other invertebrate toxins. By analyzing the phylogeny of toxin mixtures, we show that Polychaeta is uniquely positioned in the evolution of animal venoms. Indeed, the phylogenetic models of mixed or individual toxins do not follow the expected eumetazoan tree-of-life and highlight that the recruitment of gene products for a role in venom systems is complex.
Collapse
|
53
|
Wanke A, Malisic M, Wawra S, Zuccaro A. Unraveling the sugar code: the role of microbial extracellular glycans in plant-microbe interactions. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:15-35. [PMID: 32929496 PMCID: PMC7816849 DOI: 10.1093/jxb/eraa414] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/14/2020] [Indexed: 05/14/2023]
Abstract
To defend against microbial invaders but also to establish symbiotic programs, plants need to detect the presence of microbes through the perception of molecular signatures characteristic of a whole class of microbes. Among these molecular signatures, extracellular glycans represent a structurally complex and diverse group of biomolecules that has a pivotal role in the molecular dialog between plants and microbes. Secreted glycans and glycoconjugates such as symbiotic lipochitooligosaccharides or immunosuppressive cyclic β-glucans act as microbial messengers that prepare the ground for host colonization. On the other hand, microbial cell surface glycans are important indicators of microbial presence. They are conserved structures normally exposed and thus accessible for plant hydrolytic enzymes and cell surface receptor proteins. While the immunogenic potential of bacterial cell surface glycoconjugates such as lipopolysaccharides and peptidoglycan has been intensively studied in the past years, perception of cell surface glycans from filamentous microbes such as fungi or oomycetes is still largely unexplored. To date, only few studies have focused on the role of fungal-derived cell surface glycans other than chitin, highlighting a knowledge gap that needs to be addressed. The objective of this review is to give an overview on the biological functions and perception of microbial extracellular glycans, primarily focusing on their recognition and their contribution to plant-microbe interactions.
Collapse
Affiliation(s)
- Alan Wanke
- University of Cologne, Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Milena Malisic
- University of Cologne, Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, Cologne, Germany
| | - Stephan Wawra
- University of Cologne, Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, Cologne, Germany
| | - Alga Zuccaro
- University of Cologne, Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, Cologne, Germany
| |
Collapse
|
54
|
da Silva-Junior EB, Firmino-Cruz L, Guimarães-de-Oliveira JC, De-Medeiros JVR, de Oliveira Nascimento D, Freire-de-Lima M, de Brito-Gitirana L, Morrot A, Previato JO, Mendonça-Previato L, Decote-Ricardo D, de Matos Guedes HL, Freire-de-Lima CG. The role of Toll-like receptor 9 in a murine model of Cryptococcus gattii infection. Sci Rep 2021; 11:1407. [PMID: 33446850 PMCID: PMC7809259 DOI: 10.1038/s41598-021-80959-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
Toll-like receptor 9 (TLR9) is crucial to the host immune response against fungi, such as Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans, but its importance in Cryptococcus gattii infection is unknown. Our study aimed to understand the role of TLR9 during the course of experimental C. gattii infection in vivo, considering that the cryptococcal DNA interaction with the receptor could contribute to host immunity even in an extremely susceptible model. We inoculated C57BL/6 (WT) and TLR9 knock-out (TLR9−/−) mice intratracheally with 104C. gattii yeast cells. TLR9−/− mice had a higher mortality rate compared to WT mice and more yeast cells that had abnormal size, known as titan cells, in the lungs. TLR9−/− mice also had a greater number of CFUs in the spleen and brain than WT mice, in addition to having lower levels of IFN-γ and IL-17 in the lung. With these markers of aggressive cryptococcosis, we can state that TLR9−/− mice are more susceptible to C. gattii, probably due to a mechanism associated with the decrease of a Th1 and Th17-type immune response that promotes the formation of titan cells in the lungs. Therefore, our results indicate the participation of TLR9 in murine resistance to C. gattii infection.
Collapse
Affiliation(s)
- Elias Barbosa da Silva-Junior
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-900, Brazil
| | - Luan Firmino-Cruz
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-900, Brazil.,Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21045-900, Brazil
| | | | - Juliana Valente Rodrigues De-Medeiros
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-900, Brazil.,Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21045-900, Brazil
| | | | - Matheus Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-900, Brazil
| | - Lycia de Brito-Gitirana
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-900, Brazil
| | - Alexandre Morrot
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21045-900, Brazil.,Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-900, Brazil
| | - Jose Osvaldo Previato
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-900, Brazil
| | - Lucia Mendonça-Previato
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-900, Brazil
| | - Debora Decote-Ricardo
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, 23890-000, Brazil.
| | - Herbert Leonel de Matos Guedes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-900, Brazil. .,Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21045-900, Brazil.
| | - Celio Geraldo Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-900, Brazil.
| |
Collapse
|
55
|
Freitas MS, Pessoni AM, Coelho C, Bonato VLD, Rodrigues ML, Casadevall A, Almeida F. Interactions of Extracellular Vesicles from Pathogenic Fungi with Innate Leukocytes. Curr Top Microbiol Immunol 2021; 432:89-120. [DOI: 10.1007/978-3-030-83391-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
56
|
Anjum S, Dean O, Kosa P, Magone MT, King KA, Fitzgibbon E, Kim HJ, Zalewski C, Murphy E, Billioux BJ, Chisholm J, Brewer CC, Krieger C, Elsegeiny W, Scott TL, Wang J, Hunsberger S, Bennett JE, Nath A, Marr KA, Bielekova B, Wendler D, Hammoud DA, Williamson P. Outcomes in Previously Healthy Cryptococcal Meningoencephalitis Patients treated with Pulse - Taper Corticosteroids for Post-infectious Inflammatory Syndrome. Clin Infect Dis 2020; 73:e2789-e2798. [PMID: 33383587 DOI: 10.1093/cid/ciaa1901] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cryptococcal meningoencephalitis (CM) is a major cause of mortality in immunosuppressed patients and previously healthy individuals. In the latter, a post-infectious inflammatory response syndrome (PIIRS) is associated with poor clinical response despite antifungal therapy and negative CSF cultures. Data on effective treatment are limited. METHODS Between March 2015 and March 2020, 15 consecutive previously healthy patients with CM and PIIRS were treated with adjunctive pulse corticosteroid taper therapy (PCT) consisting of intravenous methylprednisolone 1 gm daily for 1 week followed by oral prednisone 1 mg/kg/d, tapered based on clinical and radiological response plus oral fluconazole. Montreal Cognitive Assessments (MOCA), Karnofsky Performance scores, MRI brain scanning, ophthalmic and audiologic exams, CSF parameters including cellular and soluble immune responses were compared at PIIRS diagnosis and after methylprednisolone completion. RESULTS The median time from antifungal treatment to steroid initiation was 6 weeks. The most common symptoms at PIIRS diagnosis were altered mental status and vision changes. All patients demonstrated significant improvements in MOCA and Karnofsky scores at 1 month (p<0.0003), which was accompanied by improvements in CSF glucose, WBC, protein, cellular and soluble inflammatory markers 1 week after receiving corticosteroids (CS) (p<0.003). All patients with papilledema and visual field deficits also exhibited improvement (p<0.0005). Five out of 7 patients who underwent audiological testing demonstrated hearing improvement. Brain MRI showed significant improvement of radiological findings (p=0.001). CSF cultures remained negative. CONCLUSIONS PCT in this small cohort of PIIRS was associated with improvements in CM-related complications with minimal toxicity in the acute setting.
Collapse
Affiliation(s)
- Seher Anjum
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Owen Dean
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Peter Kosa
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - M Teresa Magone
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kelly A King
- National Institute on Deafness and Other Communication Disorders, National Institute of Health, Bethesda, MD, USA
| | - Edmond Fitzgibbon
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - H Jeff Kim
- National Institute on Deafness and Other Communication Disorders, National Institute of Health, Bethesda, MD, USA
| | - Chris Zalewski
- National Institute on Deafness and Other Communication Disorders, National Institute of Health, Bethesda, MD, USA
| | - Elizabeth Murphy
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bridgette Jeanne Billioux
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer Chisholm
- National Institute on Deafness and Other Communication Disorders, National Institute of Health, Bethesda, MD, USA
| | - Carmen C Brewer
- National Institute on Deafness and Other Communication Disorders, National Institute of Health, Bethesda, MD, USA
| | - Chantal Krieger
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Waleed Elsegeiny
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Terri L Scott
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jing Wang
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | - John E Bennett
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Kieren A Marr
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Bibiana Bielekova
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Dima A Hammoud
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Peter Williamson
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
57
|
Ligacheva AA, Sherstoboev EY, Danilets MG, Trofimova ES, Krivoshchekov SV, Gur'ev AM, Bulgakov TV, Kudashkina NV, Miroshnichenko AG, Belousov MV. Study of Immunotropic Properties of Water-Soluble Polysaccharides Isolated from Conium maculatum Grass. Bull Exp Biol Med 2020; 170:203-206. [PMID: 33263855 DOI: 10.1007/s10517-020-05033-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 11/28/2022]
Abstract
Addition of water-soluble polysaccharides isolated from Conium maculatum L. to the mouse peritoneal macrophage culture induces classical activation of antigen-presenting cells due to an increase in NO synthase activity and a decrease in arginase expression.
Collapse
Affiliation(s)
- A A Ligacheva
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - E Yu Sherstoboev
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.
| | - M G Danilets
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - E S Trofimova
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - S V Krivoshchekov
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| | - A M Gur'ev
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| | - T V Bulgakov
- Bashkir State Medical University, Ministry of Health of the Russian Federation, Ufa, Russia
| | - N V Kudashkina
- Bashkir State Medical University, Ministry of Health of the Russian Federation, Ufa, Russia
| | - A G Miroshnichenko
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| | - M V Belousov
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| |
Collapse
|
58
|
Ueno K, Yanagihara N, Shimizu K, Miyazaki Y. Vaccines and Protective Immune Memory against Cryptococcosis. Biol Pharm Bull 2020; 43:230-239. [PMID: 32009111 DOI: 10.1248/bpb.b19-00841] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cryptococcosis is a potentially lethal disease caused by fungal pathogens including Cryptococcus neoformans and Cryptococcus gattii species complex. These fungal pathogens live in the environment and are associated with certain tree species and bird droppings. This infectious disease is not contagious, and healthy individuals may contract cryptococcal infections by inhaling the airborne pathogens from the environment. Although cleaning a contaminated environment is a feasible approach to control environmental fungal pathogens, prophylactic immunization is also considered a promising method to regulate cryptococcal infections. We review the history of the development of cryptococcal vaccines, vaccine components, and the various forms of immune memory induced by cryptococcal vaccines.
Collapse
Affiliation(s)
- Keigo Ueno
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases
| | - Nao Yanagihara
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases.,Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science
| | - Kiminori Shimizu
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science
| | - Yoshitsugu Miyazaki
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases
| |
Collapse
|
59
|
Pinheiro SB, Sousa ES, Cortez ACA, da Silva Rocha DF, Menescal LSF, Chagas VS, Gómez ASP, Cruz KS, Santos LO, Alves MJ, Matsuura ABJ, Wanke B, Trilles L, Frickmann H, de Souza JVB. Cryptococcal meningitis in non-HIV patients in the State of Amazonas, Northern Brazil. Braz J Microbiol 2020; 52:279-288. [PMID: 33025379 DOI: 10.1007/s42770-020-00383-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
Cryptococcosis is a life-threatening fungal infection caused by the Cryptococcus neoformans/Cryptococcus gattii species complex. Most cases are recorded in patients suffering from HIV/AIDS (human immunodeficiency virus/acquired immunodeficiency syndrome). However, this infection also occurs in non-HIV patients with a proportion of 10-30% of all cases. The study aimed at the clinical and molecular characterization of non-HIV patients diagnosed with cryptococcosis at the Tropical Medicine Foundation (FMT-HVD) from July 2016 to June 2019. Medical records of respective patients were analyzed to describe the course of cryptococcosis in non-HIV patients. In addition, multi-locus sequence typing (MLST) was applied to identify the sequence types of the isolated Cryptococcus strains, to perform phylogenetic analysis, and to evaluate the isolates' genetic relationship to global reference strains. Antifungal susceptibility profiles to amphotericin B, fluconazole, and itraconazole were assessed by broth microdilution. From a total of 7 patients, 4 were female, the age range varied between 10 and 53 years (median of 36.3 years). Cryptococcal meningitis was the common clinical manifestation (100%). The period between onset of symptoms and confirmed diagnosis ranged from 15 to 730 days (mean value of 172.9 days), and the observed mortality was 57.1%. Of note, comorbidities of the assessed cryptococcosis patients comprised hypertension, diabetes mellitus, and intestinal tuberculosis. Genotyping applying PCR-RFLP of the URA5 gene identified all clinical isolates as C. gattii genotype VGII. Using MLST, it was possible to discriminate the sequence types ST20 (n = 4), ST5 (n = 3), and the newly identified sequence type ST560 (n = 1). The antifungals amphotericin B, fluconazole, and itraconazole showed satisfactory inhibitory activity (microdilution test) against all C. gattii VGII strains.
Collapse
Affiliation(s)
- Silviane Bezerra Pinheiro
- Pós Graduação em Ciências Farmacêuticas, Universidade Federal do Amazonas, Manaus, Brazil.,Laboratório de Micologia, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Ednaira Sullany Sousa
- Pós Graduação em Ciências Farmacêuticas, Universidade Federal do Amazonas, Manaus, Brazil.,Laboratório de Micologia, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | | | | | | | | | | | - Kátia Santana Cruz
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado - AM, Manaus, Brazil
| | | | | | | | - Bodo Wanke
- Instituto Nacional de Infectologia Evandro Chagas, Fiocruz - RJ, Rio de Janeiro, Brazil
| | - Luciana Trilles
- Instituto Nacional de Infectologia Evandro Chagas, Fiocruz - RJ, Rio de Janeiro, Brazil
| | - Hagen Frickmann
- Department of Microbiology and Hospital Hygiene, External site at the Bernhard Nocht Institute, Bundeswehr Hospital Hamburg, Hamburg, Germany.,Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | | |
Collapse
|
60
|
Normile TG, Bryan AM, Del Poeta M. Animal Models of Cryptococcus neoformans in Identifying Immune Parameters Associated With Primary Infection and Reactivation of Latent Infection. Front Immunol 2020; 11:581750. [PMID: 33042164 PMCID: PMC7522366 DOI: 10.3389/fimmu.2020.581750] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Cryptococcus species are environmental fungal pathogens and the causative agents of cryptococcosis. Infection occurs upon inhalation of infectious particles, which proliferate in the lung causing a primary infection. From this primary lung infection, fungal cells can eventually disseminate to other organs, particularly the brain, causing lethal meningoencephalitis. However, in most cases, the primary infection resolves with the formation of a lung granuloma. Upon severe immunodeficiency, dormant cryptococcal cells will start proliferating in the lung granuloma and eventually will disseminate to the brain. Many investigators have sought to study the protective host immune response to this pathogen in search of host parameters that keep the proliferation of cryptococcal cells under control. The majority of the work assimilates research carried out using the primary infection animal model, mainly because a reactivation model has been available only very recently. This review will focus on anti-cryptococcal immunity in both the primary and reactivation models. An understanding of the differences in host immunity between the primary and reactivation models will help to define the key host parameters that control the infections and are important for the research and development of new therapeutic and vaccine strategies against cryptococcosis.
Collapse
Affiliation(s)
- Tyler G Normile
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States
| | - Arielle M Bryan
- Ingenious Targeting Laboratory Incorporated, Ronkonkoma, NY, United States
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States.,Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY, United States.,Veterans Administration Medical Center, Northport, NY, United States
| |
Collapse
|
61
|
Kirkland TN, Fierer J. Innate Immune Receptors and Defense Against Primary Pathogenic Fungi. Vaccines (Basel) 2020; 8:E303. [PMID: 32545735 PMCID: PMC7350247 DOI: 10.3390/vaccines8020303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
The innate immune system is critical for natural resistance to all pathogenic microorganisms, including fungi. The innate response plays a vital role in resistance to infections before the antigen-specific immune response and also influences antigen-specific adaptive immunity. There are many different receptors for the innate immune response to fungi, and some receptors have been found to play a significant role in the response to human infections with opportunistic fungi. Most human infections are caused by opportunistic fungi, but a small number of organisms are capable of causing infections in normal hosts. The primary pathogenic fungi that cause invasive infections include Blastomyces spp., Cryptococcus gattii, Coccidioides spp., Histoplasma spp., and Paracoccidioides spp. In this review of innate immune receptors that play a role in infections caused by these organisms, we find that innate immunity differs between organisms.
Collapse
Affiliation(s)
- Theo N. Kirkland
- Division of Infectious Diseases, Departments of Pathology and Medicine, School of Medicine, University of California San Diego, San Diego, CA 92037, USA;
| | - Joshua Fierer
- Division of Infectious Diseases, Departments of Pathology and Medicine, School of Medicine, University of California San Diego, San Diego, CA 92037, USA;
- VA HealthCare San Diego, San Diego, CA 92161, USA
| |
Collapse
|
62
|
Coelho C, Farrer RA. Pathogen and host genetics underpinning cryptococcal disease. ADVANCES IN GENETICS 2020; 105:1-66. [PMID: 32560785 DOI: 10.1016/bs.adgen.2020.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cryptococcosis is a severe fungal disease causing 220,000 cases of cryptococcal meningitis yearly. The etiological agents of cryptococcosis are taxonomically grouped into at least two species complexes belonging to the genus Cryptococcus. All of these yeasts are environmentally ubiquitous fungi (often found in soil, leaves and decaying wood, tree hollows, and associated with bird feces especially pigeon guano). Infection in a range of animals including humans begins following inhalation of spores or aerosolized yeasts. Recent advances provide fundamental insights into the factors from both the pathogen and its hosts which influence pathogenesis and disease. The complex interactions leading to disease in mammalian hosts have also updated from the availability of better genomic tools and datasets. In this review, we discuss recent genetic research on Cryptococcus, covering the epidemiology, ecology, and evolution of Cryptococcus pathogenic species. We also discuss the insights into the host immune response obtained from the latest genetic modified host models as well as insights from monogenic disorders in humans. Finally we highlight outstanding questions that can be answered in the near future using bioinformatics and genomic tools.
Collapse
Affiliation(s)
- Carolina Coelho
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, United Kingdom
| | - Rhys A Farrer
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
63
|
Chung KY, Brown JCS. Biology and function of exo-polysaccharides from human fungal pathogens. CURRENT CLINICAL MICROBIOLOGY REPORTS 2020; 7:1-11. [PMID: 33042730 DOI: 10.1007/s40588-020-00137-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Purpose of review Environmental fungi such as Cryptococcus neoformans and Aspergillus fumigatus must survive many different and changing environments as they transition from their environmental niches to human lungs and other organs. Fungi alter their cell surfaces and secreted macromolecules to respond to and manipulate their surroundings. Recent findings This review focuses on exo-polysaccharides, chains of sugars that transported out of the cell and spread to the local environment. Major exo-polysaccharides for C. neoformans and A. fumigatus are glucuronylxylomannan (GXM) and galactosaminogalactan (GAG), respectively, which accumulate at high concentrations in growth medium and infected patients. Summary Here we discuss GXM and GAG synthesis and export, their immunomodulatory properties, and their roles in biofilm formation. We also propose areas of future research to address outstanding questions in the field that could facilitate development of new disease treatments.
Collapse
Affiliation(s)
- Krystal Y Chung
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Jessica C S Brown
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|