51
|
Cheng YW, Chiu MJ, Chen YF, Cheng TW, Lai YM, Chen TF. The contribution of vascular risk factors in neurodegenerative disorders: from mild cognitive impairment to Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2020; 12:91. [PMID: 32753051 PMCID: PMC7401210 DOI: 10.1186/s13195-020-00658-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/22/2020] [Indexed: 01/25/2023]
Abstract
Background Optimization of vascular risk factor control is emerging as an alternative approach to improve cognitive outcomes in Alzheimer’s disease, although its efficacy is still under debate. We aimed to investigate the contribution of vascular risk factors on Alzheimer’s biomarkers and conversion rate to dementia in subjects with mild cognitive impairment (MCI) with low cerebral small vessel disease burden. Methods Two hundred ninety-five newly diagnosed MCI subjects were enrolled from March 2005 to May 2017 for a cross-sectional assessment of vascular risk factors and Alzheimer’s plasma and imaging biomarkers, followed by a cognitive outcome assessment 24 months after enrollment. The association between vascular risk factors and Alzheimer’s biomarkers were tested using multivariable linear regression models adjusted with age, gender, education, and APOE ε4 allele. The association between vascular risk factors and conversion to dementia was tested using multivariable logistic regression models adjusted with age, gender, education, and baseline Mini-Mental State Examination (MMSE) score. Results At baseline, higher low-density lipoprotein (LDL) cholesterol level was associated with more advanced plasma biomarkers, including Aβ42/Aβ40 ratio (P = 0.012) and tau level (P = 0.001). A history of hypertension was associated with more advanced white matter hyperintensity (P = 0.011), while statin therapy for dyslipidemia was associated with less advanced white matter hyperintensity (P = 0.002). At 24 months, individual vascular risk factor was not significantly associated with cognitive outcome. By contrast, statin therapy for dyslipidemia was associated with reduced conversion to dementia (adjusted OR = 0.191, 95% CI = 0.062~0.586, P = 0.004). Conclusions For MCI subjects, dyslipidemia may contribute to AD-related neurodegeneration while hypertension may contribute to vascular pathology. The association between statin therapy for dyslipidemia and reduced conversion to dementia supports further interventional study to evaluate the potential beneficial effect of statin in MCI subjects.
Collapse
Affiliation(s)
- Yu-Wen Cheng
- Department of Neurology, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Jang Chiu
- Department of Neurology, College of Medicine, National Taiwan University Hospital, National Taiwan University, No. 7 Chung-Shan South Road, Taipei, 10055, Taiwan.,Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Psychology, National Taiwan University, Taipei, Taiwan
| | - Ya-Fang Chen
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Ting-Wen Cheng
- Department of Neurology, College of Medicine, National Taiwan University Hospital, National Taiwan University, No. 7 Chung-Shan South Road, Taipei, 10055, Taiwan
| | - Ya-Mei Lai
- Department of Neurology, College of Medicine, National Taiwan University Hospital, National Taiwan University, No. 7 Chung-Shan South Road, Taipei, 10055, Taiwan
| | - Ta-Fu Chen
- Department of Neurology, College of Medicine, National Taiwan University Hospital, National Taiwan University, No. 7 Chung-Shan South Road, Taipei, 10055, Taiwan.
| |
Collapse
|
52
|
Jiao F, Yi F, Wang Y, Zhang S, Guo Y, Du W, Gao Y, Ren J, Zhang H, Liu L, Song H, Wang L. The Validation of Multifactor Model of Plasma Aβ 42 and Total-Tau in Combination With MoCA for Diagnosing Probable Alzheimer Disease. Front Aging Neurosci 2020; 12:212. [PMID: 32792940 PMCID: PMC7385244 DOI: 10.3389/fnagi.2020.00212] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/16/2020] [Indexed: 01/21/2023] Open
Abstract
Alzheimer disease (AD) has an insidious onset and heterogeneous clinical symptoms. The well-accepted biomarkers for clinical diagnosis of AD include β-amyloid (Aβ) deposition and pathologic tau level within cerebral spinal fluid (CSF) and imaging AD pathology such as positive emission tomography (PET) imaging of the amyloid-binding agent Pittsburgh compound B (PET-PiB). However, the high expense and invasive nature of these methods highly limit their wide usage in clinic practice. Therefore, it is imperious to develop less expensive and invasive methods, and plasma biomarkers are the premium targets. In the current study, we utilized a single-blind comparison method; all the probable AD cases met the core clinical National Institute on Aging and Alzheimer’s Association (NIA-AA) criteria and validated by PET-PiB. We used ultrasensitive immunomagnetic reduction (IMR) assays to measure plasma Aβ42 and total-tau (t-tau) levels, in combination with different variables including Aβ42 × t-tau value, Montreal Cognitive Assessment (MoCA), and Mini Mental State Examination (MMSE). We used logistic regression to analyze the effect of all these variables in the algorism. Our results showed that (1) plasma Aβ42 and t-tau are efficient biomarkers for AD diagnosis using IMR platform, whereas Aβ42 × t-tau value is more efficient for discriminating control and AD; (2) in the control group, Aβ42 level and age demonstrated strong negative correlation; Aβ42 × t-tau value and age demonstrated significant negative correlation; (3) in the AD group, t-tau level and MMSE score demonstrated strong negative correlation; (4) using the model that Aβ42, Aβ42 × t-tau, and MoCA as the variable to generate receiver operating characteristic (ROC) curve, cutoff value = 0.48, sensitivity = 0.973, specificity = 0.982, area under the curve (AUC) = 0.986, offered better categorical efficacy, sensitivity, specificity, and AUC. The multifactor model of plasma Aβ42 and t-tau in combination with MoCA can be a viable model separate health and AD subjects in clinical practice.
Collapse
Affiliation(s)
- Fubin Jiao
- Medical School of Chinese People's Liberation Army, Beijing, China.,Department of Neurology, The 2nd Medical Center, National Clinical Research Center for Geriatric Disease, Chinese People's Liberation Army General Hospital, Beijing, China.,Health Service Department of the Guard Bureau of the Joint Staff Department, Joint Staff of the Central Military Commission of Chinese PLA, Beijing, China
| | - Fang Yi
- Department of Neurology, The 2nd Medical Center, National Clinical Research Center for Geriatric Disease, Chinese People's Liberation Army General Hospital, Beijing, China.,Department of Neurology, Lishilu Outpatient, Jingzhong Medical District, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yuanyuan Wang
- Department of Neurology, The 2nd Medical Center, National Clinical Research Center for Geriatric Disease, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Shouzi Zhang
- The Psycho Department of Beijing Geriatric Hospital, Beijing, China
| | - Yanjun Guo
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wenjin Du
- Department of Neurology, Air Force Medical Center, Chinese People's Liberation Army, Beijing, China
| | - Ya Gao
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jingjing Ren
- National Engineering Research Center for Protein Drugs, Beijing, China
| | - Haifeng Zhang
- Health Service Department of the Guard Bureau of the Joint Staff Department, Joint Staff of the Central Military Commission of Chinese PLA, Beijing, China
| | - Lixin Liu
- The Psycho Department of Beijing Geriatric Hospital, Beijing, China
| | - Haifeng Song
- National Engineering Research Center for Protein Drugs, Beijing, China
| | - Luning Wang
- Medical School of Chinese People's Liberation Army, Beijing, China.,Department of Neurology, The 2nd Medical Center, National Clinical Research Center for Geriatric Disease, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
53
|
Chen TB, Lai YH, Ke TL, Chen JP, Lee YJ, Lin SY, Lin PC, Wang PN, Cheng IH. Changes in Plasma Amyloid and Tau in a Longitudinal Study of Normal Aging, Mild Cognitive Impairment, and Alzheimer's Disease. Dement Geriatr Cogn Disord 2020; 48:180-195. [PMID: 31991443 DOI: 10.1159/000505435] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/15/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Changes in cerebrospinal fluid, neuroimaging, and cognitive functions have been used as diagnostic biomarkers of Alzheimer's disease (AD). This study aimed to investigate the temporal trajectories of plasma biomarkers in subjects with mild cognitive impairment (MCI) and patients with AD relative to healthy controls (HCs). METHODS In this longitudinal study, 82 participants (31 HCs, 33 MCI patients, and 18 AD patients) were enrolled. After 3 years, 7 HCs had transitioned to MCI and 10 subjects with MCI had converted to AD. We analyzed plasma amyloid beta (Aβ) and tau proteins at baseline and annually to correlate with biochemical data and neuropsychological scores. RESULTS Longitudinal data analysis showed an evolution of Aβ-related biomarkers over time within patients, whereas tau-related biomarkers differed primarily across diagnostic classifications. An initial steady increase in Aβ42 in the MCI stage was followed by a decrease just prior to clinical AD onset. Hyperphosphorylated tau protein levels correlated with cognitive decline in the MCI stage, but not in the AD stage. CONCLUSION Plasma Aβ and tau levels change in a dynamic, nonlinear, nonparallel manner over the AD continuum. Changes in plasma Aβ concentration are time-dependent, whereas changes in hyperphosphorylated tau protein levels paralleled the clinical progression of MCI. It remains to be clarified whether diagnostic efficiency can be improved by combining multiple plasma markers or combining plasma markers with other diagnostic biomarkers.
Collapse
Affiliation(s)
- Ting-Bin Chen
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan.,Dementia and Parkinson's Disease Integrated Center, Taichung Veterans General Hospital, Taichung, Taiwan.,Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yu-Hua Lai
- Department of Neurology, Cheng-Hsin General Hospital, Taipei, Taiwan
| | - Ting-Ling Ke
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Jun-Peng Chen
- Biostatistics Task Force of Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Jung Lee
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.,Division of Neurology, Department of Medicine, Taipei City Hospital Renai Branch, Taipei, Taiwan
| | - Szu-Ying Lin
- Taipei Municipal Gan-Dau Hospital, Taipei, Taiwan
| | - Po-Chen Lin
- Division of General Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Pei-Ning Wang
- Division of General Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Aging and Health Research Center, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Irene H Cheng
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan, .,Brain Research Center, National Yang-Ming University, Taipei, Taiwan,
| |
Collapse
|
54
|
Nguyen TT, Ta QTH, Nguyen TKO, Nguyen TTD, Vo VG. Role of Body-Fluid Biomarkers in Alzheimer's Disease Diagnosis. Diagnostics (Basel) 2020; 10:diagnostics10050326. [PMID: 32443860 PMCID: PMC7277970 DOI: 10.3390/diagnostics10050326] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/02/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease (AD) is a complex neurodegenerative disease that requires extremely specific biomarkers for its diagnosis. For current diagnostics capable of identifying AD, the development and validation of early stage biomarkers is a top research priority. Body-fluid biomarkers might closely reflect synaptic dysfunction in the brain and, thereby, could contribute to improving diagnostic accuracy and monitoring disease progression, and serve as markers for assessing the response to disease-modifying therapies at early onset. Here, we highlight current advances in the research on the capabilities of body-fluid biomarkers and their role in AD pathology. Then, we describe and discuss current applications of the potential biomarkers in clinical diagnostics in AD.
Collapse
Affiliation(s)
- Thuy Trang Nguyen
- Faculty of Pharmacy, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City 700000, Vietnam;
| | - Qui Thanh Hoai Ta
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam;
| | - Thi Kim Oanh Nguyen
- Faculty of Food Science and Technology, Ho Chi Minh City University of Food Industry, Ho Chi Minh City 700000, Vietnam;
| | - Thi Thuy Dung Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam
- Correspondence: (T.T.D.N.); (V.G.V.)
| | - Van Giau Vo
- Department of Industrial and Environmental Engineering, Graduate School of Environment, Gachon University, 1342 Sungnam-daero, Sujung-gu, Seongnam-si, Gyeonggi-do 461-701, Korea
- Department of BionanoTechnology, Gachon University, 1342 Sungnam-daero, Sujung-gu, Seongnam-si, Gyeonggi-do 461-701, Korea
- Correspondence: (T.T.D.N.); (V.G.V.)
| |
Collapse
|
55
|
Cook JD, Ferry DG, Tran KM. Sleep's role in preventing and treating Alzheimer's disease: are we moving towards slow-wave assessment and enhancement? Sleep 2020; 43:5677510. [PMID: 31837225 DOI: 10.1093/sleep/zsz304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/06/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Jesse D Cook
- Department of Psychiatry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI.,Department of Psychology, University of Wisconsin-Madison, Madison, WI
| | - David G Ferry
- Department of Psychiatry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Kieulinh M Tran
- Department of Psychiatry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
56
|
Wang P, Lin K, Liu H, Andreasson U, Blennow K, Zetterberg H, Yang S. Plasma pyroglutamate-modified amyloid beta differentiates amyloid pathology. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12029. [PMID: 32363230 PMCID: PMC7191392 DOI: 10.1002/dad2.12029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/05/2020] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Pyroglutamate-modified amyloid β (AβpE3) could be a biomarker for Aβ plaque pathology in the brain. An ultra-high-sensitive assay is needed for detecting AβpE3-40. METHODS Immunomagnetic reduction was used for quantification of AβpE3-40 in plasma from 46 participants. The concentrations of AβpE3-40 of these subjects were compared with 18F-florbetapir positron emission tomography (PET) images. RESULTS AβpE3-40 concentration was 44.1 ± 28.2 fg/mL in PET- (n = 28) and 91.6 ± 54.6 fg/mL in PET+ (n = 18; P < .05). The cutoff value of AβpE3-40 for discriminating PET- from PET+ was 55.5 fg/mL, resulting in a sensitivity of 83.3%, a specificity of 71.4%. The concentration of AβpE3-40 showed a moderate correlation (r = 0.437) with PET standardized uptake value ratio. DISCUSSION We did not enroll pre-clinical AD subject with normal cognition but Aβ PET+. It would be an important issue to explore the feasibility of using AβpE3-40 for screening pre-clinical subjects. CONCLUSION These results reveal the feasibility of detecting Aβ pathology using quantification of a plaque-derived Aβ molecule in plasma.
Collapse
Affiliation(s)
- Pei‐Ning Wang
- Department of NeurologyNeurological InstituteTaipei Veterans General HospitalTaipeiTaiwan
- Department of NeurologySchool of MedicineNational Yang‐Ming UniversityTaipeiTaiwan
- Brain Research CenterNational Yang‐Ming UniversityTaipeiTaiwan
| | - Kun‐Ju Lin
- Department of Nuclear Medicine and Molecular Imaging CenterLinkou Chang Gung Memorial HospitalTao‐YuanTaiwan
- Healthy Aging Research Center and Department of Medical Imaging and Radiological SciencesCollege of Medicine, Chang Gung UniversityTao‐YuanTaiwan
| | | | - Ulf Andreasson
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of Neurology, Queen SquareLondonUK
- UK Dementia Research Institute at UCLLondonUK
| | - Shieh‐Yueh Yang
- MagQu Co., Ltd.New Taipei CityTaiwan
- MagQu LLCSurpriseArizonaUSA
| |
Collapse
|
57
|
Liu HC, Chiu MJ, Lin CH, Yang SY. Stability of Plasma Amyloid-β 1-40, Amyloid-β 1-42, and Total Tau Protein over Repeated Freeze/Thaw Cycles. Dement Geriatr Cogn Dis Extra 2020; 10:46-55. [PMID: 32308667 PMCID: PMC7154287 DOI: 10.1159/000506278] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 01/29/2020] [Indexed: 12/31/2022] Open
Abstract
Introduction Blood biomarkers of Alzheimer's disease (AD) have attracted much attention of researchers in recent years. In clinical studies, repeated freeze/thaw cycles often occur and may influence the stability of biomarkers. This study aims to investigate the stability of amyloid-β 1–40 (Aβ<sub>1–40</sub>), amyloid-β 1–42 (Aβ<sub>1–42</sub>), and total tau protein (T-tau) in plasma over freeze/thaw cycles. Methods Plasma samples from healthy controls (n = 2), AD patients (AD, n =3) and Parkinson's disease patients (PD, n = 3) were collected by standardized procedure and immediately frozen at −80°C. Samples underwent 5 freeze/thaw (−80°C/room temperature) cycles. The concentrations of Aβ<sub>1–40</sub>, Aβ<sub>1–42</sub>, and T-tau were monitored during the freeze/thaw tests using an immunomagnetic reduction (IMR) assay. The relative percentage of concentrations after every freeze/thaw cycle was calculated for each biomarker. Results A tendency of decrease in the averaged relative percentages over samples through the freeze and thaw cycles for Aβ<sub>1–40</sub> (100 to 97.11%), Aβ<sub>1–42</sub> (100 to 94.99%), and T-tau (100 to 95.65%) was found. However, the decreases were less than 6%. For all three biomarkers, no statistical significance was found between the levels of fresh plasma and those of the plasma experiencing 5 freeze/thaw cycles (p > 0.1). Conclusions Plasma Aβ<sub>1–40</sub>, Aβ<sub>1–42</sub>, and T-tau are stable through 5 freeze/thaw cycles measured with IMR.
Collapse
Affiliation(s)
| | - Ming-Jang Chiu
- Neurology, National Taiwan University Hospital, Taipei, Taiwan.,Neurology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chin-Hsien Lin
- Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Shieh-Yueh Yang
- MagQu Co., Ltd., New Taipei City, Taiwan.,MagQu LLC, Surprise, Arizona, USA
| |
Collapse
|
58
|
Wang X, Sun Y, Li T, Cai Y, Han Y. Amyloid-β as a Blood Biomarker for Alzheimer’s Disease: A Review of Recent Literature. J Alzheimers Dis 2020; 73:819-832. [PMID: 31868667 DOI: 10.3233/jad-190714] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xiaoni Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yu Sun
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Taoran Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yanning Cai
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Center of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| |
Collapse
|
59
|
From the prion-like propagation hypothesis to therapeutic strategies of anti-tau immunotherapy. Acta Neuropathol 2020; 139:3-25. [PMID: 31686182 PMCID: PMC6942016 DOI: 10.1007/s00401-019-02087-9] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 12/15/2022]
Abstract
The term “propagon” is used to define proteins that may transmit misfolding in vitro, in tissues or in organisms. Among propagons, misfolded tau is thought to be involved in the pathogenic mechanisms of various “tauopathies” that include Alzheimer's disease, progressive supranuclear palsy, and argyrophilic grain disease. Here, we review the available data in the literature and point out how the prion-like tau propagation has been extended from Alzheimer's disease to tauopathies. First, in Alzheimer’s disease, the progression of tau aggregation follows stereotypical anatomical stages which may be considered as spreading. The mechanisms of the propagation are now subject to intensive and controversial research. It has been shown that tau may be secreted in the interstitial fluid in an active manner as reflected by high and constant concentration of extracellular tau during Alzheimer’s pathology. Animal and cell models have been devised to mimic tau seeding and propagation, and despite their limitations, they have further supported to the prion-like propagation hypothesis. Finally, such new ways of thinking have led to different therapeutic strategies in anti-tau immunotherapy among tauopathies and have stimulated new clinical trials. However, it appears that the prion-like propagation hypothesis mainly relies on data obtained in Alzheimer’s disease. From this review, it appears that further studies are needed (1) to characterize extracellular tau species, (2) to find the right pathological tau species to target, (3) to follow in vivo tau pathology by brain imaging and biomarkers and (4) to interpret current clinical trial results aimed at reducing the progression of these pathologies. Such inputs will be essential to have a comprehensive view of these promising therapeutic strategies in tauopathies.
Collapse
|
60
|
Lin SY, Lin KJ, Lin PC, Huang CC, Chang CC, Lee YC, Hsiao IT, Yen TC, Huang WS, Yang BH, Wang PN. Plasma amyloid assay as a pre-screening tool for amyloid positron emission tomography imaging in early stage Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2019; 11:111. [PMID: 31881963 PMCID: PMC6933740 DOI: 10.1186/s13195-019-0566-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/05/2019] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Due to the high cost and high failure rate of ascertaining amyloid positron emission tomography positivity (PET+) in patients with earlier stage Alzheimer's disease (AD), an effective pre-screening tool for amyloid PET scans is needed. METHODS Patients with mild cognitive impairment (n = 33, 24.2% PET+, 42% females, age 74.4 ± 7.5, MMSE 26.8 ± 1.9) and mild dementia (n = 19, 63.6% PET+, 36.3% females, age 73.0 ± 9.3, MMSE 22.6 ± 2.0) were recruited. Amyloid PET imaging, Apolipoprotein E (APOE) genotyping, and plasma amyloid β (Aβ)1-40, Aβ1-42, and total tau protein quantification by immunomagnetic reduction (IMR) method were performed. Receiver operating characteristics (ROC) analysis and Youden's index were performed to identify possible cut-off points, clinical sensitivities/specificities, and areas under the curve (AUCs). RESULTS Amyloid PET+ participants had lower plasma Aβ1-42 levels than amyloid PET-negative (PET-) subjects. APOE ε4 carriers had higher plasma Aβ1-42 than non-carriers. We developed an algorithm involving the combination of plasma Aβ1-42 and APOE genotyping. The success rate for detecting amyloid PET+ patients effectively increased from 42.3 to 70.4% among clinically suspected MCI and mild dementia patients. CONCLUSIONS Our results demonstrate the possibility of utilizing APOE genotypes in combination with plasma Aβ1-42 levels as a pre-screening tool for predicting the positivity of amyloid PET findings in early stage dementia patients.
Collapse
Affiliation(s)
- Szu-Ying Lin
- Department of Neurology, Taipei Municipal Gan-Dau Hospital, Taipei, Taiwan
| | - Kun-Ju Lin
- Department of Nuclear Medicine and Molecular Imaging Center, Linkou Chang Gung Memorial Hospital, Tao-Yuan, Taiwan. .,Healthy Aging Research Center and Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.
| | - Po-Chen Lin
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chin-Chang Huang
- Department of Neurology, Linkou Chang Gung Memorial Hospital and University, Tao-Yuan, Taiwan
| | - Chiung-Chih Chang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yi-Chung Lee
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Neurology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Ing-Tsung Hsiao
- Department of Nuclear Medicine and Molecular Imaging Center, Linkou Chang Gung Memorial Hospital, Tao-Yuan, Taiwan.,Healthy Aging Research Center and Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Tzu-Chen Yen
- Department of Nuclear Medicine and Molecular Imaging Center, Linkou Chang Gung Memorial Hospital, Tao-Yuan, Taiwan.,Healthy Aging Research Center and Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Wen-Sheng Huang
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Bang-Hung Yang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Ning Wang
- Department of Neurology, School of Medicine, National Yang-Ming University, Taipei, Taiwan. .,Brain Research Center, National Yang-Ming University, Taipei, Taiwan. .,Aging and Health Research Center, National Yang-Ming University, Taipei, Taiwan. .,Division of General Neurology, Department of Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
61
|
Lue LF, Kuo YM, Sabbagh M. Advance in Plasma AD Core Biomarker Development: Current Findings from Immunomagnetic Reduction-Based SQUID Technology. Neurol Ther 2019; 8:95-111. [PMID: 31833027 PMCID: PMC6908530 DOI: 10.1007/s40120-019-00167-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Indexed: 11/28/2022] Open
Abstract
New super-sensitive biomarker assay platforms for measuring Alzheimer's disease (AD) core pathological markers in plasma have recently been developed and tested. Research findings from these technologies offer promising evidence for identifying the earliest stages of AD and correlating them with brain pathological progression. Here, we review findings using immunomagnetic reduction, one of these ultrasensitive technologies. The principles, technology and assays developed, along with selected published findings will be discussed. The major findings from this technology were significant increases of amyloid beta (Aβ) 42 and total tau (t-tau) levels in subjects clinically diagnosed with early AD when compared with cognitively normal control (NC) subjects. The composite marker of the product of Aβ42 and t-tau discriminated subjects with early AD from NC subjects with high accuracy. The potential of this technology for the purpose of early or preclinical disease stage detection has yet to be explored in subjects who have also been assessed with brain imaging and cerebrospinal fluid AD core biomarker measurements.
Collapse
Affiliation(s)
- Lih-Fen Lue
- Civin Neuropathology Laboratory, Banner Sun Health Research Institute, 10515 West Santa Fe Drive, Sun City, AZ, 85351, USA.
- School of Life Sciences, Arizona State University, 427 East Tyler Mall, Tempe, AZ, 85281, USA.
| | - Yu-Min Kuo
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University Medical School, 1 Dasyue Road, Tainan, Taiwan
| | - Marwan Sabbagh
- Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W Bonneville Ave, Las Vegas, NV, 89106, USA
| |
Collapse
|
62
|
Shen L, Xia S, Zhang H, Yao F, Liu X, Zhao Y, Ying M, Iqbal J, Liu Q. Precision Medicine: Role of Biomarkers in Early Prediction and Diagnosis of Alzheimer’s Disease. Mol Med 2019. [DOI: 10.5772/intechopen.82035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
63
|
Tsai CL, Liang CS, Lee JT, Su MW, Lin CC, Chu HT, Tsai CK, Lin GY, Lin YK, Yang FC. Associations between Plasma Biomarkers and Cognition in Patients with Alzheimer's Disease and Amnestic Mild Cognitive Impairment: A Cross-Sectional and Longitudinal Study. J Clin Med 2019; 8:jcm8111893. [PMID: 31698867 PMCID: PMC6912664 DOI: 10.3390/jcm8111893] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 01/16/2023] Open
Abstract
Brain degeneration in patients with Alzheimer's disease (AD) results from the accumulation of pathological amyloid- (Aβ) plaques and tau protein tangles, leading to altered plasma levels of biomarkers. However, few studies have investigated the association between plasma biomarkers and cognitive impairment in patients with AD. In this cross-sectional study, we investigated correlations between mini-mental state examination (MMSE) scores and levels of plasma biomarkers in patients with amnestic mild cognitive impairment (aMCI) and AD. Thirteen individuals with normal cognition, 40 patients with aMCI, and 37 patients with AD were enrolled. Immunomagnetic reduction was used to assess the levels of plasma biomarkers, including amyloid A1-40, A1-42, total tau protein (t-Tau), and phosphorylated tau protein (threonine 181, p-Tau181). Our analysis revealed a significant negative correlation between MMSE and both measures of tau, and a trend toward negative correlation between MMSE and A1-42. In a longitudinal study involving three patients with aMCI and two patients with AD, we observed strong negative correlations (r < -0.8) between changes in MMSE scores and plasma levels of t-Tau. Our results suggest that plasma levels of t-Tau and p-Tau181 can be used to assess the severity of cognitive impairment in patients with AD. Furthermore, the results of our preliminary longitudinal study suggest that levels of t-Tau can be used to monitor the progression of cognitive decline in patients with aMCI/AD.
Collapse
Affiliation(s)
- Chia-Lin Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei 112, Taiwan
| | - Jiunn-Tay Lee
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Ming-Wei Su
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Chun-Chieh Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Hsuan-Te Chu
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei 112, Taiwan
| | - Chia-Kuang Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Guan-Yu Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Yu-Kai Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Fu-Chi Yang
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: ; Tel.: +886-2-879-233-11; Fax: +886-2-879-271-74
| |
Collapse
|
64
|
Pifferi F, Epelbaum J, Aujard F. Strengths and Weaknesses of the Gray Mouse Lemur ( Microcebus murinus) as a Model for the Behavioral and Psychological Symptoms and Neuropsychiatric Symptoms of Dementia. Front Pharmacol 2019; 10:1291. [PMID: 31736761 PMCID: PMC6833941 DOI: 10.3389/fphar.2019.01291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/09/2019] [Indexed: 01/12/2023] Open
Abstract
To face the load of the prevalence of Alzheimer’s disease in the aging population, there is an urgent need to develop more translatable animal models with similarities to humans in both the symptomatology and physiopathology of dementia. Due to their close evolutionary similarity to humans, non-human primates (NHPs) are of primary interest. Of the NHPs, to date, the gray mouse lemur (Microcebus murinus) has shown promising evidence of its translatability to humans. The present review reports the known advantages and limitations of using this species at all levels of investigation in the context of neuropsychiatric conditions. In this easily bred Malagasy primate with a relatively short life span (approximately 12 years), age-related cognitive decline, amyloid angiopathy, and risk factors (i.e., glucoregulatory imbalance) are congruent with those observed in humans. More specifically, analogous behavioral and psychological symptoms and neuropsychiatric symptoms of dementia (BPSD/NPS) to those in humans can be found in the aging mouse lemur. Aged mouse lemurs show typical age-related alterations of locomotor activity daily rhythms such as decreased rhythm amplitude, increased fragmentation, and increased activity during the resting-sleeping phase of the day and desynchronization with the light-dark cycle. In addition, sleep deprivation successfully induces cognitive deficits in adult mouse lemurs, and the effectiveness of approved cognitive enhancers such as acetylcholinesterase inhibitors or N-methyl-D-aspartate antagonists is demonstrated in sleep–deprived animals. This result supports the translational potential of this animal model, especially for unraveling the mechanisms underlying dementia and for developing novel therapeutics to prevent age-associated cognitive decline. In conclusion, actual knowledge of BPSD/NPS-like symptoms of age-related cognitive deficits in the gray mouse lemur and the recent demonstration of the similarity of these symptoms with those seen in humans offer promising new ways of investigating both the prevention and treatment of pathological aging.
Collapse
Affiliation(s)
- Fabien Pifferi
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, Brunoy, France
| | - Jacques Epelbaum
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, Brunoy, France.,Unité Mixte de Recherche en Santé 894 INSERM, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Fabienne Aujard
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, Brunoy, France
| |
Collapse
|
65
|
The Role of Physical Fitness in Cognitive-Related Biomarkers in Persons at Genetic Risk of Familial Alzheimer's Disease. J Clin Med 2019; 8:jcm8101639. [PMID: 31591322 PMCID: PMC6832576 DOI: 10.3390/jcm8101639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/28/2022] Open
Abstract
Introduction: Nondemented people with a family history of Alzheimer’s disease (ADFH) and the ApoE-4 allele have been demonstrated to show a trend for a higher probability of cognitive decline and aberrant levels of cognitive-related biomarkers. However, the potential interactive effects on physical fitness have not been investigated. Purpose: The primary purpose of this study was to determine whether ADFH individuals with the ApoE-4 genotype show deviant brain event-related neural oscillatory performance and cognitively-related molecular indices. A secondary purpose was to examine the interactive effects on physical fitness. Methods: Blood samples were provided from 110 individuals with ADFH to assess molecular biomarkers and the ApoE genotype for the purpose of dividing them into an ApoE-4 group (n = 16) and a non-ApoE-4 group (n = 16) in order for them to complete a visuospatial working memory task while simultaneously recording electroencephalographic signals. They also performed a senior functional physical fitness (SFPF) test. Results: While performing the cognitive task, the ApoE-4 relative to non-ApoE-4 group showed worse accuracy rates (ARs) and brain neural oscillatory performance. There were no significant between-group differences with regard to any molecular biomarkers (e.g., IL-1β, IL-6, IL-8, BDNF, Aβ1-40, Aβ1-42). VO2max was significantly correlated with the neuropsychological performance (i.e., ARs and RTs) in the 2-item and 4-item conditions in the ApoE-4 group and across the two groups. However, the electroencephalogram (EEG) oscillations during visuospatial working memory processing in the two conditions were not correlated with any SFPF scores or cardiorespiratory tests in the two groups. Conclusions: ADFH individuals with the ApoE-4 genotype only showed deviant neuropsychological (e.g., ARs) and neural oscillatory performance when performing the cognitive task with a higher visuospatial working memory load. Cardiorespiratory fitness potentially played an important role in neuropsychological impairment in this group.
Collapse
|
66
|
Plasma Aβ42 and Total Tau Predict Cognitive Decline in Amnestic Mild Cognitive Impairment. Sci Rep 2019; 9:13984. [PMID: 31562355 PMCID: PMC6764975 DOI: 10.1038/s41598-019-50315-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 09/04/2019] [Indexed: 01/21/2023] Open
Abstract
Levels of amyloid-β (Aβ) and tau peptides in brain have been associated with Alzheimer disease (AD). The current study investigated the abilities of plasma Aβ42 and total-tau (t-tau) levels in predicting cognitive decline in subjects with amnestic mild cognitive impairment (MCI). Plasma Aβ42 and t-tau levels were quantified in 22 participants with amnestic MCI through immunomagnetic reduction (IMR) assay at baseline. The cognitive performance of participants was measured through neuropsychological tests at baseline and annual follow-up (average follow-up period of 1.5 years). The predictive value of plasma Aβ42 and t-tau for cognitive status was evaluated. We found that higher levels of Aβ42 and t-tau are associated with lower episodic verbal memory performance at baseline and cognitive decline over the course of follow-up. While Aβ42 or t-tau alone had moderate-to-high discriminatory value in the identification of future cognitive decline, the product of Aβ42 and t-tau offered greater differential value. These preliminary results might suggest that high levels of plasma Aβ42 and t-tau in amnestic MCI are associated with later cognitive decline. A further replication with a larger sample over a longer time period to validate and determine their long-term predictive value is warranted.
Collapse
|
67
|
Lue LF, Pai MC, Chen TF, Hu CJ, Huang LK, Lin WC, Wu CC, Jeng JS, Blennow K, Sabbagh MN, Yan SH, Wang PN, Yang SY, Hatsuta H, Morimoto S, Takeda A, Itoh Y, Liu J, Xie H, Chiu MJ. Age-Dependent Relationship Between Plasma Aβ40 and Aβ42 and Total Tau Levels in Cognitively Normal Subjects. Front Aging Neurosci 2019; 11:222. [PMID: 31551751 PMCID: PMC6734161 DOI: 10.3389/fnagi.2019.00222] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/06/2019] [Indexed: 12/21/2022] Open
Abstract
Both amyloid plaques and neurofibrillary tangles are pathological hallmarks in the brains of patients with Alzheimer’s disease (AD). However, the constituents of these hallmarks, amyloid beta (Aβ) 40, Aβ42, and total Tau (t-Tau), have been detected in the blood of cognitively normal subjects by using an immunomagnetic reduction (IMR) assay. Whether these levels are age-dependent is not known, and their interrelation remains undefined. We determined the levels of these biomarkers in cognitively normal subjects of different age groups. A total of 391 cognitively normal subjects aged 23–91 were enrolled from hospitals in Asia, Europe, and North America. Healthy cognition was evaluated by NIA-AA guidelines to exclude subjects with mild cognitive impairment (MCI) and AD and by cognitive assessment using the Mini Mental State Examination and Clinical Dementia Rating (CDR). We examined the effect of age on plasma levels of Aβ40, Aβ42, and t-Tau and the relationship between these biomarkers during aging. Additionally, we explored age-related reference intervals for each biomarker. Plasma t-Tau and Aβ42 levels had modest but significant correlations with chronological age (r = 0.127, p = 0.0120 for t-Tau; r = −0.126, p = 0.0128 for Aβ42), ranging from ages 23 to 91. Significant positive correlations were detected between Aβ42 and t-Tau in the groups aged 50 years and older, with Rho values ranging from 0.249 to 0.474. Significant negative correlations were detected between Aβ40 and t-Tau from age 40 to 91 (r ranged from −0.293 to −0.582) and between Aβ40 and Aβ42 in the age groups of 30–39 (r = −0.562, p = 0.0235), 50–59 (r = −0.261, p = 0.0142), 60–69 (r = −0.303, p = 0.0004), and 80–91 (r = 0.459, p = 0.0083). We also provided age-related reference intervals for each biomarker. In this multicenter study, age had weak but significant effects on the levels of Aβ42 and t-Tau in plasma. However, the age group defined by decade revealed the emergence of a relationship between Aβ40, Aβ42, and t-Tau in the 6th and 7th decades. Validation of our findings in a large-scale and longitudinal study is warranted.
Collapse
Affiliation(s)
- Lih-Fen Lue
- Civin Neuropathology Laboratory, Banner Sun Health Research Institute, Sun City, AZ, United States
| | - Ming-Chyi Pai
- Division of Behavioral Neurology, Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ta-Fu Chen
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chaur-Jong Hu
- Department of Neurology, Taipei Medical University, Taipei, Taiwan.,Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Li-Kai Huang
- Department of Neurology, Taipei Medical University, Taipei, Taiwan.,Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Wei-Che Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chau-Chung Wu
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jian-Shing Jeng
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
| | - Marwan N Sabbagh
- Lou Ruvo Center for Brain Health, Cleveland Clinic Nevada, Las Vegas, NV, United States
| | - Sui-Hing Yan
- Department of Neurology, Renai Branch, Taipei City Hospital, Taipei, Taiwan
| | - Pei-Ning Wang
- Department of Neurology, National Yang-Ming University, Taipei, Taiwan.,Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shieh-Yueh Yang
- MagQu Company Limited, New Taipei City, Taiwan.,MagQu LLC, Surprise, AZ, United States
| | - Hiroyuki Hatsuta
- Hatsuta Neurology Clinic, Osaka, Japan.,Department of Neurology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Satoru Morimoto
- Hatsuta Neurology Clinic, Osaka, Japan.,Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | - Akitoshi Takeda
- Department of Neurology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yoshiaki Itoh
- Department of Neurology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Jun Liu
- Departemnt of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Haiqun Xie
- Department of Neurology, Foshan Hospital of Sun Yat-Sen University, Foshan, China
| | - Ming-Jang Chiu
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
68
|
Palmqvist S, Janelidze S, Stomrud E, Zetterberg H, Karl J, Zink K, Bittner T, Mattsson N, Eichenlaub U, Blennow K, Hansson O. Performance of Fully Automated Plasma Assays as Screening Tests for Alzheimer Disease-Related β-Amyloid Status. JAMA Neurol 2019; 76:1060-1069. [PMID: 31233127 PMCID: PMC6593637 DOI: 10.1001/jamaneurol.2019.1632] [Citation(s) in RCA: 289] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Importance Accurate blood-based biomarkers for Alzheimer disease (AD) might improve the diagnostic accuracy in primary care, referrals to memory clinics, and screenings for AD trials. Objective To examine the accuracy of plasma β-amyloid (Aβ) and tau measured using fully automated assays together with other blood-based biomarkers to detect cerebral Aβ. Design, Setting, and Participants Two prospective, cross-sectional, multicenter studies. Study participants were consecutively enrolled between July 6, 2009, and February 11, 2015 (cohort 1), and between January 29, 2000, and October 11, 2006 (cohort 2). Data were analyzed in 2018. The first cohort comprised 842 participants (513 cognitively unimpaired [CU], 265 with mild cognitive impairment [MCI], and 64 with AD dementia) from the Swedish BioFINDER study. The validation cohort comprised 237 participants (34 CU, 109 MCI, and 94 AD dementia) from a German biomarker study. Main Outcome and Measures The cerebrospinal fluid (CSF) Aβ42/Aβ40 ratio was used as the reference standard for brain Aβ status. Plasma Aβ42, Aβ40 and tau were measured using Elecsys immunoassays (Roche Diagnostics) and examined as predictors of Aβ status in logistic regression models in cohort 1 and replicated in cohort 2. Plasma neurofilament light chain (NFL) and heavy chain (NFH) and APOE genotype were also examined in cohort 1. Results The mean (SD) age of the 842 participants in cohort 1 was 72 (5.6) years, with a range of 59 to 88 years, and 446 (52.5%) were female. For the 237 in cohort 2, mean (SD) age was 66 (10) years with a range of 23 to 85 years, and 120 (50.6%) were female. In cohort 1, plasma Aβ42 and Aβ40 predicted Aβ status with an area under the receiver operating characteristic curve (AUC) of 0.80 (95% CI, 0.77-0.83). When adding APOE, the AUC increased significantly to 0.85 (95% CI, 0.82-0.88). Slight improvements were seen when adding plasma tau (AUC, 0.86; 95% CI, 0.83-0.88) or tau and NFL (AUC, 0.87; 95% CI, 0.84-0.89) to Aβ42, Aβ40 and APOE. The results were similar in CU and cognitively impaired participants, and in younger and older participants. Applying the plasma Aβ42 and Aβ40 model from cohort 1 in cohort 2 resulted in slightly higher AUC (0.86; 95% CI, 0.81-0.91), but plasma tau did not contribute. Using plasma Aβ42, Aβ40, and APOE in an AD trial screening scenario reduced positron emission tomography costs up to 30% to 50% depending on cutoff. Conclusions and Relevance Plasma Aβ42 and Aβ40 measured using Elecsys immunoassays predict Aβ status in all stages of AD with similar accuracy in a validation cohort. Their accuracy can be further increased by analyzing APOE genotype. Potential future applications of these blood tests include prescreening of Aβ positivity in clinical AD trials to lower the costs and number of positron emission tomography scans or lumbar punctures.
Collapse
Affiliation(s)
- Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden.,Department of Neurology, Skåne University Hospital, Malmö, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom.,UK Dementia Research Institute at UCL, London, United Kingdom
| | | | | | - Tobias Bittner
- Genentech, a Member of the Roche Group, Basel, Switzerland
| | - Niklas Mattsson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden.,Department of Neurology, Skåne University Hospital, Malmö, Sweden
| | | | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
69
|
Youn YC, Kang S, Suh J, Park YH, Kang MJ, Pyun JM, Choi SH, Jeong JH, Park KW, Lee HW, An SSA, Dominguez JC, Kim S. Blood amyloid-β oligomerization associated with neurodegeneration of Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2019; 11:40. [PMID: 31077246 PMCID: PMC6511146 DOI: 10.1186/s13195-019-0499-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022]
Abstract
Introduction Oligomeric amyloid-ß is a major toxic species associated with Alzheimer’s disease pathogenesis. Methods used to measure oligomeric amyloid-β in the blood have increased in number in recent years. The Multimer Detection System-Oligomeric Amyloid-β (MDS-OAβ) is a specific method to measure oligomerization tendencies in the blood. The objective of this study was to determine the association between amyloid-ß oligomerization in the plasma and structural changes of the brain. Methods We studied 162 subjects composed of 92 community-based normal healthy subjects, 17 with subjective cognitive decline, 14 with mild cognitive impairment and 39 with Alzheimer’s disease dementia. All subjects underwent MDS-OAβ and three-dimensional T1 magnetic resonance imaging. To determine the structural changes of the brain that are statistically correlated with MDS-OAβ level, we used voxel-based morphometry with corrections for age and total intracranial volume covariates. Results We found brain volume reduction in the bilateral temporal, amygdala, parahippocampal and lower parietal lobe and left cingulate and precuneus regions (family-wise error, p < 0.05). Reduction was also found in white matter in proximity to the left temporal and bilateral lower parietal lobes and posterior corpus callosum (family-wise error, p < 0.05). Brain volume increment was not observed in any regions within grey or white matter. Discussion Findings suggest that substantial correlation exists between amyloid ß oligomerization in the blood and brain volume reduction in the form of Alzheimer’s disease despite of uncertainty in the casual relationship. Electronic supplementary material The online version of this article (10.1186/s13195-019-0499-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Young Chul Youn
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Sungmin Kang
- Research and Development, PeopleBio Inc., Gyeonggi-do, Republic of Korea
| | - Jeewon Suh
- Department of Neurology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - Young Ho Park
- Department of Neurology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - Min Ju Kang
- Department of Neurology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea.,Department of Neurology, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Jung-Min Pyun
- Department of Neurology, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Seong Hye Choi
- Department of Neurology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Jee Hyang Jeong
- Department of Neurology, Ewha Womans University Mokdong Hospital, Seoul, Republic of Korea
| | - Kyung Won Park
- Department of Neurology, Dong-A University College of Medicine and Institute of Convergence Bio-Health, Busan, Republic of Korea
| | - Ho-Won Lee
- Department of Neurology, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Seong Soo A An
- Department of Bionanotechnology, Gachon University, Incheon, Republic of Korea
| | | | - SangYun Kim
- Department of Neurology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
70
|
Kim H, Lee JU, Kim S, Song S, Sim SJ. A Nanoplasmonic Biosensor for Ultrasensitive Detection of Alzheimer's Disease Biomarker Using a Chaotropic Agent. ACS Sens 2019; 4:595-602. [PMID: 30747516 DOI: 10.1021/acssensors.8b01242] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Blood-based diagnosis (hemodiagnosis) of Alzheimer's disease (AD) is emerging as a promising alternative to cerebrospinal-fluid-based methods because blood contains various kinds of AD biomarkers, including amyloid beta 1-40, 1-42, and τ (tau) protein. However, with current technology, the accuracy of the blood-plasma-based methods is relatively low compared to the traditional methods because the concentration of AD biomarkers in blood plasma is incredibly low, and diverse interference is present in blood plasma, which hinders precise detection. Here, we suggest a nanoplasmonic biosensor using gold nanorods with a chaotropic agent for precise ultrasensitive detecting of Alzheimer's disease biomarkers in human plasma. This nanoplasmonic biosensor is based on the localized surface plasmon resonance (LSPR), which is extremely sensitive to the point where it can respond to an insignificant change of the refractive index around the gold nanoparticles. Also, using guanidine hydrochloride as a chaotropic agent, we can overcome the obstacles of blood-based AD diagnostics. In more detail, this agent interrupts the network between water molecules and weakens the hydrophobic interactions between proteins, remarkably improving detection capabilities to target τ protein. By reducing the overlapping ranges between protein levels in an age-matched control and AD patients' plasma, this system can accurately diagnose AD patients. This platform also can analyze disease from mild cognitive impairment using standardized blood biomarker tau protein, which is related to Alzheimer's disease. As a result, our platform can be applied to clinical trials, and thus it has excellent potential in the medical field.
Collapse
Affiliation(s)
- Hanbi Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| | - Jong Uk Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| | - Soohyun Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| | - Sojin Song
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| |
Collapse
|
71
|
St-Amour I, Bosoi CR, Paré I, Ignatius Arokia Doss PM, Rangachari M, Hébert SS, Bazin R, Calon F. Peripheral adaptive immunity of the triple transgenic mouse model of Alzheimer's disease. J Neuroinflammation 2019; 16:3. [PMID: 30611289 PMCID: PMC6320637 DOI: 10.1186/s12974-018-1380-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/27/2018] [Indexed: 01/25/2023] Open
Abstract
Background Immunologic abnormalities have been described in peripheral blood and central nervous system of patients suffering from Alzheimer’s disease (AD), yet their role in the pathogenesis still remains poorly defined. Aim and methods We used the triple transgenic mouse model (3xTg-AD) to reproduce Aβ (amyloid plaques) and tau (neurofibrillary tangles) neuropathologies. We analyzed important features of the adaptive immune system in serum, primary (bone marrow) as well as secondary (spleen) lymphoid organs of 12-month-old 3xTg-AD mice using flow cytometry and ELISPOT. We further investigated serum cytokines of 9- and 13-month-old 3xTg-AD mice using multiplex ELISA. Results were compared to age-matched non-transgenic controls (NTg). Results In the bone marrow of 12-month-old 3xTg-AD mice, we detected decreased proportions of short-term reconstituting hematopoietic stem cells (0.58-fold, P = 0.0116), while lymphocyte, granulocyte, and monocyte populations remained unchanged. Our results also point to increased activation of both B and T lymphocytes. Indeed, we report elevated levels of plasma cells in bone marrow (1.3-fold, P = 0.0405) along with a 5.4-fold rise in serum IgG concentration (P < 0.0001) in 3xTg-AD animals. Furthermore, higher levels of interleukin (IL)-2 were detected in serum of 9- and 13-month-old 3xTg-AD mice (P = 0.0018). Along with increased concentrations of IL-17 (P = 0.0115) and granulocyte-macrophage colony-stimulating factor (P = 0.0085), these data support helper T lymphocyte activation with Th17 polarization. Conclusion Collectively, these results suggest that the 3xTg-AD model mimics modifications of the adaptive immunity changes previously observed in human AD patients and underscore the activation of both valuable and harmful pathways of immunity in AD.
Collapse
Affiliation(s)
- Isabelle St-Amour
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, QC, Québec, Canada.,Département de psychiatrie et neurosciences, Faculté de médecine, Université Laval, QC, Canada
| | - Cristina R Bosoi
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, QC, Québec, Canada.,Centre de Recherche de l'IUCPQ-Université Laval, QC, Québec, Canada
| | - Isabelle Paré
- Medical Affairs and Innovation, Héma-Québec, QC, Québec, Canada
| | - Prenitha Mercy Ignatius Arokia Doss
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, QC, Québec, Canada.,Département de psychiatrie et neurosciences, Faculté de médecine, Université Laval, QC, Canada
| | - Manu Rangachari
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, QC, Québec, Canada.,Département de psychiatrie et neurosciences, Faculté de médecine, Université Laval, QC, Canada
| | - Sébastien S Hébert
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, QC, Québec, Canada.,Département de psychiatrie et neurosciences, Faculté de médecine, Université Laval, QC, Canada
| | - Renée Bazin
- Medical Affairs and Innovation, Héma-Québec, QC, Québec, Canada.,Faculté de pharmacie, Université Laval, QC, Québec, Canada
| | - Frédéric Calon
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, QC, Québec, Canada. .,Faculté de pharmacie, Université Laval, QC, Québec, Canada.
| |
Collapse
|
72
|
Chiu MJ, Lue LF, Sabbagh MN, Chen TF, Chen H, Yang SY. Long-Term Storage Effects on Stability of Aβ 1-40, Aβ 1-42, and Total Tau Proteins in Human Plasma Samples Measured with Immunomagnetic Reduction Assays. Dement Geriatr Cogn Dis Extra 2019; 9:77-86. [PMID: 31043966 PMCID: PMC6477481 DOI: 10.1159/000496099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/07/2018] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The stability of Alzheimer's disease (AD) biomarkers in plasma, measured by immunomagnetic reduction (IMR) after long-term storage at -80°C, has not been established before. METHOD Ninety-nine human plasma samples from 53 normal controls (NCs), 5 patients with amnestic mild cognitive impairment (aMCI), and 41 AD patients were collected. Each plasma sample was aliquoted and stored as single-use aliquots at -80°C. The baseline measurements for Aβ1-40, Aβ1-42, and total Tau protein (T-Tau) concentrations for each sample were done within 3 months of blood draw by IMR. They are referred to as baseline concentrations. A separate aliquot from each sample was assayed with IMR to assess the stability of the measured analytes during storage at -80°C between 1.1 and 5.4 years. This is referred to as a repeated result. RESULTS IMR shows that plasma levels of Aβ1-40 and Aβ1-42 exhibit stability over 5-year storage at -80°C and that plasma levels of T-Tau are less stable (approximately 1.5 years). CONCLUSION Although the measured concentrations of T-Tau in human plasma may alter during storage, the diagnostic utility of the results are only slightly affected when the product of Aβ1-42 and T-Tau concentrations are used. The results show that the overall agreement between baseline and repeated measurements in the ability of discriminating NCs from aMCI/AD patients is higher than 80%.
Collapse
Affiliation(s)
- Ming-Jang Chiu
- Department of Neurology, College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Lih-Fen Lue
- Laboratory of Neuroregeneration, Banner Sun Health Research Institute, Sun City, Arizona, USA
- Biodesign Institute, Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, Arizona, USA
| | - Marwan N. Sabbagh
- Lou Ruvo Center for Brain Health Cleveland Clinic, Las Vegas, Nevada, USA
| | - Ta-Fu Chen
- Department of Neurology, College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - H.H. Chen
- MagQu Co., Ltd, New Taipei City, Taiwan
| | | |
Collapse
|
73
|
Arendash G, Cao C, Abulaban H, Baranowski R, Wisniewski G, Becerra L, Andel R, Lin X, Zhang X, Wittwer D, Moulton J, Arrington J, Smith A. A Clinical Trial of Transcranial Electromagnetic Treatment in Alzheimer's Disease: Cognitive Enhancement and Associated Changes in Cerebrospinal Fluid, Blood, and Brain Imaging. J Alzheimers Dis 2019; 71:57-82. [PMID: 31403948 PMCID: PMC6839500 DOI: 10.3233/jad-190367] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Small aggregates (oligomers) of the toxic proteins amyloid-β (Aβ) and phospho-tau (p-tau) are essential contributors to Alzheimer's disease (AD). In mouse models for AD or human AD brain extracts, Transcranial Electromagnetic Treatment (TEMT) disaggregates both Aβ and p-tau oligomers, and induces brain mitochondrial enhancement. These apparent "disease-modifying" actions of TEMT both prevent and reverse memory impairment in AD transgenic mice. OBJECTIVE To evaluate the safety and initial clinical efficacy of TEMT against AD, a comprehensive open-label clinical trial was performed. METHODS Eight mild/moderate AD patients were treated with TEMT in-home by their caregivers for 2 months utilizing a unique head device. TEMT was given for two 1-hour periods each day, with subjects primarily evaluated at baseline, end-of-treatment, and 2 weeks following treatment completion. RESULTS No deleterious behavioral effects, discomfort, or physiologic changes resulted from 2 months of TEMT, as well as no evidence of tumor or microhemorrhage induction. TEMT induced clinically important and statistically significant improvements in ADAS-cog, as well as in the Rey AVLT. TEMT also produced increases in cerebrospinal fluid (CSF) levels of soluble Aβ1-40 and Aβ1-42, cognition-related changes in CSF oligomeric Aβ, a decreased CSF p-tau/Aβ1-42 ratio, and reduced levels of oligomeric Aβ in plasma. Pre- versus post-treatment FDG-PET brain scans revealed stable cerebral glucose utilization, with several subjects exhibiting enhanced glucose utilization. Evaluation of diffusion tensor imaging (fractional anisotropy) scans in individual subjects provided support for TEMT-induced increases in functional connectivity within the cognitively-important cingulate cortex/cingulum. CONCLUSION TEMT administration to AD subjects appears to be safe, while providing cognitive enhancement, changes to CSF/blood AD markers, and evidence of stable/enhanced brain connectivity.
Collapse
Affiliation(s)
| | - Chuanhai Cao
- College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Haitham Abulaban
- University of South Florida Health/Byrd Alzheimer’s Institute, Tampa, FL, USA
| | | | | | | | - Ross Andel
- School of Aging Studies, University of South Florida, Tampa, FL, USA
- Department of Neurology, 2nd Faculty of Medicine, Charles University/Motol University Hospital, Prague, Czech Republic
| | - Xiaoyang Lin
- College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Xiaolin Zhang
- College of Pharmacy, University of South Florida, Tampa, FL, USA
| | | | | | | | - Amanda Smith
- University of South Florida Health/Byrd Alzheimer’s Institute, Tampa, FL, USA
| |
Collapse
|
74
|
Zetterberg H. Blood-based biomarkers for Alzheimer's disease-An update. J Neurosci Methods 2018; 319:2-6. [PMID: 30352211 DOI: 10.1016/j.jneumeth.2018.10.025] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/13/2022]
Abstract
Cerebrospinal fluid (CSF) biomarkers for Alzheimer's disease (AD) are in clinical use in many parts of the world and show good to excellent diagnostic accuracy in regards to identifying cerebral amyloid β (Aβ) and tau pathology irrespective of the clinical stage of the disease. However, CSF sampling is more difficult than a blood draw and a procedure only rarely performed by general practitioners. Since AD is such a common disease and since intense research on novel treatments that hopefully will be directed against underlying pathologies is moving forward, it would be excellent if the CSF tests for AD could be transformed into blood tests, as well as if novel blood biomarkers could be discovered. Brain-derived molecules are, however, present at much lower concentrations in blood than in CSF, which poses an analytical challenge. There are also additional issues with blood as a biofluid in which to measure biomarkers for central nervous system disease. Nevertheless, the past few years have seen an enormous development in the field of ultrasensitive measurement techniques. There is also much better availability of deeply phenotyped clinical cohorts for biomarker discovery and validation. This review gives an updated account of the current state of research on blood biomarkers for AD and related neurodegenerative dementias with special emphasis on findings that have been replicated by more than one research group.
Collapse
Affiliation(s)
- Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK.
| |
Collapse
|
75
|
Chapman CD, Schiöth HB, Grillo CA, Benedict C. Intranasal insulin in Alzheimer's disease: Food for thought. Neuropharmacology 2018; 136:196-201. [PMID: 29180222 PMCID: PMC10523803 DOI: 10.1016/j.neuropharm.2017.11.037] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 12/26/2022]
Abstract
Accumulating evidence suggests that disrupted brain insulin signaling promotes the development and progression of Alzheimer's disease (AD), driving clinicians to target this circuitry. While both traditional and more modern antidiabetics show promise in combating insulin resistance, intranasal insulin appears to be the most efficient method of boosting brain insulin. Furthermore, intranasal delivery elegantly avoids adverse effects from peripheral insulin administration. However, there remain significant open questions regarding intranasal insulin's efficacy, safety, and potential as an adjunct or mono-therapy. Thus, this review aims to critically evaluate the present evidence and future potential of intranasal insulin as a meaningful treatment for AD. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'
Collapse
Affiliation(s)
- Colin D Chapman
- Department of Neuroscience, Uppsala University, SE-751 24 Uppsala, Sweden.
| | - Helgi B Schiöth
- Department of Neuroscience, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Claudia A Grillo
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina - School of Medicine, Columbia, SC 29209, USA
| | - Christian Benedict
- Department of Neuroscience, Uppsala University, SE-751 24 Uppsala, Sweden
| |
Collapse
|
76
|
Duarte A, Santos M, Oliveira C, Moreira P. Brain insulin signalling, glucose metabolism and females' reproductive aging: A dangerous triad in Alzheimer's disease. Neuropharmacology 2018; 136:223-242. [PMID: 29471055 DOI: 10.1016/j.neuropharm.2018.01.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 12/12/2022]
|
77
|
Sun BL, Li WW, Zhu C, Jin WS, Zeng F, Liu YH, Bu XL, Zhu J, Yao XQ, Wang YJ. Clinical Research on Alzheimer's Disease: Progress and Perspectives. Neurosci Bull 2018; 34:1111-1118. [PMID: 29956105 DOI: 10.1007/s12264-018-0249-z] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/27/2018] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD), the most common type of dementia, is becoming a major challenge for global health and social care. However, the current understanding of AD pathogenesis is limited, and no early diagnosis and disease-modifying therapy are currently available. During the past year, significant progress has been made in clinical research on the diagnosis, prevention, and treatment of AD. In this review, we summarize the latest achievements, including diagnostic biomarkers, polygenic hazard score, amyloid and tau PET imaging, clinical trials targeting amyloid-beta (Aβ), tau, and neurotransmitters, early intervention, and primary prevention and systemic intervention approaches, and provide novel perspectives for further efforts to understand and cure the disease.
Collapse
Affiliation(s)
- Bin-Lu Sun
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Wei-Wei Li
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Chi Zhu
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Wang-Sheng Jin
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Fan Zeng
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yu-Hui Liu
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Xian-Le Bu
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Jie Zhu
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Xiu-Qing Yao
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yan-Jiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| |
Collapse
|
78
|
Teunissen CE, Chiu MJ, Yang CC, Yang SY, Scheltens P, Zetterberg H, Blennow K. Plasma Amyloid-β (Aβ42) Correlates with Cerebrospinal Fluid Aβ42 in Alzheimer’s Disease. J Alzheimers Dis 2018; 62:1857-1863. [DOI: 10.3233/jad-170784] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Charlotte E. Teunissen
- Department of Clinical Chemistry, Neurochemistry Laboratory and Biobank, Amsterdam Neuroscience, VU University Medical Center Amsterdam, The Netherlands
| | - Ming-Jang Chiu
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Brain of Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | | | | | - Philip Scheltens
- Department of Neurology, Alzheimer’s Center, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
| |
Collapse
|
79
|
Kupcova Skalnikova H, Cizkova J, Cervenka J, Vodicka P. Advances in Proteomic Techniques for Cytokine Analysis: Focus on Melanoma Research. Int J Mol Sci 2017; 18:E2697. [PMID: 29236046 PMCID: PMC5751298 DOI: 10.3390/ijms18122697] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/16/2022] Open
Abstract
Melanoma is a skin cancer with permanently increasing incidence and resistance to therapies in advanced stages. Reports of spontaneous regression and tumour infiltration with T-lymphocytes makes melanoma candidate for immunotherapies. Cytokines are key factors regulating immune response and intercellular communication in tumour microenvironment. Cytokines may be used in therapy of melanoma to modulate immune response. Cytokines also possess diagnostic and prognostic potential and cytokine production may reflect effects of immunotherapies. The purpose of this review is to give an overview of recent advances in proteomic techniques for the detection and quantification of cytokines in melanoma research. Approaches covered span from mass spectrometry to immunoassays for single molecule detection (ELISA, western blot), multiplex assays (chemiluminescent, bead-based (Luminex) and planar antibody arrays), ultrasensitive techniques (Singulex, Simoa, immuno-PCR, proximity ligation/extension assay, immunomagnetic reduction assay), to analyses of single cells producing cytokines (ELISpot, flow cytometry, mass cytometry and emerging techniques for single cell secretomics). Although this review is focused mainly on cancer and particularly melanoma, the discussed techniques are in general applicable to broad research field of biology and medicine, including stem cells, development, aging, immunology and intercellular communication.
Collapse
Affiliation(s)
- Helena Kupcova Skalnikova
- Laboratory of Applied Proteome Analyses, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburska 89, 27721 Libechov, Czech Republic.
| | - Jana Cizkova
- Laboratory of Applied Proteome Analyses, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburska 89, 27721 Libechov, Czech Republic.
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamycka 129, 16500 Prague, Czech Republic.
| | - Jakub Cervenka
- Laboratory of Applied Proteome Analyses, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburska 89, 27721 Libechov, Czech Republic.
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, 12843 Prague 4, Czech Republic.
| | - Petr Vodicka
- Laboratory of Applied Proteome Analyses, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburska 89, 27721 Libechov, Czech Republic.
| |
Collapse
|
80
|
Yang SY, Chiu MJ, Chen TF, Lin CH, Jeng JS, Tang SC, Lee YF, Yang CC, Liu BH, Chen HH, Wu CC. Analytical performance of reagent for assaying tau protein in human plasma and feasibility study screening neurodegenerative diseases. Sci Rep 2017; 7:9304. [PMID: 28839167 PMCID: PMC5571227 DOI: 10.1038/s41598-017-09009-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/19/2017] [Indexed: 12/22/2022] Open
Abstract
Immunomagnetic reduction (IMR), which involves the use of antibody-functionalized magnetic nanoparticles to specifically label target biomarkers, was utilized to develop an assay for total tau protein in human plasma. The analytic properties of the IMR assay on tau protein were investigated. The limit of detection was found to be 0.026 pg/ml. Other properties such as Hook effect, assay linearity, dilution recovery range, reagent stability, interference test, and spiked recovery were also characterized. The ultra-sensitive IMR assay was applied to detect the plasma tau protein levels of subjects with prevalent neurodegenerative diseases, such as Alzheimer's disease (AD), mild cognitive impairment (MCI) due to AD, Parkinson's disease (PD), frontotemporal dementia (FTD) and vascular dementia (VD). The concentrations of plasma tau protein in patients with VD, PD, MCI due to AD, FTD, and AD patients were higher than that of healthy controls. Using an ROC curve analysis, the cutoff value for discriminating dementia patients from healthy controls was 17.43 pg/ml, resulting in 0.856 and 0.727 for clinical sensitivity and specificity, respectively. The area under the ROC curve was 0.908. These results imply that the IMR plasma tau assay would be useful to screen for prevalent neurodegenerative diseases.
Collapse
Affiliation(s)
- Shieh-Yueh Yang
- MagQu Co., Ltd., Xindian District, New Taipei City, 231, Taiwan.
| | - Ming-Jang Chiu
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
- Department of Psychology, National Taiwan University, Taipei, 100, Taiwan
- Graduate Institute of Biomedical Engineering and Bioinformatics, National Taiwan University, Taipei, 116, Taiwan
| | - Ta-Fu Chen
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Jiann-Shing Jeng
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Sung-Chun Tang
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Yen-Fu Lee
- MagQu Co., Ltd., Xindian District, New Taipei City, 231, Taiwan
| | - Che-Chuan Yang
- MagQu Co., Ltd., Xindian District, New Taipei City, 231, Taiwan
| | - Bing-Hsien Liu
- MagQu Co., Ltd., Xindian District, New Taipei City, 231, Taiwan
| | - Hsin-Hsien Chen
- MagQu Co., Ltd., Xindian District, New Taipei City, 231, Taiwan
| | - Chau-Chung Wu
- Departments of Internal Medicine and Primary Care Medicine, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| |
Collapse
|