51
|
Gofrit ON, Klein BY, Cohen IR, Ben-Hur T, Greenblatt CL, Bercovier H. Bacillus Calmette-Guérin (BCG) therapy lowers the incidence of Alzheimer's disease in bladder cancer patients. PLoS One 2019; 14:e0224433. [PMID: 31697701 PMCID: PMC6837488 DOI: 10.1371/journal.pone.0224433] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/14/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) affects one in ten people older than 65 years. Thus far, there is no cure or even disease-modifying treatment for this disease. The immune system is a major player in the pathogenesis of AD. Bacillus Calmette-Guérin (BCG), developed as a vaccine against tuberculosis, modulates the immune system and reduces recurrence of non-muscle invasive bladder cancer. Theoretical considerations suggested that treatment with BCG may decrease the risk of AD. We tested this hypothesis on a natural population of bladder cancer patients. METHODS AND FINDINGS After removing all bladder cancer patients presenting with AD or developing AD within one-year following diagnosis of bladder cancer, we collected data on a total of 1371 patients (1134 males and 237 females) who were followed for at least one year after the diagnosis of bladder cancer. The mean age at diagnosis of bladder cancer was 68.1 years (SD 13.0). Adjuvant post-operative intra-vesical treatment with BCG was given to 878 (64%) of these patients. The median period post-operative follow-up was 8 years. During follow-up, 65 patients developed AD at a mean age of 84 years (SD 5.9), including 21 patients (2.4%) who had been treated with BCG and 44 patients (8.9%) who had not received BCG. Patients who had been treated with BCG manifested more than 4-fold less risk for AD than those not treated with BCG. The Cox proportional hazards regression model and the Kaplan-Meier analysis of AD free survival both indicated high significance: patients not treated with BCG had a significantly higher risk of developing AD compared to BCG treated patients (HR 4.778, 95%CI: 2.837-8.046, p = 4.08x10-9 and Log Rank Chi-square 42.438, df = 1, p = 7.30x10-11, respectively). Exposure to BCG did not modify the prevalence of Parkinson's disease, 1.9% in BCG treated patients and 1.6% in untreated (Fisher's Exact Test, p = 1). CONCLUSIONS Bladder cancer patients treated with BCG were significantly less likely to develop AD at any age than patients who were not so treated. This finding of a retrospective study suggests that BCG treatment might also reduce the incidence of AD in the general population. Confirmation of such effects of BCG in other retrospective studies would support prospective studies of BCG in AD.
Collapse
Affiliation(s)
- Ofer N. Gofrit
- Department of Urology, Hadassah- Hebrew University Medical Center, Jerusalem, Israel
- * E-mail: (HB); (ONG)
| | - Benjamin Y. Klein
- Department of Microbiology and Molecular Genetics, Hebrew University Jerusalem, Israel
| | - Irun R. Cohen
- Department of Immunology, Weizmann Institute, Rehovot, Israel
| | - Tamir Ben-Hur
- Department of Neurology Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Charles L. Greenblatt
- Department of Microbiology and Molecular Genetics, Hebrew University Jerusalem, Israel
| | - Hervé Bercovier
- Department of Microbiology and Molecular Genetics, Hebrew University Jerusalem, Israel
- * E-mail: (HB); (ONG)
| |
Collapse
|
52
|
Simpson S, Preston D, Schwerk C, Schroten H, Blazer-Yost B. Cytokine and inflammatory mediator effects on TRPV4 function in choroid plexus epithelial cells. Am J Physiol Cell Physiol 2019; 317:C881-C893. [PMID: 31411921 PMCID: PMC6879874 DOI: 10.1152/ajpcell.00205.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/23/2019] [Accepted: 08/08/2019] [Indexed: 11/22/2022]
Abstract
The choroid plexus (CP), composed of capillaries surrounded by a barrier epithelium, is the main producer of cerebrospinal fluid (CSF). The CP epithelium regulates the transport of ions and water between the blood and the ventricles, contributing to CSF production and composition. Several studies suggest a connection between the cation channel transient receptor potential vanilloid-4 (TRPV4) and transepithelial ion movement. TRPV4 is a nonselective, calcium-permeable cation channel present in CP epithelia reported to be activated by cytokines and inflammatory mediators. Utilizing the PCP-R (porcine choroid plexus-Riems) cell line, we investigated the effects of various cytokines and inflammatory mediators on TRPV4-mediated activity. Select proinflammatory cytokines (TNF-α, IL-1β, TGF-β1) had inhibitory effects on TRPV4-stimulated transepithelial ion flux and permeability changes, whereas anti-inflammatory cytokines (IL-10, IL-4, and IL-6) had none. Quantitative mRNA analysis showed that these cytokines had no effect on TRPV4 transcription levels. Inhibition of the transcription factor NF-κB, involved in the production and regulation of several inflammatory cytokines, inhibited TRPV4-mediated activity, suggesting a link between TRPV4 and cytokine production. Contrary to published studies, the proinflammatory mediator arachidonic acid (AA) had inhibitory rather than stimulatory effects on TRPV4-mediated responses. However, inhibition of AA metabolism also caused inhibitory effects on TRPV4, suggesting a complex interaction of AA and its metabolites in the regulation of TRPV4 activity. Together these data imply that TRPV4 activity is involved in the inflammatory response; it is negatively affected by proinflammatory mediators. Furthermore, arachidonic acid metabolites, but not arachidonic acid itself, are positive regulators of TRPV4.
Collapse
Affiliation(s)
- Stefanie Simpson
- Department of Biology, Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana
| | - Daniel Preston
- Department of Biology, Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana
| | - Christian Schwerk
- Mannheim Medical Faculty, University of Heidelberg, Children's Hospital, Mannheim, Germany
| | - Horst Schroten
- Mannheim Medical Faculty, University of Heidelberg, Children's Hospital, Mannheim, Germany
| | - Bonnie Blazer-Yost
- Department of Biology, Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana
| |
Collapse
|
53
|
Valiati FE, Hizo GH, Pinto JV, Kauer-Sant`Anna M. The Possible Role of Telomere Length and Chemokines in the Aging Process: A Transdiagnostic Review in Psychiatry. CURRENT PSYCHIATRY RESEARCH AND REVIEWS 2019. [DOI: 10.2174/1573400515666190719155906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:Psychiatric disorders are common, reaching a worldwide prevalence of 29.2%. They are associated with a high risk of premature death and with accelerated aging in clinical, molecular and neuroimaging studies. Recently, there is strong evidence suggesting a possible role of telomere length and chemokines in aging processes in psychiatric disorders.Objective:We aimed to review the literature on telomere length and chemokines and its association with early aging in mental illnesses on a transdiagnostic approach.Results:The review highlights the association between psychiatric disorders and early aging. Several independent studies have reported shorter telomere length and dysregulations on levels of circulating chemokines in schizophrenia, bipolar disorder, major depressive disorder, and anxiety disorders, suggesting a complex interaction between these markers in a transdiagnostic level. However, studies have investigated the inflammatory markers and telomere shortening separately and associated with a particular diagnosis, rather than as a transdiagnostic biological feature.Conclusion:There is consistent evidence supporting the relationship between accelerated aging, telomere length, and chemokines in mental disorders, but they have been studied individually. Thus, more research is needed to improve the knowledge of accelerated senescence and its biomarkers in psychiatry, not only individually in each diagnosis, but also based on a transdiagnostic perspective. Moreover, further research should try to elucidate how the intricate association between the chemokines and telomeres together may contribute to the aging process in psychiatric disorders.
Collapse
Affiliation(s)
- Fernanda Endler Valiati
- Laboratory of Molecular Psychiatry, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Gabriel Henrique Hizo
- Laboratory of Molecular Psychiatry, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Jairo Vinícius Pinto
- Laboratory of Molecular Psychiatry, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Márcia Kauer-Sant`Anna
- Laboratory of Molecular Psychiatry, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
54
|
Pšemeneckienė G, Petrikonis K, Rastenytė AD. Polymorphisms of Proinflammatory Cytokines in Relation to APOE Epsilon 4 and Risk of Alzheimer's Disease in the Lithuanian Population. MEDICINA-LITHUANIA 2019; 55:medicina55100689. [PMID: 31618972 PMCID: PMC6843382 DOI: 10.3390/medicina55100689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/30/2019] [Accepted: 10/09/2019] [Indexed: 11/16/2022]
Abstract
Background and objective: Neuroinflammation is one of the pathological pathways of Alzheimer's disease (AD), mediating the progression of neurodegeneration. Polymorphisms of proinflammatory cytokines have been linked to increased AD risk. Identification of certain combinations of polymorphisms could help predict disease in its preclinical stage. The aim of the study was to evaluate differences in the prevalence of TNFα -850T (rs1799724), IL1A -889T (rs1800587), and IL6 -174C (rs1800795, Intron type) polymorphisms between AD patients and healthy controls (HC) and determine the impact of these SNPs in combination with the APOEε4 allele on AD risk. Materials and Methods: The study population is comprised of 107 patients with sporadic AD (AD group) and age- and gender-matched 110 persons without impaired cognitive functions (control group). TNFα -850C > T polymorphism was revealed by a PCR and restriction fragment length polymorphism (RFLP) method. Real time PCR was used for IL1A and IL6 SNP genotyping. APOEε genotyping was done via hybridization method. Results: The frequencies of TNFα -850T, IL1A -889T, IL6 -174C allele and genotype did not differ between the AD and HC groups (p > 0.05). IL6 -174C was not in HWE, and it was not analysed further. APOEε4 allele (p = 0.001) and 3/4 and 4/4 genotypes (p = 0.005) were more prevalent in AD patients. APOEε4 carriage increased the risk of AD (OR 2.65, p = 0.001), while TNFα -850T and IL1A -889T polymorphisms were not found as significant independent risk factors for AD. The presence of at least one IL1A -889T allele in combination with APOEε4+ was associated with a lower risk of AD (OR 2.24, p = 0.047) than the carriage of APOEε4+ alone (OR 2.70, p = 0.015). Conclusions: No significant differences of TNFα -850, IL1A -889, and IL6 -174 polymorphisms frequencies were found between AD and control groups. In APOEε4 carriers IL1A -889T polymorphism was found to reduce the AD risk determined by APOEε4 alone.
Collapse
Affiliation(s)
- Greta Pšemeneckienė
- Department of Neurology, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania.
| | - Kęstutis Petrikonis
- Department of Neurology, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania.
| | - And Daiva Rastenytė
- Department of Neurology, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania.
| |
Collapse
|
55
|
Calderón-Garcidueñas L, González-Maciel A, Kulesza RJ, González-González LO, Reynoso-Robles R, Mukherjee PS, Torres-Jardón R. Air Pollution, Combustion and Friction Derived Nanoparticles, and Alzheimer’s Disease in Urban Children and Young Adults. J Alzheimers Dis 2019; 70:343-360. [DOI: 10.3233/jad-190331] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | - Randy J. Kulesza
- Department of Anatomy, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | | | | | | | - Ricardo Torres-Jardón
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, UNAM, Mexico City, Mexico
| |
Collapse
|
56
|
Su C, Zhao K, Xia H, Xu Y. Peripheral inflammatory biomarkers in Alzheimer's disease and mild cognitive impairment: a systematic review and meta-analysis. Psychogeriatrics 2019; 19:300-309. [PMID: 30790387 DOI: 10.1111/psyg.12403] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/05/2018] [Accepted: 12/22/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND In the past few decades, it has been demonstrated with animal models and clinical studies that a chronic inflammatory process significantly contributes to Alzheimer's disease (AD) pathogenesis. METHODS We systematically searched on PubMed and Web of Science for studies associated with peripheral inflammatory biomarkers in AD and mild cognitive impairment (MCI) before July 2018. Meta-analysis was conducted to summarise results of studies relative to peripheral cytokines and chemokines in AD and MCI. RESULTS Mean (± SD) concentrations of peripheral inflammatory biomarkers for AD, MCI and healthy controls were extracted from these studies. Our meta-analysis revealed consistently elevated concentrations of inflammatory biomarkers such as C-reactive protein, interleukin-1β (IL-1β), IL-2, IL-6, IL-12, IL-18, monocyte chemotactic protein-1 (MCP-1), MCP-3, IL-8 and interferon-γ-inducible protein 10 in AD patients, whereas no consistent results were obtained for elevated concentrations of cytokines or chemokines except MCP-1 in MCI patients. CONCLUSIONS In conclusion, these results provided evidence to support that systematic inflammation might be a biomarker for AD diagnosis, whereas it might be a later event during AD disease progression.
Collapse
Affiliation(s)
- Cen Su
- Department of Neurology, The Fourth Hospital of Jiangsu University, Zhenjiang, China
| | - Kangren Zhao
- Department of Neurology, The Fourth Hospital of Jiangsu University, Zhenjiang, China
| | - Haiping Xia
- Department of Neurology, The Fourth Hospital of Jiangsu University, Zhenjiang, China
| | - Yaoming Xu
- Department of Neurology, Tongliao Hospital of Inner Mongolia Autonomous Region, Tongliao, China
| |
Collapse
|
57
|
Xu M, Yan T, Fan K, Wang M, Qi Y, Xiao F, Bi K, Jia Y. Polysaccharide of Schisandra Chinensis Fructus ameliorates cognitive decline in a mouse model of Alzheimer's disease. JOURNAL OF ETHNOPHARMACOLOGY 2019; 237:354-365. [PMID: 30844489 DOI: 10.1016/j.jep.2019.02.046] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/16/2019] [Accepted: 02/27/2019] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polysaccharides is an important ingredient of Schisandra Chinensis Fructus which often appears in ancient prescriptions for forgetfulness or dementia. AIM OF THE STUDY The purpose of our study is to investigate the effects of polysaccharides of Schisandra Chinensis Fructus (SCP) on animal model of Alzheimer's disease (AD), which is a common disease of dementia, to elucidate the traditional medical theories with modern pharmacological methods and provide a reference for further clarifying its active mechanisms. MATERIALS AND METHODS Hydrolysates of SCP were analyzed by HPLC. Y-maze, Morris water maze (MWM) were used for evaluating cognition processes of mice. Immunohistochemistry (IHC) was used to detect the deposition of Aβ. The levels of cytokine expression including Tumor Necrosis Factor α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in the hippocampus were detected by ELISA kits. Activation of astrocytes and microglia was assessed by immunofluorescence labeling GFAP and Iba-1. The phosphorylated state of various mitogen-activated protein kinase (MAPKs) signaling molecules (p38 MAPK, ERK 1/2, and JNK) and activation of nuclear factor κB (NF-κB) was studied by western blot. Histopathological changes were observed by H.E. straining. RESULTS SCP could significantly improve the cognition and histopathological changes of AD mice, reduce the deposition of Aβ, downregulate the expression of pro-inflammatory cytokines and the activation of glial cells in the hippocampus. Further, SCP decreased nuclear displacement of NF-κB and MAPKs phosphorylation. CONCLUSIONS SCP could improve the cognition of mice, and it may play an anti-AD role by activating the NF-κB/MAPK pathway to alleviate neuroinflammation.
Collapse
Affiliation(s)
- Mengjie Xu
- Key Laboratory of Active Components of Chinese Medicine Screening and Evaluation, School of Traditional Chinese MateriaMedica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Tingxu Yan
- Key Laboratory of Active Components of Chinese Medicine Screening and Evaluation, School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Kaiyue Fan
- Key Laboratory of Active Components of Chinese Medicine Screening and Evaluation, School of Traditional Chinese MateriaMedica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Mengshi Wang
- Key Laboratory of Active Components of Chinese Medicine Screening and Evaluation, School of Traditional Chinese MateriaMedica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Yu Qi
- Key Laboratory of Active Components of Chinese Medicine Screening and Evaluation, School of Traditional Chinese MateriaMedica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Feng Xiao
- Key Laboratory of Active Components of Chinese Medicine Screening and Evaluation, School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Kaishun Bi
- The Engineering Laboratory of National and Local Union of Quality Control for Traditional Chinese Medicine, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Ying Jia
- Key Laboratory of Active Components of Chinese Medicine Screening and Evaluation, School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China.
| |
Collapse
|
58
|
de la Monte SM, Tong M, Daiello LA, Ott BR. Early-Stage Alzheimer's Disease Is Associated with Simultaneous Systemic and Central Nervous System Dysregulation of Insulin-Linked Metabolic Pathways. J Alzheimers Dis 2019; 68:657-668. [PMID: 30775986 PMCID: PMC10084886 DOI: 10.3233/jad-180906] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Brain insulin resistance is a well-recognized abnormality in Alzheimer's disease (AD) and the likely mediator of impaired glucose utilization that emerges early and progresses with disease severity. Moreover, the rates of mild cognitive impairment (MCI) or AD are significantly greater in people with diabetes mellitus or obesity. OBJECTIVE This study was designed to determine whether systemic and central nervous system (CNS) insulin resistant disease states emerge together and thus may be integrally related. METHODS Insulin-related molecules were measured in paired human serum and cerebrospinal fluid (CSF) samples from 19 with MCI or early AD, and 21 controls using a multiplex ELISA platform. RESULTS In MCI/AD, both the CSF and serum samples had significantly elevated mean levels of C-peptide and an incretin, and reduced expression of Visfatin, whereas only CSF showed significant reductions in insulin and leptin and only serum had increased glucagon, PAI-1, and ghrelin. Although the overall CSF and serum responses reflected insulin resistance together with insulin deficiency, the specific alterations measured in CSF and serum were different. CONCLUSION In MCI and early-stage AD, CNS and systemic insulin-related metabolic dysfunctions, including insulin resistance, occur simultaneously, suggesting that they are integrally related and possibly mediated similar pathogenic factors.
Collapse
Affiliation(s)
- Suzanne M de la Monte
- Department of Pathology and Laboratory Medicine (Neuropathology), Rhode Island Hospital, the Providence VA Medical Center, and the Alpert Medical School of Brown University, Providence, RI, USA.,Department of Neurology, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA.,Department of Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
| | - Ming Tong
- Department of Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
| | - Lori A Daiello
- Department of Neurology, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA.,The Alzheimer's Disease and Memory Disorders Center, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
| | - Brian R Ott
- Department of Neurology, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA.,The Alzheimer's Disease and Memory Disorders Center, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
59
|
Festoff BW, Citron BA. Thrombin and the Coag-Inflammatory Nexus in Neurotrauma, ALS, and Other Neurodegenerative Disorders. Front Neurol 2019; 10:59. [PMID: 30804878 PMCID: PMC6371052 DOI: 10.3389/fneur.2019.00059] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/17/2019] [Indexed: 12/15/2022] Open
Abstract
This review details our current understanding of thrombin signaling in neurodegeneration, with a focus on amyotrophic lateral sclerosis (ALS, Lou Gehrig's disease) as well as future directions to be pursued. The key factors are multifunctional and involved in regulatory pathways, namely innate immune and the coagulation cascade activation, that are essential for normal nervous system function and health. These two major host defense systems have a long history in evolution and include elements and regulators of the coagulation pathway that have significant impacts on both the peripheral and central nervous system in health and disease. The clotting cascade responds to a variety of insults to the CNS including injury and infection. The blood brain barrier is affected by these responses and its compromise also contributes to these detrimental effects. Important molecules in signaling that contribute to or protect against neurodegeneration include thrombin, thrombomodulin (TM), protease activated receptor 1 (PAR1), damage associated molecular patterns (DAMPs), such as high mobility group box protein 1 (HMGB1) and those released from mitochondria (mtDAMPs). Each of these molecules are entangled in choices dependent upon specific signaling pathways in play. For example, the particular cleavage of PAR1 by thrombin vs. activated protein C (APC) will have downstream effects through coupled factors to result in toxicity or neuroprotection. Furthermore, numerous interactions influence these choices such as the interplay between HMGB1, thrombin, and TM. Our hope is that improved understanding of the ways that components of the coagulation cascade affect innate immune inflammatory responses and influence the course of neurodegeneration, especially after injury, will lead to effective therapeutic approaches for ALS, traumatic brain injury, and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Barry W Festoff
- pHLOGISTIX LLC, Fairway, KS, United States.,Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Bruce A Citron
- Laboratory of Molecular Biology Research & Development, VA New Jersey Health Care System, East Orange, NJ, United States.,Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
60
|
Gofrit ON, Bercovier H, Klein BY, Cohen IR, Ben-Hur T, Greenblatt CL. Can immunization with Bacillus Calmette-Guérin (BCG) protect against Alzheimer’s disease? Med Hypotheses 2019; 123:95-97. [DOI: 10.1016/j.mehy.2019.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/24/2018] [Accepted: 01/10/2019] [Indexed: 12/16/2022]
|
61
|
de la Monte SM. The Full Spectrum of Alzheimer's Disease Is Rooted in Metabolic Derangements That Drive Type 3 Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1128:45-83. [PMID: 31062325 PMCID: PMC9996398 DOI: 10.1007/978-981-13-3540-2_4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The standard practice in neuropathology is to diagnose Alzheimer's disease (AD) based on the distribution and abundance of neurofibrillary tangles and Aβ deposits. However, other significant abnormalities including neuroinflammation, gliosis, white matter degeneration, non-Aβ microvascular disease, and insulin-related metabolic dysfunction require further study to understand how they could be targeted to more effectively remediate AD. This review addresses non-Aβ and non-pTau AD-associated pathologies, highlighting their major features, roles in neurodegeneration, and etiopathic links to deficits in brain insulin and insulin-like growth factor signaling and cognitive impairment. The discussion delineates why AD with its most characteristic clinical and pathological phenotypic profiles should be regarded as a brain form of diabetes, i.e., type 3 diabetes, and entertains the hypothesis that type 3 diabetes is just one of the categories of insulin resistance diseases that can occur independently or overlap with one or more of the others, including type 2 diabetes, metabolic syndrome, and nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Suzanne M de la Monte
- Departments of Neurology, Neuropathology, and Neurosurgery, Rhode Island Hospital, and the Alpert Medical School of Brown University, Providence, RI, USA.
- Department of Pathology and Laboratory Medicine, Providence VA Medical Center, Providence, RI, USA.
| |
Collapse
|
62
|
Kritsilis M, V Rizou S, Koutsoudaki PN, Evangelou K, Gorgoulis VG, Papadopoulos D. Ageing, Cellular Senescence and Neurodegenerative Disease. Int J Mol Sci 2018; 19:E2937. [PMID: 30261683 PMCID: PMC6213570 DOI: 10.3390/ijms19102937] [Citation(s) in RCA: 269] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/16/2018] [Accepted: 09/19/2018] [Indexed: 01/10/2023] Open
Abstract
Ageing is a major risk factor for developing many neurodegenerative diseases. Cellular senescence is a homeostatic biological process that has a key role in driving ageing. There is evidence that senescent cells accumulate in the nervous system with ageing and neurodegenerative disease and may predispose a person to the appearance of a neurodegenerative condition or may aggravate its course. Research into senescence has long been hindered by its variable and cell-type specific features and the lack of a universal marker to unequivocally detect senescent cells. Recent advances in senescence markers and genetically modified animal models have boosted our knowledge on the role of cellular senescence in ageing and age-related disease. The aim now is to fully elucidate its role in neurodegeneration in order to efficiently and safely exploit cellular senescence as a therapeutic target. Here, we review evidence of cellular senescence in neurons and glial cells and we discuss its putative role in Alzheimer's disease, Parkinson's disease and multiple sclerosis and we provide, for the first time, evidence of senescence in neurons and glia in multiple sclerosis, using the novel GL13 lipofuscin stain as a marker of cellular senescence.
Collapse
Affiliation(s)
- Marios Kritsilis
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Sophia V Rizou
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Paraskevi N Koutsoudaki
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Konstantinos Evangelou
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Vassilis G Gorgoulis
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Dimitrios Papadopoulos
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| |
Collapse
|