51
|
Makinde HM, Winter DR, Procissi D, Mike EV, Stock AD, Kando MJ, Gadhvi GT, Droho S, Bloomfield CL, Dominguez ST, Mayr MG, Lavine JA, Putterman C, Cuda CM. A Novel Microglia-Specific Transcriptional Signature Correlates With Behavioral Deficits in Neuropsychiatric Lupus. Front Immunol 2020; 11:230. [PMID: 32174913 PMCID: PMC7055359 DOI: 10.3389/fimmu.2020.00230] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/28/2020] [Indexed: 12/14/2022] Open
Abstract
Neuropsychiatric symptoms of systemic lupus erythematosus (NP-SLE) affect over one-half of SLE patients, yet underlying mechanisms remain largely unknown. We demonstrate that SLE-prone mice (CReCOM) develop NP-SLE, including behavioral deficits prior to systemic autoimmunity, reduced brain volumes, decreased vascular integrity, and brain-infiltrating leukocytes. NP-SLE microglia exhibit numerical expansion, increased synaptic uptake, and a more metabolically active phenotype. Microglia from multiple SLE-prone models express a "NP-SLE signature" unrelated to type I interferon. Rather, the signature is associated with lipid metabolism, scavenger receptor activity and downregulation of inflammatory and chemotaxis processes, suggesting a more regulatory, anti-inflammatory profile. NP-SLE microglia also express genes associated with disease-associated microglia (DAM), a subset of microglia thought to be instrumental in neurodegenerative diseases. Further, expression of "NP-SLE" and "DAM" signatures correlate with the severity of behavioral deficits in young SLE-prone mice prior to overt systemic disease. Our data are the first to demonstrate the predictive value of our newly identified microglia-specific "NP-SLE" and "DAM" signatures as a surrogate for NP-SLE clinical outcomes and suggests that microglia-intrinsic defects precede contributions from systemic SLE for neuropsychiatric manifestations.
Collapse
Affiliation(s)
- Hadijat M Makinde
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Deborah R Winter
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Daniele Procissi
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Elise V Mike
- Division of Rheumatology, Department of Medicine, Albert Einstein College of Medicine, The Bronx, NY, United States
| | - Ariel D Stock
- Division of Rheumatology, Department of Medicine, Albert Einstein College of Medicine, The Bronx, NY, United States
| | - Mary J Kando
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Gaurav T Gadhvi
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Steven Droho
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Christina L Bloomfield
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Salina T Dominguez
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Maximilian G Mayr
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jeremy A Lavine
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Chaim Putterman
- Division of Rheumatology, Department of Medicine, Albert Einstein College of Medicine, The Bronx, NY, United States.,Research Division, Azrieli Faculty of Medicine and Galilee Medical Center, Nahariya, Israel
| | - Carla M Cuda
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
52
|
Li SJ, Liu Q, He XB, Liu JP, Liu XL, Hu J, Tang ZP, Peng QY, Cui LJ, Zhang HN, Yang XL, Wang Q, Zhang ZJ. Pyrola incarnata demonstrates neuroprotective effects against β-amyloid-induced memory impairment in mice. Bioorg Med Chem Lett 2020; 30:126858. [PMID: 31836444 DOI: 10.1016/j.bmcl.2019.126858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/24/2019] [Accepted: 11/25/2019] [Indexed: 12/24/2022]
Abstract
This study aims to investigate the neuroprotective effects of Pyrola incarnata against β-amyloid-induced memory impairment in mice. Ethanol extract of Pyrola incarnata (EPI) was obtained and led to eleven phytochemicals successfully by isolation and purification, which were elucidated by spectroscopic analysis (1H NMR, 13C NMR and HR-ESI-MS). Thereinto, ursolic acid was gained as most abundant monomer. C57BL/6 mice were intracerebroventricular injected with aggregated Aβ25-35. Open-field test, Barnes maze test and Morris water maze were conducted for evaluating cognition processes of EPI and ursolic acid. EPI significantly improved learning and memory deficits, attenuated the Aβ25-35 level of deposition immunohistochemically. Further studies revealed that ursolic acid as bioactive phytochemical of P. incarnata improved spatial memory performance and ameliorated Aβ25-35 accumulation by activating microglia cells and up-regulating Iba1 level in the hippocampus. These findings suggest P. incarnata could improve the cognition of mice and be a promising natural source for the treatment of neurodegenerative disease.
Collapse
Affiliation(s)
- Shuang-Jun Li
- Department of Pharmacy, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironments, Medical College, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Qian Liu
- Department of Pharmacy, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironments, Medical College, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xiao-Bin He
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Center for Magnetic Resonance, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jin-Ping Liu
- Department of Pharmacy, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironments, Medical College, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xiao-Liu Liu
- Department of Pharmacy, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironments, Medical College, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jie Hu
- Department of Pharmacy, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironments, Medical College, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Zhi-Peng Tang
- Department of Pharmacy, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironments, Medical College, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Qing-Yun Peng
- Department of Pharmacy, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironments, Medical College, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Lian-Jie Cui
- Department of Pharmacy, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironments, Medical College, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Hua-Ni Zhang
- Department of Pharmacy, Shiyan Hospital of Integrated Traditional and Western Medicine, Shiyan, Hubei 442000, China
| | - Xi-Liang Yang
- Department of Pharmacy, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironments, Medical College, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Qiang Wang
- Department of Pharmacy, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironments, Medical College, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Zhi-Jian Zhang
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Center for Magnetic Resonance, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
53
|
Cheon SY, Kim H, Rubinsztein DC, Lee JE. Autophagy, Cellular Aging and Age-related Human Diseases. Exp Neurobiol 2019; 28:643-657. [PMID: 31902153 PMCID: PMC6946111 DOI: 10.5607/en.2019.28.6.643] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 12/22/2022] Open
Abstract
Macroautophagy/autophagy is a conserved degradation system that engulfs intracytoplasmic contents, including aggregated proteins and organelles, which is crucial for cellular homeostasis. During aging, cellular factors suggested as the cause of aging have been reported to be associated with progressively compromised autophagy. Dysfunctional autophagy may contribute to age-related diseases, such as neurodegenerative disease, cancer, and metabolic syndrome, in the elderly. Therefore, restoration of impaired autophagy to normal may help to prevent age-related disease and extend lifespan and longevity. Therefore, this review aims to provide an overview of the mechanisms of autophagy underlying cellular aging and the consequent disease. Understanding the mechanisms of autophagy may provide potential information to aid therapeutic interventions in age-related diseases.
Collapse
Affiliation(s)
- So Yeong Cheon
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge CB2 0XY, United Kingdom.,Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Hyunjeong Kim
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge CB2 0XY, United Kingdom.,Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge CB2 0XY, United Kingdom.,UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0AH, United Kingdom
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea.,BK21 PLUS Project for Medical Science, and Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
54
|
|
55
|
CD34 Identifies a Subset of Proliferating Microglial Cells Associated with Degenerating Motor Neurons in ALS. Int J Mol Sci 2019; 20:ijms20163880. [PMID: 31395804 PMCID: PMC6720880 DOI: 10.3390/ijms20163880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/09/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by degeneration of upper and lower motor neurons accompanied by proliferation of reactive microglia in affected regions. However, it is unknown whether the hematopoietic marker CD34 can identify a subpopulation of proliferating microglial cells in the ALS degenerating spinal cord. Immunohistochemistry for CD34 and microglia markers was performed in lumbar spinal cords of ALS rats bearing the SOD1G93A mutation and autopsied ALS and control human subjects. Characterization of CD34-positive cells was also performed in primary cell cultures of the rat spinal cords. CD34 was expressed in a large number of cells that closely interacted with degenerating lumbar spinal cord motor neurons in symptomatic SOD1G93A rats, but not in controls. Most CD34+ cells co-expressed the myeloid marker CD11b, while only a subpopulation was stained for Iba1 or CD68. Notably, CD34+ cells actively proliferated and formed clusters adjacent to damaged motor neurons bearing misfolded SOD1. CD34+ cells were identified in the proximity of motor neurons in autopsied spinal cord from sporadic ALS subjects but not in controls. Cell culture of symptomatic SOD1G93A rat spinal cords yielded a large number of CD34+ cells exclusively in the non-adherent phase, which generated microglia after successive passaging. A yet unrecognized CD34+ cells, expressing or not the microglial marker Iba1, proliferate and accumulate adjacent to degenerating spinal motor neurons, representing an intriguing cell target for approaching ALS pathogenesis and therapeutics.
Collapse
|