51
|
Shaikh A, Ahmad F, Teoh SL, Kumar J, Yahaya MF. Targeting dopamine transporter to ameliorate cognitive deficits in Alzheimer's disease. Front Cell Neurosci 2023; 17:1292858. [PMID: 38026688 PMCID: PMC10679733 DOI: 10.3389/fncel.2023.1292858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the pathologic deposition of amyloid and neurofibrillary tangles in the brain, leading to neuronal damage and defective synapses. These changes manifest as abnormalities in cognition and behavior. The functional deficits are also attributed to abnormalities in multiple neurotransmitter systems contributing to neuronal dysfunction. One such important system is the dopaminergic system. It plays a crucial role in modulating movement, cognition, and behavior while connecting various brain areas and influencing other neurotransmitter systems, making it relevant in neurodegenerative disorders like AD and Parkinson's disease (PD). Considering its significance, the dopaminergic system has emerged as a promising target for alleviating movement and cognitive deficits in PD and AD, respectively. Extensive research has been conducted on dopaminergic neurons, receptors, and dopamine levels as critical factors in cognition and memory in AD. However, the exact nature of movement abnormalities and other features of extrapyramidal symptoms are not fully understood yet in AD. Recently, a previously overlooked element of the dopaminergic system, the dopamine transporter, has shown significant promise as a more effective target for enhancing cognition while addressing dopaminergic system dysfunction in AD.
Collapse
Affiliation(s)
- Ammara Shaikh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
52
|
Ismail H, Khalid D, Waseem D, Ijaz MU, Dilshad E, Haq IU, Bhatti MZ, Anwaar S, Ahmed M, Saleem S. Bioassays guided isolation of berberine from Berberis lycium and its neuroprotective role in aluminium chloride induced rat model of Alzheimer's disease combined with insilico molecular docking. PLoS One 2023; 18:e0286349. [PMID: 37910530 PMCID: PMC10619822 DOI: 10.1371/journal.pone.0286349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/13/2023] [Indexed: 11/03/2023] Open
Abstract
OBJECTIVE Berberis lycium is an indigenous plant of Pakistan that is known for its medicinal properties. In the current study, we investigated the anti-Alzheimer's effect of berberine isolated from Berberis lycium. METHODS Root extract of B. lycium was subjected to acetylcholinesterase inhibition assay and column chromatography for bioassays guided isolation of a compound. The neuroprotective and memory improving effects of isolated compound were evaluated by aluminium chloride induced Alzheimer's disease rat model, elevated plus maze (EPM) and Morris water maze (MWM) tests., Levels of dopamine and serotonin in rats brains were determined using HPLC. Moreover, western blot and docking were performed to determine interaction between berberine and β-secretase. RESULTS During fractionation, ethyl acetate and methanol (3:7) fraction was collected from solvent mixture of ethyl acetate and methanol. This fraction showed the highest anti-acetylcholinesterase activity and was alkaloid positive. The results of TLC and HPLC analysis indicated the presence of the isolated compound as berberine. Additionally, the confirmation of isolated compound as berberine was carried out using FTIR and NMR analysis. In vivo EPM and MWM tests showed improved memory patterns after berberine treatment in Alzheimer's disease model. The levels of dopamine, serotonin and activity of antioxidant enzymes were significantly (p<0.05) enhanced in brain tissue homogenates of berberine treated group. This was supported by decreased expression of β-secretase in berberine treated rat brain homogenates and good binding affinity of berberine with β-secretase in docking studies. Binding energies for interaction of β-secretase with berberine and drug Rivastigmine is -7.0 kcal/mol and -5.8 kcal/mol respectively representing the strong interactions. The results of docked complex of secretase with berberine and Rivastigmine was carried out using Gromacs which showed significant stability of complex in terms of RMSD and radius of gyration. Overall, the study presents berberine as a potential drug against Alzheimer's disease by providing evidence of its effects in improving memory, neurotransmitter levels and reducing β-secretase expression in the Alzheimer's disease model.
Collapse
Affiliation(s)
- Hammad Ismail
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Dania Khalid
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Durdana Waseem
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Erum Dilshad
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Ihsan-ul Haq
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Zeeshan Bhatti
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Sadaf Anwaar
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Madiha Ahmed
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Samreen Saleem
- Department of Nutrition and Lifestyle Medicine, Health Services Academy, Islamabad, Pakistan
| |
Collapse
|
53
|
Tian J, Du E, Guo L. Mitochondrial Interaction with Serotonin in Neurobiology and Its Implication in Alzheimer's Disease. J Alzheimers Dis Rep 2023; 7:1165-1177. [PMID: 38025801 PMCID: PMC10657725 DOI: 10.3233/adr-230070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/16/2023] [Indexed: 12/01/2023] Open
Abstract
Alzheimer's disease (AD) is a lethal neurodegenerative disorder characterized by severe brain pathologies and progressive cognitive decline. While the exact cause of this disease remains unknown, emerging evidence suggests that dysregulation of neurotransmitters contributes to the development of AD pathology and symptoms. Serotonin, a critical neurotransmitter in the brain, plays a pivotal role in regulating various brain processes and is implicated in neurological and psychiatric disorders, including AD. Recent studies have shed light on the interplay between mitochondrial function and serotonin regulation in brain physiology. In AD, there is a deficiency of serotonin, along with impairments in mitochondrial function, particularly in serotoninergic neurons. Additionally, altered activity of mitochondrial enzymes, such as monoamine oxidase, may contribute to serotonin dysregulation in AD. Understanding the intricate relationship between mitochondria and serotonin provides valuable insights into the underlying mechanisms of AD and identifies potential therapeutic targets to restore serotonin homeostasis and alleviate AD symptoms. This review summarizes the recent advancements in unraveling the connection between brain mitochondria and serotonin, emphasizing their significance in AD pathogenesis and underscoring the importance of further research in this area. Elucidating the role of mitochondria in serotonin dysfunction will promote the development of therapeutic strategies for the treatment and prevention of this neurodegenerative disorder.
Collapse
Affiliation(s)
- Jing Tian
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Eric Du
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
- Blue Valley West High School, Overland Park, KS, USA
| | - Lan Guo
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
54
|
Luo Y, Yang FY, Lo RY. Application of transcranial brain stimulation in dementia. Tzu Chi Med J 2023; 35:300-305. [PMID: 38035058 PMCID: PMC10683520 DOI: 10.4103/tcmj.tcmj_91_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/19/2023] [Accepted: 06/01/2023] [Indexed: 12/02/2023] Open
Abstract
The number of patients with dementia grows rapidly as the global population ages, which posits tremendous health-care burden to the society. Only cholinesterase inhibitors and a N-methyl-D-aspartate receptor antagonist have been approved for treating patients with Alzheimer's disease (AD), and their clinical effects remained limited. Medical devices serve as an alternative therapeutic approach to modulating neural activities and enhancing cognitive function. Four major brain stimulation technologies including deep brain stimulation (DBS), transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and transcranial ultrasound stimulation (TUS) have been applied to AD in a clinical trial setting. DBS allows electrical stimulation at the specified nucleus but remains resource-demanding, and after all, an invasive surgery; whereas TMS and tDCS are widely available and affordable but less ideal with respect to localization. The unique physical property of TUS, on the other hand, allows both thermal and mechanical energy to be transduced and focused for neuromodulation. In the context of dementia, using focused ultrasound to induce blood-brain barrier opening for delivering drugs and metabolizing amyloid protein has drawn great attention in recent years. Furthermore, low-intensity pulsed ultrasound has demonstrated its neuroprotective effects in both in vitro and in vivo studies, leading to ongoing clinical trials for AD. The potential and limitation of transcranial brain stimulation for treating patients with dementia would be discussed in this review.
Collapse
Affiliation(s)
- Yuncin Luo
- Department of Neurology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| | - Feng-Yi Yang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Raymond Y. Lo
- Department of Neurology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
55
|
Berg SZ, Berg J. Melanin: a unifying theory of disease as exemplified by Parkinson's, Alzheimer's, and Lewy body dementia. Front Immunol 2023; 14:1228530. [PMID: 37841274 PMCID: PMC10570809 DOI: 10.3389/fimmu.2023.1228530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
Melanin, a ubiquitous dark pigment, plays important roles in the immune system, including scavenging reactive oxygen species formed in response to ultraviolet radiation absorption, absorbing metals, thermal regulation, drug uptake, innate immune system functions, redox, and energy transduction. Many tissue types, including brain, heart, arteries, ovaries, and others, contain melanin. Almost all cells contain precursors to melanin. A growing number of diseases in which there is a loss of melanin and/or neuromelanin are increasingly thought to have infectious etiologies, for example, Alzheimer's disease (AD), Parkinson's disease (PD), Lewy Body Dementia (LBD), and vitiligo. AD, PD, LBD, and vitiligo have been linked with herpesvirus, which enters melanosomes and causes apoptosis, and with gut dysbiosis and inflammation. Herpesvirus is also linked with gut dysbiosis and inflammation. We theorize that under normal healthy states, melanin retains some of the energy it absorbs from electromagnetic radiation, which is then used to fuel cells, and energy from ATP is used to compliment that energy supply. We further theorize that loss of melanin reduces the energy supply of cells, which in the case of AD, PD, and LBD results in an inability to sustain immune system defenses and remove the plaques associated with the disease, which appear to be part of the immune system's attempt to eradicate the pathogens seen in these neurodegenerative diseases. In addition, in an attempt to explain why removing these plaques does not result in improvements in cognition and mood and why cognitions and moods in these individuals have ebbs and flows, we postulate that it is not the plaques that cause the cognitive symptoms but, rather, inflammation in the brain resulting from the immune system's response to pathogens. Our theory that energy retained in melanin fuels cells in an inverse relationship with ATP is supported by studies showing alterations in ATP production in relationship to melanin levels in melanomas, vitiligo, and healthy cells. Therefore, alteration of melanin levels may be at the core of many diseases. We propose regulating melanin levels may offer new avenues for treatment development.
Collapse
Affiliation(s)
- Stacie Z. Berg
- Department of Translational Biology, William Edwards LLC, Baltimore, MD, United States
| | - Jonathan Berg
- Department of Translational Biology, William Edwards LLC, Baltimore, MD, United States
| |
Collapse
|
56
|
Abstract
Because the central nervous system is largely nonrenewing, neurons and their synapses must be maintained over the lifetime of an individual to ensure circuit function. Age is a dominant risk factor for neural diseases, and declines in nervous system function are a common feature of aging even in the absence of disease. These alterations extend to the visual system and, in particular, to the retina. The retina is a site of clinically relevant age-related alterations but has also proven to be a uniquely approachable system for discovering principles that govern neural aging because it is well mapped, contains diverse neuron types, and is experimentally accessible. In this article, we review the structural and molecular impacts of aging on neurons within the inner and outer retina circuits. We further discuss the contribution of non-neuronal cell types and systems to retinal aging outcomes. Understanding how and why the retina ages is critical to efforts aimed at preventing age-related neural decline and restoring neural function.
Collapse
Affiliation(s)
- Jeffrey D Zhu
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA;
| | - Sharma Pooja Tarachand
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA;
| | - Qudrat Abdulwahab
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA;
| | - Melanie A Samuel
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA;
| |
Collapse
|
57
|
Salgueiro WG, Soares MV, Martins CF, Paula FR, Rios-Anjos RM, Carrazoni T, Mori MA, Müller RU, Aschner M, Dal Belo CA, Ávila DS. Dopaminergic modulation by quercetin: In silico and in vivo evidence using Caenorhabditis elegans as a model. Chem Biol Interact 2023; 382:110610. [PMID: 37348670 PMCID: PMC10527449 DOI: 10.1016/j.cbi.2023.110610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Quercetin is a flavonol widely distributed in plants and has various described biological functions. Several studies have reported on its ability to restore neuronal function in a wide variety of disease models, including animal models of neurodegenerative disorders such as Parkinson's disease. Quercetin per se can act as a neuroprotector/neuromodulator, especially in diseases related to impaired dopaminergic neurotransmission. However, little is known about how quercetin interacts with the dopaminergic machinery. Here we employed the nematode Caenorhabditis elegans to study this putative interaction. After observing behavioral modulation, mutant analysis and gene expression in C. elegans upon exposure to quercetin at a concentration that does not protect against MPTP, we constructed a homology-based dopamine transporter protein model to conduct a docking study. This led to suggestive evidence on how quercetin may act as a dopaminergic modulator by interacting with C. elegans' dopamine transporter and alter the nematode's exploratory behavior. Consistent with this model, quercetin controls C. elegans behavior in a way dependent on the presence of both the dopamine transporter (dat-1), which is up-regulated upon quercetin exposure, and the dopamine receptor 2 (dop-2), which appears to be mandatory for dat-1 up-regulation. Our data propose an interaction with the dopaminergic machinery that may help to establish the effects of quercetin as a neuromodulator.
Collapse
Affiliation(s)
- Willian Goulart Salgueiro
- Research Group in Biochemistry and Toxicology in Caenorhabditis elegans (GBToxCe), Federal University of Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil; Department of Biochemistry and Tissue Biology, University of Campinas, Monteiro Lobato Avenue, 255, Campinas, São Paulo, 13083-862, Brazil; Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, 50931, Germany; Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Marcell Valandro Soares
- Research Group in Biochemistry and Toxicology in Caenorhabditis elegans (GBToxCe), Federal University of Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil; Department of Biochemistry and Molecular Biology, Post-graduate Program in Biological Sciences, Federal University of Santa Maria, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Cassiano Fiad Martins
- Research Group in Biochemistry and Toxicology in Caenorhabditis elegans (GBToxCe), Federal University of Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil
| | - Fávero Reisdorfer Paula
- Laboratory for Development and Quality Control in Medicines (LDCQ), Federal University of Pampa, Uruguaiana, RS, Brazil
| | | | - Thiago Carrazoni
- Neurobiology and Toxinology Laboratory, (LANETOX), Federal University of Pampa - UNIPAMPA, CEP 97300-000, São Gabriel, RS, Brazil
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, University of Campinas, Monteiro Lobato Avenue, 255, Campinas, São Paulo, 13083-862, Brazil; Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil; Experimental Medicine Research Cluster, University of Campinas, Campinas, SP, Brazil
| | - Roman-Ulrich Müller
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, 50931, Germany; Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Cháriston André Dal Belo
- Department of Biochemistry and Molecular Biology, Post-graduate Program in Biological Sciences, Federal University of Santa Maria, Camobi, 97105-900, Santa Maria, RS, Brazil; Neurobiology and Toxinology Laboratory, (LANETOX), Federal University of Pampa - UNIPAMPA, CEP 97300-000, São Gabriel, RS, Brazil; Multidisciplinar Department, Federal University of São Paulo (UNIFESP), Angelica Street, 100- CEP 06110295, Osasco, SP, Brazil
| | - Daiana Silva Ávila
- Research Group in Biochemistry and Toxicology in Caenorhabditis elegans (GBToxCe), Federal University of Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil; Department of Biochemistry and Molecular Biology, Post-graduate Program in Biological Sciences, Federal University of Santa Maria, Camobi, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
58
|
Pilozzi A, Foster S, Mischoulon D, Fava M, Huang X. A Brief Review on the Potential of Psychedelics for Treating Alzheimer's Disease and Related Depression. Int J Mol Sci 2023; 24:12513. [PMID: 37569888 PMCID: PMC10419627 DOI: 10.3390/ijms241512513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's disease (AD), the most common form of senile dementia, is poised to place an even greater societal and healthcare burden as the population ages. With few treatment options for the symptomatic relief of the disease and its unknown etiopathology, more research into AD is urgently needed. Psychedelic drugs target AD-related psychological pathology and symptoms such as depression. Using microdosing, psychedelic drugs may prove to help combat this devastating disease by eliciting psychiatric benefits via acting through various mechanisms of action such as serotonin and dopamine pathways. Herein, we review the studied benefits of a few psychedelic compounds that may show promise in treating AD and attenuating its related depressive symptoms. We used the listed keywords to search through PubMed for relevant preclinical, clinical research, and review articles. The putative mechanism of action (MOA) for psychedelics is that they act mainly as serotonin receptor agonists and induce potential beneficial effects for treating AD and related depression.
Collapse
Affiliation(s)
- Alexander Pilozzi
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Simmie Foster
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Depression Clinical & Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - David Mischoulon
- Depression Clinical & Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Maurizio Fava
- Depression Clinical & Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Xudong Huang
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
59
|
Lakshmipriya T, Gopinath SCB. Analyzing a multifunctional protein clustering for high-performance Alzheimer diagnosis. BRAIN & SPINE 2023; 4:102867. [PMID: 39823070 PMCID: PMC11736062 DOI: 10.1016/j.bas.2024.102867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 01/19/2025]
Affiliation(s)
- Thangavel Lakshmipriya
- Center for Global Health Research, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Subash C B Gopinath
- Center for Global Health Research, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai - 602 105, Tamil Nadu, India
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia
- Center of Excellence for Micro System Technology (MiCTEC), Universiti Malaysia Perlis (UniMAP), Pauh Campus, 02600 Arau, Perlis, Malaysia
| |
Collapse
|
60
|
Hawash ZAS, Yassien EM, Alotaibi BS, El-Moslemany AM, Shukry M. Assessment of Anti-Alzheimer Pursuit of Jambolan Fruit Extract and/or Choline against AlCl 3 Toxicity in Rats. TOXICS 2023; 11:509. [PMID: 37368609 DOI: 10.3390/toxics11060509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/30/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023]
Abstract
Jambolan fruit extract and choline were investigated for Aluminum tri chloride (AlCl3)-induced Alzheimer's disease in rats. Thirty-six male "Sprague Dawley" rats weighing (150 ± 10 g) were allocated into six groups; the first group was fed a baseline diet and served as a negative control. Alzheimer's disease (AD) was induced in Group 2 rats by oral administration of AlCl3 (17 mg/kg body weight) dissolved in distilled water (served as a positive control). Rats in Group 3 were orally supplemented concomitantly with both 500 mg/kg BW of an ethanolic extract of jambolan fruit once daily for 28 days and AlCl3 (17 mg/kg body weight). Group 4: Rivastigmine (RIVA) aqueous infusion (0.3 mg/kg BW/day) was given orally to rats as a reference drug concomitantly with oral supplementation of AlCl3 (17 mg/kg body weight) for 28 days. Group 5 rats were orally treated with choline (1.1 g/kg) concomitantly with oral supplementation of AlCl3 (17 mg/kg body weight). Group 6 was given 500 mg/kg of jambolan fruit ethanolic extract and 1.1 g/kg of choline orally to test for additive effects concurrently with oral supplementation of AlCl3 (17 mg/kg bw) for 28 days. Body weight gain, feed intake, feed efficiency ratio, and relative brain, liver, kidney, and spleen weight were calculated after the trial. Brain tissue assessment was analyzed for antioxidant/oxidant markers, biochemical analysis in blood serum, a phenolic compound in Jambolan fruits extracted by high-performance liquid chromatography (HPLC), and histopathology of the brain. The results showed that Jambolan fruit extract and choline chloride improved brain functions, histopathology, and antioxidant enzyme activity compared with the positive group. In conclusion, administering jambolan fruit extract and choline can lower the toxic impacts of aluminum chloride on the brain.
Collapse
Affiliation(s)
- Zeinab Abdel Salam Hawash
- Nutrition and Food Science Department, Faculty of Home Economic, Al-Azhar University, Tanta 31732, Egypt
| | - Ensaf M Yassien
- Nutrition and Food Science Department, Faculty of Home Economic, Al-Azhar University, Tanta 31732, Egypt
| | - Badriyah S Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Amira M El-Moslemany
- Nutrition and Food Science Department, Faculty of Home Economic, Al-Azhar University, Tanta 31732, Egypt
| | - Mustafa Shukry
- Physiology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
61
|
Pan X, Chen Y, Kaminga AC, Wen SW, Liu H, Jia P, Liu A. Auxiliary screening COVID-19 by computed tomography. Front Public Health 2023; 11:974542. [PMID: 37342278 PMCID: PMC10278544 DOI: 10.3389/fpubh.2023.974542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/16/2023] [Indexed: 06/22/2023] Open
Abstract
Background The 2019 novel coronavirus (COVID-19) pandemic remains rampant in many countries/regions. Improving the positive detection rate of COVID-19 infection is an important measure for the control and prevention of this pandemic. This meta-analysis aims to systematically summarize the current characteristics of the computed tomography (CT) auxiliary screening methods for COVID-19 infection in the real world. Methods Web of Science, Cochrane Library, Embase, PubMed, CNKI, and Wanfang databases were searched for relevant articles published prior to 1 September 2022. Data on specificity, sensitivity, positive/negative likelihood ratio, area under curve (AUC), and diagnostic odds ratio (dOR) were calculated purposefully. Results One hundred and fifteen studies were included with 51,500 participants in the meta-analysis. Among these studies, the pooled estimates for AUC of CT in confirmed cases, and CT in suspected cases to predict COVID-19 diagnosis were 0.76 and 0.85, respectively. The CT in confirmed cases dOR was 5.51 (95% CI: 3.78-8.02). The CT in suspected cases dOR was 13.12 (95% CI: 11.07-15.55). Conclusion Our findings support that CT detection may be the main auxiliary screening method for COVID-19 infection in the real world.
Collapse
Affiliation(s)
- Xiongfeng Pan
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yuyao Chen
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Atipatsa C. Kaminga
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
- Department of Mathematics and Statistics, Mzuzu University, Mzuzu, Malawi
| | - Shi Wu Wen
- Obstetrics & Maternal Newborn Investigations Research Group, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Faculty of Medicine, School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Hongying Liu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Peng Jia
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, China
- Hubei Luojia Laboratory, Wuhan, China
- School of Public Health, Wuhan University, Wuhan, China
- International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, China
| | - Aizhong Liu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
62
|
Sun J, Wang Z, Guan J. Single-atom nanozyme-based electrochemical sensors for health and food safety monitoring. Food Chem 2023; 425:136518. [PMID: 37290237 DOI: 10.1016/j.foodchem.2023.136518] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/20/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
Electrochemical sensors and biosensors play an important role in many fields, including biology, clinical trials, and food industry. For health and food safety monitoring, accurate and quantitative sensing is needed to ensure that there is no significantly negative impact on human health. It is difficult for traditional sensors to meet these requirements. In recent years, single-atom nanozymes (SANs) have been successfully used in electrochemical sensors due to their high electrochemical activity, good stability, excellent selectivity and high sensitivity. Here, we first summarize the detection principle of SAN-based electrochemical sensors. Then, we review the detection performances of small molecules on SAN-based electrochemical sensors, including H2O2, dopamine (DA), uric acid (UA), glucose, H2S, NO, and O2. Subsequently, we put forward the optimization strategies to promote the development of SAN-based electrochemical sensors. Finally, the challenges and prospects of SAN-based sensors are proposed.
Collapse
Affiliation(s)
- Jingru Sun
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China
| | - Zhenlu Wang
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China.
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China.
| |
Collapse
|
63
|
Maran JJ, Adesina MM, Green CR, Kwakowsky A, Mugisho OO. Retinal inner nuclear layer thickness in the diagnosis of cognitive impairment explored using a C57BL/6J mouse model. Sci Rep 2023; 13:8150. [PMID: 37208533 DOI: 10.1038/s41598-023-35229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/15/2023] [Indexed: 05/21/2023] Open
Abstract
Major neurocognitive disorder (NCD) affects over 55 million people worldwide and is characterized by cognitive impairment (CI). This study aimed to develop a non-invasive diagnostic test for CI based upon retinal thickness measurements explored in a mouse model. Discrimination indices and retinal layer thickness of healthy C57BL/6J mice were quantified through a novel object recognition test (NORT) and ocular coherence tomography (OCT), respectively. Based on criteria from the Diagnostic and statistical manual of mental disorders 5th ed. (DSM-V), a diagnostic test was generated by transforming data into rolling monthly averages and categorizing mice into those with and without CI and those with a high or low decline in retinal layer thickness. Only inner nuclear layer thickness had a statistically significant relationship with discrimination indices. Furthermore, our diagnostic test was 85.71% sensitive and 100% specific for diagnosing CI, with a positive predictive value of 100%. These findings have potential clinical implications for the early diagnosis of CI in NCD. However, further investigation in comorbid mice and humans is warranted.
Collapse
Affiliation(s)
- Jack J Maran
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology and The New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Moradeke M Adesina
- Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Colin R Green
- Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Andrea Kwakowsky
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Odunayo O Mugisho
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology and The New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand.
- Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| |
Collapse
|
64
|
Wong TS, Li G, Li S, Gao W, Chen G, Gan S, Zhang M, Li H, Wu S, Du Y. G protein-coupled receptors in neurodegenerative diseases and psychiatric disorders. Signal Transduct Target Ther 2023; 8:177. [PMID: 37137892 PMCID: PMC10154768 DOI: 10.1038/s41392-023-01427-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Neuropsychiatric disorders are multifactorial disorders with diverse aetiological factors. Identifying treatment targets is challenging because the diseases are resulting from heterogeneous biological, genetic, and environmental factors. Nevertheless, the increasing understanding of G protein-coupled receptor (GPCR) opens a new possibility in drug discovery. Harnessing our knowledge of molecular mechanisms and structural information of GPCRs will be advantageous for developing effective drugs. This review provides an overview of the role of GPCRs in various neurodegenerative and psychiatric diseases. Besides, we highlight the emerging opportunities of novel GPCR targets and address recent progress in GPCR drug development.
Collapse
Affiliation(s)
- Thian-Sze Wong
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Guangzhi Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Wei Gao
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Geng Chen
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Shiyi Gan
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Manzhan Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China.
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China.
| | - Song Wu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China.
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, 518116, Shenzhen, Guangdong, China.
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China.
| |
Collapse
|
65
|
Hyun TH, Cho WJ. High-Performance FET-Based Dopamine-Sensitive Biosensor Platform Based on SOI Substrate. BIOSENSORS 2023; 13:bios13050516. [PMID: 37232877 DOI: 10.3390/bios13050516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023]
Abstract
Dopamine is a catecholamine neurotransmitter that plays a significant role in the human central nervous system, even at extremely low concentrations. Several studies have focused on rapid and accurate detection of dopamine levels using field-effect transistor (FET)-based sensors. However, conventional approaches have poor dopamine sensitivity with values <11 mV/log [DA]. Hence, it is necessary to increase the sensitivity of FET-based dopamine sensors. In the present study, we proposed a high-performance dopamine-sensitive biosensor platform based on dual-gate FET on a silicon-on-insulator substrate. This proposed biosensor overcame the limitations of conventional approaches. The biosensor platform consisted of a dual-gate FET transducer unit and a dopamine-sensitive extended gate sensing unit. The capacitive coupling between the top- and bottom-gate of the transducer unit allowed for self-amplification of the dopamine sensitivity, resulting in an increased sensitivity of 373.98 mV/log[DA] from concentrations 10 fM to 1 μM. Therefore, the proposed FET-based dopamine sensor is expected to be widely applied as a highly sensitive and reliable biosensor platform, enabling fast and accurate detection of dopamine levels in various applications such as medical diagnosis and drug development.
Collapse
Affiliation(s)
- Tae-Hwan Hyun
- Department of Electronic Materials Engineering, Kwangwoon University, Seoul 139-701, Republic of Korea
| | - Won-Ju Cho
- Department of Electronic Materials Engineering, Kwangwoon University, Seoul 139-701, Republic of Korea
| |
Collapse
|
66
|
Cai W, Wakamatsu K, Zucca FA, Wang Q, Yang K, Mohamadzadehonarvar N, Srivastava P, Tanaka H, Holly G, Casella L, Ito S, Zecca L, Chen X. DOPA pheomelanin is increased in nigral neuromelanin of Parkinson's disease. Prog Neurobiol 2023; 223:102414. [PMID: 36746222 DOI: 10.1016/j.pneurobio.2023.102414] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
Neuromelanin (NM) in dopaminergic neurons of human substantia nigra (SN) has a melanic component that consists of pheomelanin and eumelanin moieties and has been proposed as a key factor contributing to dopaminergic neuron vulnerability in Parkinson's disease (PD). While eumelanin is considered as an antioxidant, pheomelanin and related oxidative stress are associated with compromised drug and metal ion binding and melanoma risk. Using postmortem SN from patients with PD or Alzheimer's disease (AD) and unaffected controls, we identified increased L-3,4-dihydroxyphenylalanine (DOPA) pheomelanin and increased ratios of dopamine (DA) pheomelanin markers to DA in PD SN compared to controls. Eumelanins derived from both DOPA and DA were reduced in PD group. In addition, we report an increase in DOPA pheomelanin relative to DA pheomelanin in PD SN. In AD SN, we observed unaltered melanin markers despite reduced DOPA compared to controls. Furthermore, synthetic DOPA pheomelanin induced neuronal cell death in vitro while synthetic DOPA eumelanin showed no significant effect on cell viability. Our findings provide insights into the different roles of pheomelanin and eumelanin in PD pathophysiology. We anticipate our study will lead to further investigations on pheomelanin and eumelanin individually as biomarkers and possibly therapeutic targets for PD.
Collapse
Affiliation(s)
- Waijiao Cai
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Institutes of Integrative Medicine, Fudan University, Shanghai, China; Department of Integrative Medicine, Huashan Hospital, Shanghai, China
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
| | - Fabio A Zucca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Qing Wang
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, USA
| | - Kai Yang
- Institutes of Integrative Medicine, Fudan University, Shanghai, China; Department of Integrative Medicine, Huashan Hospital, Shanghai, China
| | - Niyaz Mohamadzadehonarvar
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, USA
| | - Pranay Srivastava
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, USA
| | - Hitomi Tanaka
- Department of Medical Technology, School of Health Sciences, Gifu University of Medical Science, Seki, Japan
| | - Gabriel Holly
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Luigi Casella
- Department of Chemistry, University of Pavia, Pavia, Italy
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
| | - Luigi Zecca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Xiqun Chen
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, USA.
| |
Collapse
|
67
|
Thiel A, Hermanns C, Lauer AA, Reichrath J, Erhardt T, Hartmann T, Grimm MOW, Grimm HS. Vitamin D and Its Analogues: From Differences in Molecular Mechanisms to Potential Benefits of Adapted Use in the Treatment of Alzheimer’s Disease. Nutrients 2023; 15:nu15071684. [PMID: 37049524 PMCID: PMC10096957 DOI: 10.3390/nu15071684] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/15/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Lifestyle habits and insufficient sunlight exposure lead to a high prevalence of vitamin D hypovitaminosis, especially in the elderly. Recent studies suggest that in central Europe more than 50% of people over 60 years are not sufficiently supplied with vitamin D. Since vitamin D hypovitaminosis is associated with many diseases, such as Alzheimer’s disease (AD), vitamin D supplementation seems to be particularly useful for this vulnerable age population. Importantly, in addition to vitamin D, several analogues are known and used for different medical purposes. These vitamin D analogues differ not only in their pharmacokinetics and binding affinity to the vitamin D receptor, but also in their potential side effects. Here, we discuss these aspects, especially those of the commonly used vitamin D analogues alfacalcidol, paricalcitol, doxercalciferol, tacalcitol, calcipotriol, and eldecalcitol. In addition to their pleiotropic effects on mechanisms relevant to AD, potential effects of vitamin D analogues on comorbidities common in the context of geriatric diseases are summarized. AD is defined as a complex neurodegenerative disease of the central nervous system and is commonly represented in the elderly population. It is usually caused by extracellular accumulation of amyloidogenic plaques, consisting of amyloid (Aβ) peptides. Furthermore, the formation of intracellular neurofibrillary tangles involving hyperphosphorylated tau proteins contributes to the pathology of AD. In conclusion, this review emphasizes the importance of an adequate vitamin D supply and discusses the specifics of administering various vitamin D analogues compared with vitamin D in geriatric patients, especially those suffering from AD.
Collapse
|
68
|
Yang J, Zhai X, Dong X, Zhao L, Zhang Y, Xiao H, Ju P, Duan J, Tang X, Hou B. Peroxidase-like phosphate hydrate nanosheets bio-synthesized by a marine Shewanella algae strain for highly sensitive dopamine detection. Colloids Surf B Biointerfaces 2023; 225:113248. [PMID: 36905834 DOI: 10.1016/j.colsurfb.2023.113248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023]
Abstract
The sensitive and rapid detection of dopamine (DA) is of great significance for early diagnosis of related diseases. Current detection strategies of DA are time-consuming, expensive and inaccurate, while biosynthetic nanomaterials were considered highly stable and environment friendly, which were promising on colorimetric sensing. Thus, in this study, novel zinc phosphate hydrate nanosheets (SA@ZnPNS) biosynthesized by Shewanella algae were designed for the detection of DA. SA@ZnPNS showed high peroxidase-like activity which catalyzed the oxidation reaction of 3,3',5,5'-tetramethylbenzidine in the presence of H2O2. Results showed that the catalytic reaction of SA@ZnPNS followed Michaelis-Menton kinetics, and catalytic process conformed to ping-pong mechanism with chief active species of hydroxyl radicals. The colorimetric detection of DA in human serum samples was performed based on SA@ZnPNS peroxidase-like activity. The linear range of DA detection was 0.1-40 μM, and the detection limit was 0.083 μM. This study provided a simple and practical method for the detection of DA and expanded the application of biosynthesized nanoparticles to biosensing fields.
Collapse
Affiliation(s)
- Jing Yang
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, PR China; CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, PR China; Open Studio for Marine Corrosion and Protection, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266235, PR China
| | - Xiaofan Zhai
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, PR China; Open Studio for Marine Corrosion and Protection, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266235, PR China; Sanya Institute of Ocean Eco-Environmental Engineering, Zhenzhou Road, Sanya 572000, PR China; Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, No. 98 Daling Road, Nanning 530007, PR China.
| | - Xucheng Dong
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, PR China; Open Studio for Marine Corrosion and Protection, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266235, PR China
| | - Liuhui Zhao
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, PR China; Open Studio for Marine Corrosion and Protection, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266235, PR China; School of Bioengineering, Qilu University of Technology, No. 3501 Daxue Road, Jinan 250353, PR China
| | - Yu Zhang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, PR China; Open Studio for Marine Corrosion and Protection, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266235, PR China
| | - Hui Xiao
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, PR China.
| | - Peng Ju
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao 266061, PR China
| | - Jizhou Duan
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, PR China; Open Studio for Marine Corrosion and Protection, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266235, PR China; Sanya Institute of Ocean Eco-Environmental Engineering, Zhenzhou Road, Sanya 572000, PR China; Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, No. 98 Daling Road, Nanning 530007, PR China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, PR China
| | - Baorong Hou
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, PR China; Open Studio for Marine Corrosion and Protection, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266235, PR China; Sanya Institute of Ocean Eco-Environmental Engineering, Zhenzhou Road, Sanya 572000, PR China; Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, No. 98 Daling Road, Nanning 530007, PR China
| |
Collapse
|
69
|
Kim KY, Kim EH, Lee M, Ha J, Jung I, Kim E. Restless leg syndrome and risk of all-cause dementia: a nationwide retrospective cohort study. Alzheimers Res Ther 2023; 15:46. [PMID: 36879327 PMCID: PMC9987068 DOI: 10.1186/s13195-023-01191-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND Restless leg syndrome (RLS) is associated with poor sleep quality, depression or anxiety, poor dietary patterns, microvasculopathy, and hypoxia, all of which are known risk factors for dementia. However, the relationship between RLS and incident dementia remains unclear. This retrospective cohort study aimed to explore the possibility that RLS could be deemed as a non-cognitive prodromal feature of dementia. METHODS This was a retrospective cohort study using the Korean National Health Insurance Service-Elderly Cohort (aged ≥ 60). The subjects were observed for 12 years, from 2002 to 2013. Identifying patients with RLS and dementia was based on the 10th revised code of the International Classification of Diseases (ICD-10). We compared the risk of all-cause dementia, Alzheimer's disease (AD), and vascular dementia (VaD) in 2501 subjects with newly diagnosed RLS and 9977 matched controls based on age, sex, and index date. The association between RLS and the risk of dementia was assessed using Cox regression hazard regression models. The effect of dopamine agonists on the risk of dementia among RLS patients was also explored. RESULTS The baseline mean age was 73.4, and the subjects were predominantly females (63.4%). The incidence of all-cause dementia was higher in the RLS group than that in the control group (10.4% vs 6.2%). A baseline diagnosis of RLS was associated with an increased risk of incident all-cause dementia (adjusted hazard ratio [aHR] 1.46, 95% confidence interval [CI] 1.24-1.72). The risk of developing VaD (aHR 1.81, 95% CI 1.30-2.53) was higher than that of AD (aHR 1.38, 95% CI 1.11-1.72). The use of dopamine agonists was not associated with the risk of subsequent dementia among patients with RLS (aHR 1.00, 95% CI 0.76-1.32). CONCLUSIONS This retrospective cohort study suggests that RLS is associated with an increased risk of incident all-cause dementia in older adults, providing some evidence that requires confirmation through prospective studies in the future. Awareness of cognitive decline in patients with RLS may have clinical implications for the early detection of dementia.
Collapse
Affiliation(s)
- Keun You Kim
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea.,Department of Neuropsychiatry, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, 20 Boramae-ro 5-gil, Dongjak-gu, 07061, Seoul, Republic of Korea
| | - Eun Hwa Kim
- Department of Biomedical Systems Informatics, Biostatistics Collaboration Unit, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Myeongjee Lee
- Department of Biomedical Systems Informatics, Biostatistics Collaboration Unit, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Junghee Ha
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Inkyung Jung
- Division of Biostatistics, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Eosu Kim
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea. .,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
70
|
Multitargeting Histamine H 3 Receptor Ligands among Acetyl- and Propionyl-Phenoxyalkyl Derivatives. Molecules 2023; 28:molecules28052349. [PMID: 36903593 PMCID: PMC10005104 DOI: 10.3390/molecules28052349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, for which there is no effective cure. Current drugs only slow down the course of the disease, and, therefore, there is an urgent need to find effective therapies that not only treat, but also prevent it. Acetylcholinesterase inhibitors (AChEIs), among others, have been used for years to treat AD. Histamine H3 receptors (H3Rs) antagonists/inverse agonists are indicated for CNS diseases. Combining AChEIs with H3R antagonism in one structure could bring a beneficial therapeutic effect. The aim of this study was to find new multitargetting ligands. Thus, continuing our previous research, acetyl- and propionyl-phenoxy-pentyl(-hexyl) derivatives were designed. These compounds were tested for their affinity to human H3Rs, as well as their ability to inhibit cholinesterases (acetyl- and butyrylcholinesterases) and, additionally, human monoamine oxidase B (MAO B). Furthermore, for the selected active compounds, their toxicity towards HepG2 or SH-SY5Y cells was evaluated. The results showed that compounds 16 (1-(4-((5-(azepan-1-yl)pentyl)oxy)phenyl)propan-1-one) and 17 (1-(4-((6-(azepan-1-yl)hexyl)oxy)phenyl)propan-1-one) are the most promising, with a high affinity for human H3Rs (Ki: 30 nM and 42 nM, respectively), a good ability to inhibit cholinesterases (16: AChE IC50 = 3.60 µM, BuChE IC50 = 0.55 µM; 17: AChE IC50 = 1.06 µM, BuChE IC50 = 2.86 µM), and lack of cell toxicity up to 50 µM.
Collapse
|
71
|
Liu P, Guo L, Yu X, Liu P, Yu Y, Kong X, Yu X, Zephania HM, Liu P, Huang Y. Identification of region-specific amino acid signatures for doxorubicin-induced chemo brain. Amino Acids 2023; 55:325-336. [PMID: 36604337 DOI: 10.1007/s00726-022-03231-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023]
Abstract
Doxorubicin (DOX) is a cornerstone of chemotherapy for solid tumors and leukemias. DOX-induced cognitive impairment, termed chemo brain, has been reported in cancer survivors, whereas its mechanism remains poorly understood. Here we initially evaluated the cognitive impairments of mice treated with clinically relevant, long-term, low-dosage of DOX. Using HILIC-MS/MS-based targeted metabolomics, we presented the changes of 21 amino acids across six anatomical brain regions of mice with DOX-induced chemo brain. By mapping the altered amino acids to the human metabolic network, we constructed an amino acid-based network module for each brain region. We identified phenylalanine, tyrosine, methionine, and γ-aminobutyric acid as putative signatures of three regions (hippocampus, prefrontal cortex, and neocortex) highly associated with cognition. Relying on the reported mouse brain metabolome atlas, we found that DOX might perturb the amino acid homeostasis in multiple brain regions, similar to the changes in the aging brain. Correlation analysis suggested the possible indirect neurotoxicity of DOX that altered the brain levels of phenylalanine, tyrosine, and methionine by causing metabolic disorders in the liver and kidney. In summary, we revealed the region-specific amino acid signatures as actionable targets for DOX-induced chemo brain, which might provide safer treatment and improve the quality of life among cancer survivors.
Collapse
Affiliation(s)
- Peijia Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150001, China
| | - Linling Guo
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, 210009, China
| | - Xinyue Yu
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, 210009, China
| | - Peipei Liu
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, 157 Baojian Road, Harbin, 150001, China
| | - Yan Yu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150001, China
| | - Xiaotong Kong
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150001, China
| | - Xiaxia Yu
- Department of Pharmacy, Affiliated Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Nanjing, 210009, China
| | - Hove Mzingaye Zephania
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, 210009, China
| | - Peifang Liu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150001, China.
| | - Yin Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, 210009, China.
| |
Collapse
|
72
|
Berkowitz BA, Podolsky RH, Childers KL, Roberts R, Waseem R. Multiple Bioenergy-Linked OCT Biomarkers Suggest Greater-Than-Normal Rod Mitochondria Activity Early in Experimental Alzheimer's Disease. Invest Ophthalmol Vis Sci 2023; 64:12. [PMID: 36867132 PMCID: PMC9988708 DOI: 10.1167/iovs.64.3.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Purpose In Alzheimer's disease, central brain neurons show evidence for early hyperactivity. It is unclear if this occurs in the retina, another disease target. Here, we tested for imaging biomarker manifestation of prodromal hyperactivity in rod mitochondria in vivo in experimental Alzheimer's disease. Methods Light- and dark-adapted 4-month-old 5xFAD and wild-type (WT) mice, both on a C57BL/6J background, were studied with optical coherence tomography (OCT). We measured the reflectivity profile shape of the inner segment ellipsoid zone (EZ) as a proxy for mitochondria distribution. Two additional indices responsive to mitochondria activity were also measured: the thickness of the external limiting membrane-retinal pigment epithelium (ELM-RPE) region and the signal magnitude of a hyporeflective band (HB) between photoreceptor tips and apical RPE. Retinal laminar thickness and visual performance were evaluated. Results In response to low energy demand (light), WT mice showed the expected elongation in EZ reflectivity profile shape, relatively thicker ELM-RPE, and greater HB signal. Under high energy demand (dark), the EZ reflectivity profile shape was rounder, the ELM-RPE was thinner, and the HB was reduced. These OCT biomarker patterns for light-adapted 5xFAD mice did not match those of light-adapted WT mice but rather that of dark-adapted WT mice. Dark-adapted 5xFAD and WT mice showed the same biomarker pattern. The 5xFAD mice exhibited modest nuclear layer thinning and lower-than-normal contrast sensitivity. Conclusions Results from three OCT bioenergy biomarkers raise the novel possibility of early rod hyperactivity in vivo in a common Alzheimer's disease model.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Robert H Podolsky
- Biostatistics and Study Methodology, Children's National Hospital, Silver Spring, Maryland, United States
| | - Karen L Childers
- Beaumont Research Institute, Beaumont Health, Royal Oak, Michigan, United States
| | - Robin Roberts
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Rida Waseem
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
73
|
Flexible electroactive membranes for the electrochemical detection of dopamine. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
74
|
Stuart T, Jeang WJ, Slivicki RA, Brown BJ, Burton A, Brings VE, Alarcón-Segovia LC, Agyare P, Ruiz S, Tyree A, Pruitt L, Madhvapathy S, Niemiec M, Zhuang J, Krishnan S, Copits BA, Rogers JA, Gereau RW, Samineni VK, Bandodkar AJ, Gutruf P. Wireless, Battery-Free Implants for Electrochemical Catecholamine Sensing and Optogenetic Stimulation. ACS NANO 2023; 17:561-574. [PMID: 36548126 PMCID: PMC11801802 DOI: 10.1021/acsnano.2c09475] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Neurotransmitters and neuromodulators mediate communication between neurons and other cell types; knowledge of release dynamics is critical to understanding their physiological role in normal and pathological brain function. Investigation into transient neurotransmitter dynamics has largely been hindered due to electrical and material requirements for electrochemical stimulation and recording. Current systems require complex electronics for biasing and amplification and rely on materials that offer limited sensor selectivity and sensitivity. These restrictions result in bulky, tethered, or battery-powered systems impacting behavior and that require constant care of subjects. To overcome these challenges, we demonstrate a fully implantable, wireless, and battery-free platform that enables optogenetic stimulation and electrochemical recording of catecholamine dynamics in real time. The device is nearly 1/10th the size of previously reported examples and includes a probe that relies on a multilayer electrode architecture featuring a microscale light emitting diode (μ-LED) and a carbon nanotube (CNT)-based sensor with sensitivities among the highest recorded in the literature (1264.1 nA μM-1 cm-2). High sensitivity of the probe combined with a center tapped antenna design enables the realization of miniaturized, low power circuits suitable for subdermal implantation even in small animal models such as mice. A series of in vitro and in vivo experiments highlight the sensitivity and selectivity of the platform and demonstrate its capabilities in freely moving, untethered subjects. Specifically, a demonstration of changes in dopamine concentration after optogenetic stimulation of the nucleus accumbens and real-time readout of dopamine levels after opioid and naloxone exposure in freely behaving subjects highlight the experimental paradigms enabled by the platform.
Collapse
Affiliation(s)
- Tucker Stuart
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - William J Jeang
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60201, United States
| | - Richard A Slivicki
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Bobbie J Brown
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Alex Burton
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Victoria E Brings
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Lilian C Alarcón-Segovia
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60201, United States
| | - Prophecy Agyare
- Department of Neuroscience, Northwestern University, Evanston, Illinois 60201, United States
| | - Savanna Ruiz
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60201, United States
| | - Amanda Tyree
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Lindsay Pruitt
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Surabhi Madhvapathy
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60201, United States
| | - Martin Niemiec
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - James Zhuang
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Siddharth Krishnan
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60201, United States
| | - Bryan A Copits
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - John A Rogers
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60201, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60201, United States
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60201, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60201, United States
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60201, United States
- Department of Neurological Surgery, Northwestern University, Evanston, Illinois 60208, United States
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Robert W Gereau
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Neuroscience, Washington University, St. Louis, Missouri 63110, United States
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63110, United States
| | - Vijay K Samineni
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Amay J Bandodkar
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Philipp Gutruf
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona 85721, United States
- Bio5 Institute, University of Arizona, Tucson, Arizona 85721, United States
- Neuroscience GIDP, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
75
|
Chakrovorty A, Bhattacharjee B, Saxena A, Samadder A, Nandi S. Current Naturopathy to Combat Alzheimer's Disease. Curr Neuropharmacol 2023; 21:808-841. [PMID: 36173068 PMCID: PMC10227918 DOI: 10.2174/1570159x20666220927121022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/13/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegeneration is the progressive loss of structure or function of neurons, which may ultimately involve cell death. The most common neurodegenerative disorder in the brain happens with Alzheimer's disease (AD), the most common cause of dementia. It ultimately leads to neuronal death, thereby impairing the normal functionality of the central or peripheral nervous system. The onset and prevalence of AD involve heterogeneous etiology, either in terms of genetic predisposition, neurometabolomic malfunctioning, or lifestyle. The worldwide relevancies are estimated to be over 45 million people. The rapid increase in AD has led to a concomitant increase in the research work directed towards discovering a lucrative cure for AD. The neuropathology of AD comprises the deficiency in the availability of neurotransmitters and important neurotrophic factors in the brain, extracellular betaamyloid plaque depositions, and intracellular neurofibrillary tangles of hyperphosphorylated tau protein. Current pharmaceutical interventions utilizing synthetic drugs have manifested resistance and toxicity problems. This has led to the quest for new pharmacotherapeutic candidates naturally prevalent in phytochemicals. This review aims to provide an elaborative description of promising Phyto component entities having activities against various potential AD targets. Therefore, naturopathy may combine with synthetic chemotherapeutics to longer the survival of the patients.
Collapse
Affiliation(s)
- Arnob Chakrovorty
- Department of Zoology, Cytogenetics and Molecular Biology Lab., University of Kalyani, Kalyani, 741235, India
| | - Banani Bhattacharjee
- Department of Zoology, Cytogenetics and Molecular Biology Lab., University of Kalyani, Kalyani, 741235, India
| | - Aaruni Saxena
- Department of Cardiovascular Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Asmita Samadder
- Department of Zoology, Cytogenetics and Molecular Biology Lab., University of Kalyani, Kalyani, 741235, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Affiliated to Uttarakhand Technical University, Kashipur, 244713, India
| |
Collapse
|
76
|
Rayff da Silva P, de Andrade JC, de Sousa NF, Portela ACR, Oliveira Pires HF, Remígio MCRB, da Nóbrega Alves D, de Andrade HHN, Dias AL, Salvadori MGDSS, de Oliveira Golzio AMF, de Castro RD, Scotti MT, Felipe CFB, de Almeida RN, Scotti L. Computational Studies Applied to Linalool and Citronellal Derivatives Against Alzheimer's and Parkinson's Disorders: A Review with Experimental Approach. Curr Neuropharmacol 2023; 21:842-866. [PMID: 36809939 PMCID: PMC10227923 DOI: 10.2174/1570159x21666230221123059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 02/24/2023] Open
Abstract
Alzheimer's and Parkinson's are neurodegenerative disorders that affect a great number of people around the world, seriously compromising the quality of life of individuals, due to motor and cognitive damage. In these diseases, pharmacological treatment is used only to alleviate symptoms. This emphasizes the need to discover alternative molecules for use in prevention. Using Molecular Docking, this review aimed to evaluate the anti-Alzheimer's and anti-Parkinson's activity of linalool and citronellal, as well as their derivatives. Before performing Molecular Docking simulations, the compounds' pharmacokinetic characteristics were evaluated. For Molecular Docking, 7 chemical compounds derived from citronellal, and 10 compounds derived from linalool, and molecular targets involved in Alzheimer's and Parkinson's pathophysiology were selected. According to the Lipinski rules, the compounds under study presented good oral absorption and bioavailability. For toxicity, some tissue irritability was observed. For Parkinson-related targets, the citronellal and linalool derived compounds revealed excellent energetic affinity for α-Synuclein, Adenosine Receptors, Monoamine Oxidase (MAO), and Dopamine D1 receptor proteins. For Alzheimer disease targets, only linalool and its derivatives presented promise against BACE enzyme activity. The compounds studied presented high probability of modulatory activity against the disease targets under study, and are potential candidates for future drugs.
Collapse
Affiliation(s)
- Pablo Rayff da Silva
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Jéssica Cabral de Andrade
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Natália Ferreira de Sousa
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Anne Caroline Ribeiro Portela
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Hugo Fernandes Oliveira Pires
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Maria Caroline Rodrigues Bezerra Remígio
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Danielle da Nóbrega Alves
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Humberto Hugo Nunes de Andrade
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Arthur Lins Dias
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | | | | | - Ricardo Dias de Castro
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Marcus T. Scotti
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Cícero Francisco Bezerra Felipe
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Reinaldo Nóbrega de Almeida
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Luciana Scotti
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| |
Collapse
|
77
|
Ramasubramanian B, Reddy VS, Chellappan V, Ramakrishna S. Emerging Materials, Wearables, and Diagnostic Advancements in Therapeutic Treatment of Brain Diseases. BIOSENSORS 2022; 12:1176. [PMID: 36551143 PMCID: PMC9775999 DOI: 10.3390/bios12121176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Among the most critical health issues, brain illnesses, such as neurodegenerative conditions and tumors, lower quality of life and have a significant economic impact. Implantable technology and nano-drug carriers have enormous promise for cerebral brain activity sensing and regulated therapeutic application in the treatment and detection of brain illnesses. Flexible materials are chosen for implantable devices because they help reduce biomechanical mismatch between the implanted device and brain tissue. Additionally, implanted biodegradable devices might lessen any autoimmune negative effects. The onerous subsequent operation for removing the implanted device is further lessened with biodegradability. This review expands on current developments in diagnostic technologies such as magnetic resonance imaging, computed tomography, mass spectroscopy, infrared spectroscopy, angiography, and electroencephalogram while providing an overview of prevalent brain diseases. As far as we are aware, there hasn't been a single review article that addresses all the prevalent brain illnesses. The reviewer also looks into the prospects for the future and offers suggestions for the direction of future developments in the treatment of brain diseases.
Collapse
Affiliation(s)
- Brindha Ramasubramanian
- Department of Mechanical Engineering, Center for Nanofibers & Nanotechnology, National University of Singapore, Singapore 117574, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), #08-03, 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Vundrala Sumedha Reddy
- Department of Mechanical Engineering, Center for Nanofibers & Nanotechnology, National University of Singapore, Singapore 117574, Singapore
| | - Vijila Chellappan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), #08-03, 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers & Nanotechnology, National University of Singapore, Singapore 117574, Singapore
| |
Collapse
|
78
|
Dopamine D2 receptor agonist Bromocriptine ameliorates Aβ 1-42-induced memory deficits and neuroinflammation in mice. Eur J Pharmacol 2022; 938:175443. [PMID: 36470446 DOI: 10.1016/j.ejphar.2022.175443] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Alzheimer's Disease (AD) is the most common neurodegenerative disease, which lacks disease-modifying therapeutics so far. Studies have shown that the dysfunction of the dopaminergic system is related to a variety of pathophysiology of AD, and the expression of Dopamine D2 receptor (DRD2) in the brains of AD patients and animal models is significantly downregulated, suggesting that DRD2 may represent a therapeutic target for AD. However, the strategy of targeting DRD2 for AD treatment still lacks some key experimental evidences. Here we show that DRD2 agonist Bromocriptine improved Aβ1-42 induced neuroinflammation, neuronal apoptosis, and memory deficits in mice. For animal study, the mice have injected intracerebroventricularly (i.c.v.) with Aβ1-42(410 pmol/5 μl) to induced AD cognitive deficit model (Mazzola et al., 2003; van der Stelt et al., 2006). After 7 days, Bromocriptine (2.5 mg/kg, 5 mg/kg and 10 mg/kg) or normal saline was administered intragastrically once a day for 30 days. Behavioral tests about the Y maze and Morris water maze in mice were initiated on the twenty-fourth day of drug administration for 7 days. In vivo and in vitro mechanism research revealed that Bromocriptine, via activating DRD2, promoted the recruitment of PP2A and JNK by scaffold protein β-arrestin 2, that repressed JNK-mediated transcription of proinflammatory cytokines and activation of NLRP3 inflammasome in microglia. Collectively, our findings suggest that Bromocriptine can ameliorate Aβ1-42 induced neuroinflammation and memory deficits in mice through DRD2/β-arrestin 2/PP2A/JNK signaling axis, which provides an experimental basis for the development of Bromocriptine as a drug for AD.
Collapse
|
79
|
Martínez-Iglesias O, Naidoo V, Carrera I, Corzo L, Cacabelos R. Nosustrophine: An Epinutraceutical Bioproduct with Effects on DNA Methylation, Histone Acetylation and Sirtuin Expression in Alzheimer's Disease. Pharmaceutics 2022; 14:pharmaceutics14112447. [PMID: 36432638 PMCID: PMC9698419 DOI: 10.3390/pharmaceutics14112447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD), the most common cause of dementia, causes irreversible memory loss and cognitive deficits. Current AD drugs do not significantly improve cognitive function or cure the disease. Novel bioproducts are promising options for treating a variety of diseases, including neurodegenerative disorders. Targeting the epigenetic apparatus with bioactive compounds (epidrugs) may aid AD prevention treatment. The aims of this study were to determine the composition of a porcine brain-derived extract Nosustrophine, and whether treating young and older trigenic AD mice produced targeted epigenetic and neuroprotective effects against neurodegeneration. Nosustrophine regulated AD-related APOE and PSEN2 gene expression in young and older APP/BIN1/COPS5 mice, inflammation-related (NOS3 and COX-2) gene expression in 3-4-month-old mice only, global (5mC)- and de novo DNA methylation (DNMT3a), HDAC3 expression and HDAC activity in 3-4-month-old mice; and SIRT1 expression and acetylated histone H3 protein levels in 8-9-month-old mice. Mass spectrometric analysis of Nosustrophine extracts revealed the presence of adenosylhomocysteinase, an enzyme implicated in DNA methylation, and nicotinamide phosphoribosyltransferase, which produces the NAD+ precursor, enhancing SIRT1 activity. Our findings show that Nosustrophine exerts substantial epigenetic effects against AD-related neurodegeneration and establishes Nosustrophine as a novel nutraceutical bioproduct with epigenetic properties (epinutraceutical) that may be therapeutically effective for prevention and early treatment for AD-related neurodegeneration.
Collapse
|
80
|
Keuler T, Lemke C, Elsinghorst PW, Iriepa I, Chioua M, Martínez-Grau MA, Beadle CD, Vetman T, López-Muñoz F, Wille T, Bartz U, Deuther-Conrad W, Marco-Contelles J, Gütschow M. The Chemotype of Chromanones as a Privileged Scaffold for Multineurotarget Anti-Alzheimer Agents. ACS Pharmacol Transl Sci 2022; 5:1097-1108. [PMID: 36407962 PMCID: PMC9667544 DOI: 10.1021/acsptsci.2c00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 11/28/2022]
Abstract
The multifactorial nature of Alzheimer's disease necessitates the development of agents able to interfere with different relevant targets. A series of 22 tailored chromanones was conceptualized, synthesized, and subjected to biological evaluation. We identified one representative bearing a linker-connected azepane moiety (compound 19) with balanced pharmacological properties. Compound 19 exhibited inhibitory activities against human acetyl-, butyrylcholinesterase and monoamine oxidase-B, as well as high affinity to both the σ1 and σ2 receptors. Our study provides a framework for the development of further chromanone-based multineurotarget agents.
Collapse
Affiliation(s)
- Tim Keuler
- Pharmaceutical
Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Carina Lemke
- Pharmaceutical
Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Paul W. Elsinghorst
- Pharmaceutical
Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
- Central
Institute of the Bundeswehr Medical Service Munich, Ingolstädter Landstraße 102, 85748 Garching Germany
| | - Isabel Iriepa
- Universidad
de Alcalá, Departamento de Química
Orgánica y Química Inorgánica, Ctra. Madrid-Barcelona, 28871 Alcalá de Henares, Madrid España
| | - Mourad Chioua
- Laboratory
of Medicinal Chemistry, IQOG, CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain
| | | | - Christopher D. Beadle
- Lilly Research
Centre, Eli Lilly & Company, Erl Wood Manor, Windlesham, Surrey GU20
6PH, United Kingdom
| | - Tatiana Vetman
- Lilly
Research Laboratories, Eli Lilly & Company, Indianapolis, Indiana 46285, United States
| | - Francisco López-Muñoz
- Faculty
of Health, Camilo José Cela University of Madrid (UCJC), Neuropsychopharmacology Unit, “Hospital 12 de Octubre” Research
Institute, 28692 Madrid, Spain
| | - Timo Wille
- Bundeswehr
Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937 München, Germany
| | - Ulrike Bartz
- Department
of Natural Sciences, University of Applied
Sciences Bonn-Rhein-Sieg, von-Liebig-Straße 20, 53359 Rheinbach, Germany
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, 04318 Leipzig, Germany
| | - José Marco-Contelles
- Laboratory
of Medicinal Chemistry, IQOG, CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Michael Gütschow
- Pharmaceutical
Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| |
Collapse
|
81
|
Chen C, Liao J, Xia Y, Liu X, Jones R, Haran J, McCormick B, Sampson TR, Alam A, Ye K. Gut microbiota regulate Alzheimer's disease pathologies and cognitive disorders via PUFA-associated neuroinflammation. Gut 2022; 71:2233-2252. [PMID: 35017199 PMCID: PMC10720732 DOI: 10.1136/gutjnl-2021-326269] [Citation(s) in RCA: 234] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This study is to investigate the role of gut dysbiosis in triggering inflammation in the brain and its contribution to Alzheimer's disease (AD) pathogenesis. DESIGN We analysed the gut microbiota composition of 3×Tg mice in an age-dependent manner. We generated germ-free 3×Tg mice and recolonisation of germ-free 3×Tg mice with fecal samples from both patients with AD and age-matched healthy donors. RESULTS Microbial 16S rRNA sequencing revealed Bacteroides enrichment. We found a prominent reduction of cerebral amyloid-β plaques and neurofibrillary tangles pathology in germ-free 3×Tg mice as compared with specific-pathogen-free mice. And hippocampal RNAseq showed that inflammatory pathway and insulin/IGF-1 signalling in 3×Tg mice brain are aberrantly altered in the absence of gut microbiota. Poly-unsaturated fatty acid metabolites identified by metabolomic analysis, and their oxidative enzymes were selectively elevated, corresponding with microglia activation and inflammation. AD patients' gut microbiome exacerbated AD pathologies in 3×Tg mice, associated with C/EBPβ/asparagine endopeptidase pathway activation and cognitive dysfunctions compared with healthy donors' microbiota transplants. CONCLUSIONS These findings support that a complex gut microbiome is required for behavioural defects, microglia activation and AD pathologies, the gut microbiome contributes to pathologies in an AD mouse model and that dysbiosis of the human microbiome might be a risk factor for AD.
Collapse
Affiliation(s)
- Chun Chen
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| | - Jianming Liao
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
- Department of Neurosurgery, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Yiyuan Xia
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| | - Rheinallt Jones
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - John Haran
- Department of Emergency Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Center for Microbiome Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Beth McCormick
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Ashfaqul Alam
- Microbiology, Immunology & Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
- Faculty of Life and Health Sciences, The Brain Cognition and Brain Disorders Institute (BCBDI), Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, Guangdong, China
| |
Collapse
|
82
|
Irkham, Nasa K, Kurnia I, Hartati YW, Einaga Y. Low-interference norepinephrine signal on dopamine detection using nafion-coated boron doped diamond electrodes. Biosens Bioelectron 2022; 220:114892. [DOI: 10.1016/j.bios.2022.114892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/23/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
|
83
|
Michałowska A, Jędrzejewski K, Kudelski A. Influence of the Co-Adsorbed Ions on the Surface-Enhanced Raman Scattering Spectra of Dopamine Adsorbed on Nanostructured Silver. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5972. [PMID: 36079352 PMCID: PMC9457036 DOI: 10.3390/ma15175972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
The abnormal metabolism or imbalance of dopamine may lead to some neurological disorders. Therefore, the facile and fast detection of this neurotransmitter is essential in the early diagnosis of some diseases. One of the methods that can be used for the detection and determination of dopamine is the surface-enhanced Raman scattering (SERS). In this contribution, we report a very strong influence of some salts (we used salts containing Na+ cations and the following anions: SO42-, F-, Cl-, Br-, and I-) on the spectral patterns and intensity of the SERS spectra of dopamine adsorbed on a nanostructured macroscopic silver substrate. The analysis of the recorded SERS spectra based on the assignments of Raman bands from the density-functional theory (DFT) calculations and based on the SERS surface selection rules reveals that when molecules of dopamine are adsorbed from an aqueous solution to which no electrolytes have been added, they adopt a flat orientation versus the silver surface; whereas, the molecules of dopamine co-adsorbed with various ions interact with the silver surface, mainly via phenolic groups, and they adopt a perpendicular orientation versus the metal surface. An addition of electrolytes also significantly influences the intensity of the recorded SERS spectrum; for example, an addition of Na2SO4 to a final concentration of 1 M induces an increase in the intensity of the measured SERS spectrum by a factor of ca. 40. This means that the addition of electrolytes to the analyzed solution can reduce the limit of detection of dopamine by SERS spectroscopy. The abovementioned findings may facilitate the construction of dopamine SERS sensors.
Collapse
|
84
|
Deep learning prediction of chemical-induced dose-dependent and context-specific multiplex phenotype responses and its application to personalized alzheimer’s disease drug repurposing. PLoS Comput Biol 2022; 18:e1010367. [PMID: 35951653 PMCID: PMC9398009 DOI: 10.1371/journal.pcbi.1010367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 08/23/2022] [Accepted: 07/08/2022] [Indexed: 11/19/2022] Open
Abstract
Predictive modeling of drug-induced gene expressions is a powerful tool for phenotype-based compound screening and drug repurposing. State-of-the-art machine learning methods use a small number of fixed cell lines as a surrogate for predicting actual expressions in a new cell type or tissue, although it is well known that drug responses depend on a cellular context. Thus, the existing approach has limitations when applied to personalized medicine, especially for many understudied diseases whose molecular profiles are dramatically different from those characterized in the training data. Besides the gene expression, dose-dependent cell viability is another important phenotype readout and is more informative than conventional summary statistics (e.g., IC50) for characterizing clinical drug efficacy and toxicity. However, few computational methods can reliably predict the dose-dependent cell viability. To address the challenges mentioned above, we designed a new deep learning model, MultiDCP, to predict cellular context-dependent gene expressions and cell viability on a specific dosage. The novelties of MultiDCP include a knowledge-driven gene expression profile transformer that enables context-specific phenotypic response predictions of novel cells or tissues, integration of multiple diverse labeled and unlabeled omics data, the joint training of the multiple prediction tasks, and a teacher-student training procedure that allows us to utilize unreliable data effectively. Comprehensive benchmark studies suggest that MultiDCP outperforms state-of-the-art methods with unseen cell lines that are dissimilar from the cell lines in the supervised training in terms of gene expressions. The predicted drug-induced gene expressions demonstrate a stronger predictive power than noisy experimental data for downstream tasks. Thus, MultiDCP is a useful tool for transcriptomics-based drug repurposing and compound screening that currently rely on noisy high-throughput experimental data. We applied MultiDCP to repurpose individualized drugs for Alzheimer’s disease in terms of efficacy and toxicity, suggesting that MultiDCP is a potentially powerful tool for personalized drug discovery. Conventional target-based compound screening that follows the one-drug-one-gene drug discovery paradigm has a low success rate in tackling multi-genic systemic diseases such as Alzheimer’s disease. A systems pharmacology strategy is needed to target gene regulatory networks. To enable systems pharmacology-oriented phenotypic screening, it is critical to utilize a mechanistic phenotype readout to link drug responses in a model system to drug toxicity and efficacy in an individual. Chemical-induced dose-dependent gene expression profiles provide critical information on drug mode of action and off-target effects and can identify drug candidates that reverse disease phenotypes. However, state-of-the-art machine learning methods for predicting chemical-induced gene expressions are all trained using data from a limited number of cancer cell lines and can only achieve suboptimal performance when applied to new cell types or patient samples. Here, we have developed a new deep learning framework to address this challenge and demonstrated its potential in personalized drug repurposing using Alzheimer’s disease as a case study.
Collapse
|
85
|
Oh SJ, Lee N, Nam KR, Kang KJ, Han SJ, Lee KC, Lee YJ, Choi JY. Amyloid pathology induces dysfunction of systemic neurotransmission in aged APPswe/PS2 mice. Front Neurosci 2022; 16:930613. [PMID: 35992913 PMCID: PMC9389227 DOI: 10.3389/fnins.2022.930613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/15/2022] [Indexed: 11/21/2022] Open
Abstract
This study aimed to investigate how amyloid pathology affects the functional aspects of neurotransmitter systems in Alzheimer’s disease. APPswe/PS2 mice (21 months of age) and wild-type (WT) mice underwent positron emission tomography (PET) and magnetic resonance spectroscopy (MRS). First, we obtained 18F-FDG and 18F-florbetaben PET scans to evaluate neuronal integrity and amyloid pathology. Second, 18F-FPEB and 18F-FMZ PET data were acquired to assess the excitatory-inhibitory neurotransmission. Third, to monitor the dopamine system, 18F-fallypride PET was performed. Amyloid PET imaging revealed that radioactivity was higher in the AD group than that in the WT group, which was validated by immunohistochemistry. In the cortical and limbic areas, the AD group showed a 25–27% decrease and 14–35% increase in the glutamatergic and GABAergic systems, respectively. The dopaminergic system in the AD group exhibited a 29% decrease in brain uptake compared with that in the WT group. A reduction in glutamate, N-acetylaspartate, and taurine levels was observed in the AD group using MRS. Our results suggest that dysfunction of the neurotransmitter system is associated with AD pathology. Among the systems, the GABAergic system was prominent, implying that the inhibitory neurotransmission system may be the most vulnerable to AD pathology.
Collapse
Affiliation(s)
- Se Jong Oh
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Namhun Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Kyung Rok Nam
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Kyung Jun Kang
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Sang Jin Han
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Kyo Chul Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Yong Jin Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Jae Yong Choi
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul, South Korea
- *Correspondence: Jae Yong Choi,
| |
Collapse
|
86
|
Pan X, Kaminga AC, Chen Y, Liu H, Wen SW, Fang Y, Jia P, Liu A. Auxiliary Screening COVID-19 by Serology. Front Public Health 2022; 10:819841. [PMID: 35983367 PMCID: PMC9380738 DOI: 10.3389/fpubh.2022.819841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background The 2019 novel coronavirus (COVID-19) pandemic remains rampant in many countries/regions. Improving the positive detection rate of COVID-19 infection is an important measure for control and prevention of this pandemic. This meta-analysis aims to systematically summarize the current characteristics of the auxiliary screening methods by serology for COVID-19 infection in real world. Methods Web of Science, Cochrane Library, Embase, PubMed, CNKI, and Wangfang databases were searched for relevant articles published prior to May 1st, 2022. Data on specificity, sensitivity, positive/negative likelihood ratio, area under curve (AUC), and diagnostic odds ratio (dOR) were calculated purposefully. Results Sixty-two studies were included with 35,775 participants in the meta-analysis. Among these studies, the pooled estimates for area under the summary receiver operator characteristic of IgG and IgM to predicting COVID-19 diagnosis were 0.974 and 0.928, respectively. The IgG dOR was 209.78 (95% CI: 106.12 to 414.67). The IgM dOR was 78.17 (95% CI: 36.76 to 166.25). Conclusion Our findings support serum-specific antibody detection may be the main auxiliary screening methods for COVID-19 infection in real world.
Collapse
Affiliation(s)
- Xiongfeng Pan
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Atipatsa C. Kaminga
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
- Department of Mathematics and Statistics, Mzuzu University, Mzuzu, Malawi
| | - Yuyao Chen
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Hongying Liu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Shi Wu Wen
- OMNI Research Group, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Obstetrics and Gynaecology, University of Ottawa Faculty of Medicine, Ottawa, ON, Canada
- School of Epidemiology and Public Health, University of Ottawa Faculty of Medicine, Ottawa, ON, Canada
| | - Yingjing Fang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Peng Jia
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, China
- International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, China
- *Correspondence: Peng Jia
| | - Aizhong Liu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
- Aizhong Liu
| |
Collapse
|
87
|
Tsui KC, Roy J, Chau SC, Wong KH, Shi L, Poon CH, Wang Y, Strekalova T, Aquili L, Chang RCC, Fung ML, Song YQ, Lim LW. Distribution and inter-regional relationship of amyloid-beta plaque deposition in a 5xFAD mouse model of Alzheimer’s disease. Front Aging Neurosci 2022; 14:964336. [PMID: 35966777 PMCID: PMC9371463 DOI: 10.3389/fnagi.2022.964336] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia. Although previous studies have selectively investigated the localization of amyloid-beta (Aβ) deposition in certain brain regions, a comprehensive characterization of the rostro-caudal distribution of Aβ plaques in the brain and their inter-regional correlation remain unexplored. Our results demonstrated remarkable working and spatial memory deficits in 9-month-old 5xFAD mice compared to wildtype mice. High Aβ plaque load was detected in the somatosensory cortex, piriform cortex, thalamus, and dorsal/ventral hippocampus; moderate levels of Aβ plaques were observed in the motor cortex, orbital cortex, visual cortex, and retrosplenial dysgranular cortex; and low levels of Aβ plaques were located in the amygdala, and the cerebellum; but no Aβ plaques were found in the hypothalamus, raphe nuclei, vestibular nucleus, and cuneate nucleus. Interestingly, the deposition of Aβ plaques was positively associated with brain inter-regions including the prefrontal cortex, somatosensory cortex, medial amygdala, thalamus, and the hippocampus. In conclusion, this study provides a comprehensive morphological profile of Aβ deposition in the brain and its inter-regional correlation. This suggests an association between Aβ plaque deposition and specific brain regions in AD pathogenesis.
Collapse
Affiliation(s)
- Ka Chun Tsui
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jaydeep Roy
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Sze Chun Chau
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kah Hui Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Lei Shi
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Chi Him Poon
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yingyi Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Tatyana Strekalova
- Department of Neuroscience, Maastricht University, Maastricht, Netherlands
- Department of Normal Physiology and Laboratory of Psychiatric Neurobiology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Luca Aquili
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Discipline of Psychology, College of Science, Health, Engineering, and Education, Murdoch University, Perth, WA, Australia
| | - Raymond Chuen-Chung Chang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Man-Lung Fung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- *Correspondence: Man-Lung Fung,
| | - You-qiang Song
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- You-qiang Song,
| | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Lee Wei Lim,
| |
Collapse
|
88
|
Experimental Studies Indicate That ST-2223, the Antagonist of Histamine H3 and Dopamine D2/D3 Receptors, Restores Social Deficits and Neurotransmission Dysregulation in Mouse Model of Autism. Pharmaceuticals (Basel) 2022; 15:ph15080929. [PMID: 36015079 PMCID: PMC9414676 DOI: 10.3390/ph15080929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/07/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
Altered regulation of neurotransmitters may lead to many pathophysiological changes in brain disorders including autism spectrum disorder (ASD). Given the fact that there are no FDA-approved effective treatments for the social deficits in ASD, the present study determined the effects of chronic systemic treatment of the novel multiple-active H3R/D2R/D3R receptor antagonist ST-2223 on ASD-related social deficits in a male Black and Tan Brachyury (BTBR) mice. ST-2223 (2.5, 5, and 10 mg/kg, i.p.) significantly and dose-dependently mitigated social deficits and disturbed anxiety levels of BTBR mice (p < 0.05) in comparison to the effects of aripiprazole (1 mg/kg, i.p.). Moreover, levels of monoaminergic neurotransmitters quantified by LC-MS/MS in four brain regions including the prefrontal cortex, cerebellum, striatum, and hippocampus unveiled significant elevation of histamine (HA) in the cerebellum and striatum; dopamine (DA) in the prefrontal cortex and striatum; as well as acetylcholine (ACh) in the prefrontal cortex, striatum, and hippocampus following ST-2223 (5 mg/kg) administration (all p < 0.05). These in vivo findings demonstrate the mitigating effects of a multiple-active H3R/D2R/D3R antagonist on social deficits of assessed BTBR mice, signifying its pharmacological potential to rescue core ASD-related behaviors and altered monoaminergic neurotransmitters. Further studies on neurochemical alterations in ASD are crucial to elucidate the early neurodevelopmental variations behind the core symptoms and heterogeneity of ASD, leading to new approaches for the future therapeutic management of ASD.
Collapse
|
89
|
Wang ZX, Lian WW, He J, He XL, Wang YM, Pan CH, Li M, Zhang WK, Liu LQ, Xu JK. Cornuside ameliorates cognitive impairments in scopolamine induced AD mice: Involvement of neurotransmitter and oxidative stress. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115252. [PMID: 35405255 DOI: 10.1016/j.jep.2022.115252] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/11/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cornus officinalis Sieb. et Zucc., traditional Chinese medicine, has been widely used in the treatment of dementia. Cornel iridoid glycosides of Cornus officinalis is therapeutic to Alzheimer's disease (AD), while its pharmacodynamic material basis is not clear. Cornuside, an iridoid glycoside extracted from of Cornus officinalis Sieb. et Zucc, might be a potential anti-AD candidate. AIM OF THE STUDY Cornuside was evaluated for its effect on scopolamine induced AD mice, and its action mechanisms were explored. MATERIALS AND METHODS ICR mice were administered with 1 mg/kg scopolamine intraperitoneally to induce amnesia. The therapeutic effect of cornuside of cognitive function was evaluated via series of behavioral tests, including Morris water maze test, step-through test and step-down test. In addition, specific enzyme reaction tests were used to detect the content of acetylcholine (ACh) and malondialdehyde (MDA), as well as the activities of acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), choline acetyltransferase (ChAT), superoxide dismutase (SOD), catalase (CAT), monoamine oxidase (MAO) in the brain. The levels of monoamine neurotransmitters were detected by high performance liquid chromatography-electrochemical detection (HPLC-ECD). RESULTS Cornuside ameliorated the spatial memory impairment in Morris water maze test and cognitive disruption in step-through and step-down test. Furthermore, cornuside improved the level of ACh by reducing the activities of AChE and BuChE, and increasing the activity of ChAT in hippocampus. Cornuside also increased the levels of monoamine neurotransmitters by inhibiting MAO activity in hippocampus and cortex. In addition, cornuside attenuated MDA by enhancing the activities of SOD and CAT in hippocampus and cortex. CONCLUSION Cornuside improved cognitive dysfunction induced by scopolamine in behavioral tests. The mechanisms of cornuside were further investigated from the aspects of neurotransmitters and oxidative stress. Cornuside could inhibit oxidative stress and neurotransmitter hydrolases, increase ACh and monoamine neurotransmitters, which finally contributed to its therapeutic effect on scopolamine induced amnesia.
Collapse
Affiliation(s)
- Ze-Xing Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Wen-Wen Lian
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Jun He
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Xiao-Li He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Yu-Ming Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Chen-Hao Pan
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Mei Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Wei-Ku Zhang
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
| | - Lian-Qi Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.
| | - Jie-Kun Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.
| |
Collapse
|
90
|
Identification of Novel Dopamine D2 Receptor Ligands—A Combined In Silico/In Vitro Approach. Molecules 2022; 27:molecules27144435. [PMID: 35889317 PMCID: PMC9318694 DOI: 10.3390/molecules27144435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Diseases of the central nervous system are an alarming global problem showing an increasing prevalence. Dopamine receptor D2 (D2R) has been shown to be involved in central nervous system diseases. While different D2R-targeting drugs have been approved by the FDA, they all suffer from major drawbacks due to promiscuous receptor activity leading to adverse effects. Increasing the number of potential D2R-targeting drug candidates bears the possibility of discovering molecules with less severe side-effect profiles. In dire need of novel D2R ligands for drug development, combined in silico/in vitro approaches have been shown to be efficient strategies. In this study, in silico pharmacophore models were generated utilizing both ligand- and structure-based approaches. Subsequently, different databases were screened for novel D2R ligands. Selected virtual hits were investigated in vitro, quantifying their binding affinity towards D2R. This workflow successfully identified six novel D2R ligands exerting micro- to nanomolar (most active compound KI = 4.1 nM) activities. Thus, the four pharmacophore models showed prospective true-positive hit rates in between 4.5% and 12%. The developed workflow and identified ligands could aid in developing novel drug candidates for D2R-associated pathologies.
Collapse
|
91
|
Explore the Therapeutic Composition and Mechanism of Schisandra chinensis-Acorus tatarinowii Schott on Alzheimer’s Disease by Using an Integrated Approach on Chemical Profile, Network Pharmacology, and UPLC-QTOF/MS-Based Metabolomics Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6362617. [PMID: 35860432 PMCID: PMC9293517 DOI: 10.1155/2022/6362617] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022]
Abstract
Background. Alzheimer’s disease places a heavy economic burden to healthcare systems around the world. However, the effective treatments are still lacking. Traditional Chinese medicines (TCM) of Schisandra chinensis and Acorus tatarinowii Schott have the pharmacological effects of sedation and neuroprotection and have been clinically proven to be effective in the treatment of AD. However, their main anti-Alzheimer’s compounds and functional mechanisms remain unclear. Purpose. To elucidate the main therapeutic components and possible mechanisms of Sc-At in AD using a comprehensive strategy combining metabolomics and network pharmacology. Methods. First, the UPLC-QTOF/MS method was used to identify the main chemical constituents of Schisandra chinensis and Acorus tatarinowii Schott alcohol extracts in vitro and in vivo. Secondly, the theoretical active ingredients, targets, and pathways of Sc-At for AD treatment were predicted by network pharmacology methods. Finally, plasma metabolomics were detected by UPLC-QTOF/MS to analyze the differential metabolites and metabolic pathways related to Sc-At. Based on the analyses above, the anti-AD mechanism of Sc-At was explored. Results. A total of 95 chemical components were identified in Sc-At extracts in vitro, and 34 prototype drug components were detected in rat plasma; network pharmacology screening identified 14 drug components in line with the principle of Lipinski, of which 10 were present for in vitro drug composition analysis. For these 10 components, 58 AD disease targets were predicted, and 85 AD-related KEGG signaling pathways were enriched. Six core biomarkers of Sc-At (cis-8,11,14,17-eicosatetraenoic acid, prostaglandin H2, sphingosine 1-phosphate, enol-phenylpyruvate, 3-methoxytyrosine, and pristanoyl-CoA) were regulated to a normal state during the treatment of AD. Conclusion. The mechanism of Sc-At for the treatment of AD can be achieved by the effect of the 10 compounds of Sc-At on TNF, MAPK8, MAPK14, PTGS1, and other targets, thereby affecting arachidonic acid metabolism, neurotransmitters, and sphingolipid metabolism.
Collapse
|
92
|
Sun W, Ueno D, Narumoto J. Brain Neural Underpinnings of Interoception and Decision-Making in Alzheimer's Disease: A Narrative Review. Front Neurosci 2022; 16:946136. [PMID: 35898412 PMCID: PMC9309692 DOI: 10.3389/fnins.2022.946136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
This study reviews recent literature on interoception directing decision-making in Alzheimer's disease (AD). According to the somatic marker hypothesis, signals from the internal body direct decision-making and involve the ventromedial prefrontal cortex (vmPFC). After reviewing relevant studies, we summarize the brain areas related to interoception and decision-making (e.g., vmPFC, hippocampus, amygdala, hypothalamus, anterior cingulate cortex, and insular cortex) and their roles in and relationships with AD pathology. Moreover, we outline the relationship among interoception, the autonomic nervous system, endocrine system, and AD pathology. We discuss that impaired interoception leads to decreased decision-making ability in people with AD from the perspective of brain neural underpinning. Additionally, we emphasize that anosognosia or reduced self-awareness and metacognition in AD are remarkably congruent with the malfunction of the autonomic nervous system regulating the interoceptive network. Furthermore, we propose that impaired interoception may contribute to a loss in the decision-making ability of patients with AD. However, there still exist empirical challenges in confirming this proposal. First, there has been no standardization for measuring or improving interoception to enhance decision-making ability in patients with AD. Future studies are required to better understand how AD pathology induces impairments in interoception and decision-making.
Collapse
|
93
|
Biological Potential, Gastrointestinal Digestion, Absorption, and Bioavailability of Algae-Derived Compounds with Neuroprotective Activity: A Comprehensive Review. Mar Drugs 2022; 20:md20060362. [PMID: 35736165 PMCID: PMC9227170 DOI: 10.3390/md20060362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Currently, there is no known cure for neurodegenerative disease. However, the available therapies aim to manage some of the symptoms of the disease. Human neurodegenerative diseases are a heterogeneous group of illnesses characterized by progressive loss of neuronal cells and nervous system dysfunction related to several mechanisms such as protein aggregation, neuroinflammation, oxidative stress, and neurotransmission dysfunction. Neuroprotective compounds are essential in the prevention and management of neurodegenerative diseases. This review will focus on the neurodegeneration mechanisms and the compounds (proteins, polyunsaturated fatty acids (PUFAs), polysaccharides, carotenoids, phycobiliproteins, phenolic compounds, among others) present in seaweeds that have shown in vivo and in vitro neuroprotective activity. Additionally, it will cover the recent findings on the neuroprotective effects of bioactive compounds from macroalgae, with a focus on their biological potential and possible mechanism of action, including microbiota modulation. Furthermore, gastrointestinal digestion, absorption, and bioavailability will be discussed. Moreover, the clinical trials using seaweed-based drugs or extracts to treat neurodegenerative disorders will be presented, showing the real potential and limitations that a specific metabolite or extract may have as a new therapeutic agent considering the recent approval of a seaweed-based drug to treat Alzheimer’s disease.
Collapse
|
94
|
Zong B, Yu F, Zhang X, Zhao W, Sun P, Li S, Li L. Understanding How Physical Exercise Improves Alzheimer’s Disease: Cholinergic and Monoaminergic Systems. Front Aging Neurosci 2022; 14:869507. [PMID: 35663578 PMCID: PMC9158463 DOI: 10.3389/fnagi.2022.869507] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/14/2022] [Indexed: 01/11/2023] Open
Abstract
Alzheimer’s disease (AD) is an age-related neurodegenerative disorder, characterized by the accumulation of proteinaceous aggregates and neurofibrillary lesions composed of β-amyloid (Aβ) peptide and hyperphosphorylated microtubule-associated protein tau, respectively. It has long been known that dysregulation of cholinergic and monoaminergic (i.e., dopaminergic, serotoninergic, and noradrenergic) systems is involved in the pathogenesis of AD. Abnormalities in neuronal activity, neurotransmitter signaling input, and receptor function exaggerate Aβ deposition and tau hyperphosphorylation. Maintenance of normal neurotransmission is essential to halt AD progression. Most neurotransmitters and neurotransmitter-related drugs modulate the pathology of AD and improve cognitive function through G protein-coupled receptors (GPCRs). Exercise therapies provide an important alternative or adjunctive intervention for AD. Cumulative evidence indicates that exercise can prevent multiple pathological features found in AD and improve cognitive function through delaying the degeneration of cholinergic and monoaminergic neurons; increasing levels of acetylcholine, norepinephrine, serotonin, and dopamine; and modulating the activity of certain neurotransmitter-related GPCRs. Emerging insights into the mechanistic links among exercise, the neurotransmitter system, and AD highlight the potential of this intervention as a therapeutic approach for AD.
Collapse
Affiliation(s)
- Boyi Zong
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Fengzhi Yu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Xiaoyou Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Wenrui Zhao
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Peng Sun
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Shichang Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Lin Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
- *Correspondence: Lin Li,
| |
Collapse
|
95
|
Zhu A, Wang T, Jiang Y, Hu S, Tang W, Liu X, Guo X, Ying Y, Wu Y, Wen Y, Yang H. SERS determination of dopamine using metal-organic frameworks decorated with Ag/Au noble metal nanoparticle composite after azo derivatization with p-aminothiophenol. Mikrochim Acta 2022; 189:207. [PMID: 35501414 DOI: 10.1007/s00604-022-05292-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/21/2022] [Indexed: 11/27/2022]
Abstract
A specific surface-enhanced Raman scattering (SERS) assay for dopamine (DA) based on an azo derivatization reaction is proposed for the first time by preparation of p-aminothiophenol (PATP)-modified composite SERS substrate, composed of metal-organic framework (MIL-101) decorated with Au and Ag nanoparticles. As the result, the SERS method for detection of the azo reaction between PATP and DA exhibits superior sensitivity, selectivity, and stability. A reasonable linearity in the range 10-6 to 10-10 mol∙L-1 is achieved, and the limit of detection is 1.2 × 10-12 mol∙L-1. The reactive SERS assay is free from interference in complex physiological fluid. The feasibility of the proposed SERS method for the detection of DA levels in fetal bovine serum (FBS) samples and human serum samples is validated by HPLC-MS methods, displaying promising application potential in early disease diagnosis.
Collapse
Affiliation(s)
- Anni Zhu
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Tiansheng Wang
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Yuning Jiang
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Sen Hu
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Wanxin Tang
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China.
| | - Xinling Liu
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Xiaoyu Guo
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Ye Ying
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Yiping Wu
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Ying Wen
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Haifeng Yang
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
96
|
Guzmán-Ramos K, Osorio-Gómez D, Bermúdez-Rattoni F. Cognitive impairment in alzheimer’s and metabolic diseases: A catecholaminergic hypothesis. Neuroscience 2022; 497:308-323. [DOI: 10.1016/j.neuroscience.2022.05.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 12/16/2022]
|
97
|
Guo C, Wen D, Zhang Y, Mustaklem R, Mustaklem B, Zhou M, Ma T, Ma YY. Amyloid-β oligomers in the nucleus accumbens decrease motivation via insertion of calcium-permeable AMPA receptors. Mol Psychiatry 2022; 27:2146-2157. [PMID: 35105968 PMCID: PMC9133055 DOI: 10.1038/s41380-022-01459-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/31/2021] [Accepted: 01/18/2022] [Indexed: 12/17/2022]
Abstract
It is essential to identify the neuronal mechanisms of Alzheimer's Disease (AD)-associated neuropsychiatric symptoms, e.g., apathy, before improving the life quality of AD patients. Here, we focused on the nucleus accumbens (NAc), a critical brain region processing motivation, also known to display AD-associated pathological changes in human cases. We found that the synaptic calcium permeable (CP)-AMPA receptors (AMPARs), which are normally absent in the NAc, can be revealed by acute exposure to Aβ oligomers (AβOs), and play a critical role in the emergence of synaptic loss and motivation deficits. Blockade of NAc CP-AMPARs can effectively prevent AβO-induced downsizing and pruning of spines and silencing of excitatory synaptic transmission. We conclude that AβO-triggered synaptic insertion of CP-AMPARs is a key mechanism mediating synaptic degeneration in AD, and preserving synaptic integrity may prevent or delay the onset of AD-associated psychiatric symptoms.
Collapse
Affiliation(s)
- Changyong Guo
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Di Wen
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yihong Zhang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Richie Mustaklem
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Basil Mustaklem
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Miou Zhou
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Tao Ma
- Department of Internal Medicine-Gerontology and Geriatric Medicine; Department of Physiology and Pharmacology; Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Yao-Ying Ma
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
98
|
Haseeb M, Javaid N, Yasmeen F, Jeong U, Han JH, Yoon J, Seo JY, Heo JK, Shin HC, Kim MS, Kim W, Choi S. Novel Small-Molecule Inhibitor of NLRP3 Inflammasome Reverses Cognitive Impairment in an Alzheimer's Disease Model. ACS Chem Neurosci 2022; 13:818-833. [PMID: 35196855 DOI: 10.1021/acschemneuro.1c00831] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aberrant activation of the Nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome plays an essential role in multiple diseases, including Alzheimer's disease (AD) and psoriasis. We report a novel small-molecule inhibitor, NLRP3-inhibitory compound 7 (NIC7), and its derivative, which inhibit NLRP3-mediated activation of caspase 1 along with the secretion of interleukin (IL)-1β, IL-18, and lactate dehydrogenase. We examined the therapeutic potential of NIC7 in a disease model of AD by analyzing its effect on cognitive impairment as well as the expression of dopamine receptors and neuronal markers. NIC7 significantly reversed the associated disease symptoms in the mice model. On the other hand, NIC7 did not reverse the disease symptoms in the imiquimod (IMQ)-induced disease model of psoriasis. This indicates that IMQ-based psoriasis is independent of NLRP3. Overall, NIC7 and its derivative have therapeutic prospects to treat AD or NLRP3-mediated diseases.
Collapse
Affiliation(s)
- Muhammad Haseeb
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Korea
| | - Nasir Javaid
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Farzana Yasmeen
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Uisuk Jeong
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Korea
| | - Ji Hye Han
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Juhwan Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Jee Yeon Seo
- Whan In Pharmaceutical Co., Ltd., 11, Beobwon-ro 6-gil, Songpa-gu, Seoul 05855, Korea
| | - Jae Kyung Heo
- Whan In Pharmaceutical Co., Ltd., 11, Beobwon-ro 6-gil, Songpa-gu, Seoul 05855, Korea
| | - Ho Chul Shin
- Whan In Pharmaceutical Co., Ltd., 11, Beobwon-ro 6-gil, Songpa-gu, Seoul 05855, Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Wook Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Korea
| |
Collapse
|
99
|
Pan X, Kaminga AC, Kinra S, Wen SW, Liu H, Tan X, Liu A. Chemokines in Type 1 Diabetes Mellitus. Front Immunol 2022; 12:690082. [PMID: 35242125 PMCID: PMC8886728 DOI: 10.3389/fimmu.2021.690082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 12/02/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Previous studies suggested that chemokines may play an important role in the formation and mediation of immune microenvironments of patients affected by Type 1 Diabetes Mellitus (T1DM). The aim of this study was to summarise available evidence on the associations of different chemokines with T1DM. METHODS Following PRISMA guidelines, we systematically searched in PubMed, Web of Science, Embase and Cochrane Library databases for studies on the associations of different chemokines with T1DM. The effect size of the associations were the standardized mean differences (SMDs) with corresponding 95% confidence intervals (CIs) of the chemokines concentrations, calculated as group differences between the T1DM patients and the controls. These were summarized using network meta-analysis, which was also used to rank the chemokines by surface under cumulative ranking curve (SUCRA) probabilities. RESULTS A total of 32 original studies on the association of different chemokines with T1DM were identified. Fifteen different chemokine nodes were compared between 15,683 T1DM patients and 15,128 controls, and 6 different chemokine receptor nodes were compared between 463 T1DM patients and 460 controls. Circulating samples (blood, serum, and plasma) showed that concentrations of CCL5 and CXCL1 were significantly higher in the T1DM patients than in the controls (SMD of 3.13 and 1.50, respectively). On the other hand, no significant difference in chemokine receptors between T1DM and controls was observed. SUCRA probabilities showed that circulating CCL5 had the highest rank in T1DM among all the chemokines investigated. CONCLUSION The results suggest that circulating CCL5 and CXCL1 may be promising novel biomarkers of T1DM. Future research should attempt to replicate these findings in longitudinal studies and explore potential mechanisms underlying this association.
Collapse
Affiliation(s)
- Xiongfeng Pan
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Atipatsa C. Kaminga
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
- Department of Mathematics and Statistics, Mzuzu University, Mzuzu, Malawi
| | - Sanjay Kinra
- Departmentof Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Shi Wu Wen
- Ottawa Hospital Research Institute (OMNI) Research Group, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Obstetrics and Gynaecology, University of Ottawa Faculty of Medicine, Ottawa, ON, Canada
- School of Epidemiology and Public Health, University of Ottawa Faculty of Medicine, Ottawa, ON, Canada
| | - Hongying Liu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xinrui Tan
- Department of Pediatrics, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Aizhong Liu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
100
|
Role of Stress-Related Dopamine Transmission in Building and Maintaining a Protective Cognitive Reserve. Brain Sci 2022; 12:brainsci12020246. [PMID: 35204009 PMCID: PMC8869980 DOI: 10.3390/brainsci12020246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023] Open
Abstract
This short review presents the hypothesis that stress-dependent dopamine (DA) transmission contributes to developing and maintaining the brain network supporting a cognitive reserve. Research has shown that people with a greater cognitive reserve are better able to avoid symptoms of degenerative brain changes. The paper will review evidence that: (1) successful adaptation to stressors involves development and stabilization of effective but flexible coping strategies; (2) this process requires dynamic reorganization of functional networks in the adult brain; (3) DA transmission is amongst the principal mediators of this process; (4) age- and disease-dependent cognitive impairment is associated with dysfunctional connectivity both between and within these same networks as well as with reduced DA transmission.
Collapse
|