51
|
Abstract
Individuals with left unilateral spatial neglect (USN) following a right hemisphere lesion show difficulty in orienting their attention toward stimuli presented on the left. In normal cognition, others' gaze direction and a pointing arrow naturally guide visual attention. Here, we explore a method to identify patients who may benefit from these skills as a base for compensation during rehabilitation. We tested gaze and arrow cueing effects in 26 healthy participants and in 13 patients with USN. Our data show that brain injuries causing USN do not affect gaze and arrow cueing in a consistent manner from one patient to another.
Collapse
Affiliation(s)
- Rindra Narison
- Laboratory Cognitive functioning and dysfunctioning (DysCo), University Paris Nanterre, Nanterre, France.,Neurological rehabilitation unit, Rehabilitation Center of "Le Bourbonnais" UGECAM BFC, Bourbon Lancy, France
| | - Marie De Montalembert
- Laboratory Cognitive functioning and dysfunctioning (DysCo), University Paris Nanterre, Nanterre, France
| | - Laurence Conty
- Laboratory Cognitive functioning and dysfunctioning (DysCo), University Paris Nanterre, Nanterre, France
| |
Collapse
|
52
|
Pedrazzini E, Ptak R. The neuroanatomy of spatial awareness: a large-scale region-of-interest and voxel-based anatomical study. Brain Imaging Behav 2020; 14:615-626. [DOI: 10.1007/s11682-019-00213-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
53
|
Goedert KM, Chen P, Foundas AL, Barrett A. Frontal lesions predict response to prism adaptation treatment in spatial neglect: A randomised controlled study. Neuropsychol Rehabil 2020; 30:32-53. [PMID: 29558241 PMCID: PMC6148387 DOI: 10.1080/09602011.2018.1448287] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 02/28/2018] [Indexed: 10/17/2022]
Abstract
Spatial neglect commonly follows right hemisphere stroke. It is defined as impaired contralesional stimulus detection, response, or action, causing functional disability. While prism adaptation treatment is highly promising to promote functional recovery of spatial neglect, not all individuals respond. Consistent with a primary effect of prism adaptation on spatial movements, we previously demonstrated that functional improvement after prism adaptation treatment is linked to frontal lobe lesions. However, that study was a treatment-only study with no randomised control group. The current study randomised individuals with spatial neglect to receive 10 days of prism adaptation treatment or to receive only standard care (control group). Replicating our earlier results, we found that the presence of frontal lesions moderated response to prism adaptation treatment: among prism-treated patients, only those with frontal lesions demonstrated functional improvements in their neglect symptoms. Conversely, among individuals in the standard care control group, the presence of frontal lesions did not modify recovery. These results suggest that further research is needed on how frontal lesions may predict response to prism adaptation treatment. Additionally, the results help elucidate the neural network involved in spatial movement and could be used to aid decisions about treatment.
Collapse
Affiliation(s)
- Kelly M. Goedert
- Department of Psychology, Seton Hall University, 400 South Orange Ave., South Orange, NJ 07079, phone: 1-973-275-2703;
| | - Peii Chen
- Stroke Rehabilitation Research, Kessler Foundation, Department of Physical Medicine and Rehabilitation, Rutgers- New Jersey Medical School, 1199 Pleasant Valley Way, West Orange, NJ 07052, phone: 1-973-324-2574;
| | - Anne L. Foundas
- Department of Psychology, Tulane University, 2007 Percival Stern Hall, New Orleans, Louisiana 70118, phone: (504) 865-5331,
| | - A.M. Barrett
- Stroke Rehabilitation Research, Kessler Foundation, Department of Physical Medicine and Rehabilitation, Rutgers-New Jersey Medical School, Kessler Institute for Rehabilitation, 1199 Pleasant Valley Way, West Orange, NJ 07052, phone: 1-973-324-3569;
| |
Collapse
|
54
|
Bartolomeo P, Seidel Malkinson T. Hemispheric lateralization of attention processes in the human brain. Curr Opin Psychol 2019; 29:90-96. [DOI: 10.1016/j.copsyc.2018.12.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/21/2018] [Accepted: 12/29/2018] [Indexed: 01/06/2023]
|
55
|
Pierce JE, Saj A, Vuilleumier P. Differential parietal activations for spatial remapping and saccadic control in a visual memory task. Neuropsychologia 2019; 131:129-138. [DOI: 10.1016/j.neuropsychologia.2019.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/13/2019] [Accepted: 05/10/2019] [Indexed: 10/26/2022]
|
56
|
Carlei C, Kerzel D. Looking up improves performance in verbal tasks. Laterality 2019; 25:198-214. [PMID: 31340726 DOI: 10.1080/1357650x.2019.1646755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Earlier research suggested that gaze direction has an impact on cognitive processing. It is likely that horizontal gaze direction increases activation in specific areas of the contralateral cerebral hemisphere. Consistent with the lateralization of memory functions, we previously showed that shifting gaze to the left improves visuo-spatial short-term memory. In the current study, we investigated the effect of unilateral gaze on verbal processing. We expected better performance with gaze directed to the right because language is lateralized in the left hemisphere. Also, an advantage of gaze directed upward was expected because local processing and object recognition are facilitated in the upper visual field. Observers directed their gaze at one of the corners of the computer screen while they performed lexical decision, grammatical gender and semantic discrimination tasks. Contrary to expectations, we did not observe performance differences between gaze directed to the left or right, which is consistent with the inconsistent literature on horizontal asymmetries with verbal tasks. However, RTs were shorter when observers looked at words in the upper compared to the lower part of the screen, suggesting that looking upwards enhances verbal processing.
Collapse
Affiliation(s)
- Christophe Carlei
- Faculté de Psychologie et des Sciences de l'Éducation, Université de Genève, Genève, Switzerland
| | - Dirk Kerzel
- Faculté de Psychologie et des Sciences de l'Éducation, Université de Genève, Genève, Switzerland
| |
Collapse
|
57
|
Gajardo-Vidal A, Lorca-Puls DL, Hope TMH, Parker Jones O, Seghier ML, Prejawa S, Crinion JT, Leff AP, Green DW, Price CJ. How right hemisphere damage after stroke can impair speech comprehension. Brain 2019; 141:3389-3404. [PMID: 30418586 PMCID: PMC6262220 DOI: 10.1093/brain/awy270] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 09/12/2018] [Indexed: 12/17/2022] Open
Abstract
Acquired language disorders after stroke are strongly associated with left hemisphere damage. When language difficulties are observed in the context of right hemisphere strokes, patients are usually considered to have atypical functional anatomy. By systematically integrating behavioural and lesion data from brain damaged patients with functional MRI data from neurologically normal participants, we investigated when and why right hemisphere strokes cause language disorders. Experiment 1 studied right-handed patients with unilateral strokes that damaged the right (n = 109) or left (n = 369) hemispheres. The most frequently impaired language task was: auditory sentence-to-picture matching after right hemisphere strokes; and spoken picture description after left hemisphere strokes. For those with auditory sentence-to-picture matching impairments after right hemisphere strokes, the majority (n = 9) had normal performance on tests of perceptual (visual or auditory) and linguistic (semantic, phonological or syntactic) processing. Experiment 2 found that these nine patients had significantly more damage to dorsal parts of the superior longitudinal fasciculus and the right inferior frontal sulcus compared to 75 other patients who also had right hemisphere strokes but were not impaired on the auditory sentence-to-picture matching task. Damage to these right hemisphere regions caused long-term speech comprehension difficulties in 67% of patients. Experiments 3 and 4 used functional MRI in two groups of 25 neurologically normal individuals to show that within the regions identified by Experiment 2, the right inferior frontal sulcus was normally activated by (i) auditory sentence-to-picture matching; and (ii) one-back matching when the demands on linguistic and non-linguistic working memory were high. Together, these experiments demonstrate that the right inferior frontal cortex contributes to linguistic and non-linguistic working memory capacity (executive function) that is needed for normal speech comprehension. Our results link previously unrelated literatures on the role of the right inferior frontal cortex in executive processing and the role of executive processing in sentence comprehension; which in turn helps to explain why right inferior frontal activity has previously been reported to increase during recovery of language function after left hemisphere stroke. The clinical relevance of our findings is that the detrimental effect of right hemisphere strokes on language is (i) much greater than expected; (ii) frequently observed after damage to the right inferior frontal sulcus; (iii) task dependent; (iv) different to the type of impairments observed after left hemisphere strokes; and (v) can result in long-lasting deficits that are (vi) not the consequence of atypical language lateralization.
Collapse
Affiliation(s)
- Andrea Gajardo-Vidal
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK.,Faculty of Health Sciences, Universidad del Desarrollo, Concepcion, Chile
| | - Diego L Lorca-Puls
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Thomas M H Hope
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | | | - Mohamed L Seghier
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK.,Cognitive Neuroimaging Unit, Emirates College for Advanced Education, Abu Dhabi, UAE
| | - Susan Prejawa
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jennifer T Crinion
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Alex P Leff
- Institute of Cognitive Neuroscience, University College London, London, UK.,Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, UK
| | - David W Green
- Experimental Psychology, Faculty of Brain Sciences, University College London, London, UK
| | - Cathy J Price
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
58
|
Wiesen D, Sperber C, Yourganov G, Rorden C, Karnath HO. Using machine learning-based lesion behavior mapping to identify anatomical networks of cognitive dysfunction: Spatial neglect and attention. Neuroimage 2019; 201:116000. [PMID: 31295567 DOI: 10.1016/j.neuroimage.2019.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022] Open
Abstract
Previous lesion behavior studies primarily used univariate lesion behavior mapping techniques to map the anatomical basis of spatial neglect after right brain damage. These studies led to inconsistent results and lively controversies. Given these inconsistencies, the idea of a wide-spread network that might underlie spatial orientation and neglect has been pushed forward. In such case, univariate lesion behavior mapping methods might have been inherently limited in detecting the presumed network due to limited statistical power. By comparing various univariate analyses with multivariate lesion-mapping based on support vector regression, we aimed to validate the network hypothesis directly in a large sample of 203 newly recruited right brain damaged patients. If the exact same correction factors and parameter combinations (FDR correction and dTLVC for lesion size control) were used, both univariate as well as multivariate approaches uncovered the same complex network pattern underlying spatial neglect. At the cortical level, lesion location dominantly affected the temporal cortex and its borders into inferior parietal and occipital cortices. Beyond, frontal and subcortical gray matter regions as well as white matter tracts connecting these regions were affected. Our findings underline the importance of a right network in spatial exploration and attention and specifically in the emergence of the core symptoms of spatial neglect.
Collapse
Affiliation(s)
- Daniel Wiesen
- Center of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, 72076, Germany
| | - Christoph Sperber
- Center of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, 72076, Germany
| | - Grigori Yourganov
- Department of Psychology, University of South Carolina, Columbia, 29208, USA
| | - Christopher Rorden
- Department of Psychology, University of South Carolina, Columbia, 29208, USA
| | - Hans-Otto Karnath
- Center of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, 72076, Germany; Department of Psychology, University of South Carolina, Columbia, 29208, USA.
| |
Collapse
|
59
|
Kazumata K, Tha KK, Tokairin K, Ito M, Uchino H, Kawabori M, Sugiyama T. Brain Structure, Connectivity, and Cognitive Changes Following Revascularization Surgery in Adult Moyamoya Disease. Neurosurgery 2019; 85:E943-E952. [DOI: 10.1093/neuros/nyz176] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/23/2019] [Indexed: 11/13/2022] Open
Abstract
AbstractBACKGROUNDThe effect of the combined direct/indirect revascularization surgery in Moyamoya disease has not been evaluated sufficiently with regard to cognitive function, brain microstructure, and connectivity.OBJECTIVETo investigate structural and functional changes following revascularization surgery in patients with moyamoya disease (MMD) through a combined analysis of brain morphology, microstructure, connectivity, and neurobehavioral data.METHODSNeurobehavioral and neuroimaging examinations were performed in 25 adults with MMD prior to and >12 mo after revascularization surgery. Cognitive function was investigated using the Wechsler Adult Intelligence Scale-III, Trail-Making Test, Wisconsin Card Sorting Test, Continuous Performance Test, Stroop test, and Wechsler Memory Scale. We assessed white matter integrity using diffusion tensor imaging, brain morphometry using magnetization-prepared rapid gradient-echo sequences, and brain connectivity using resting-state functional magnetic resonance imaging (MRI).RESULTSCognitive examinations revealed significant changes in the full-scale intelligence quotient (IQ), performance IQ (PIQ), perceptual organization (PO), processing speed, and Stroop test scores after surgery (P < .05). Enlargement of the lateral ventricle, volume reductions in the corpus callosum and subcortical nuclei, and cortical thinning in the prefrontal cortex were also observed (P < .05). Fractional anisotropy in the white matter tracts, including the superior longitudinal fasciculus, increased 2 to 4 yr after surgery, relative to that observed in the presurgical state (P < .05). Resting-state brain connectivity was increased predominantly in the fronto-cerebellar circuit and was positively correlated with improvements in PIQ and PO (P < .05).CONCLUSIONRevascularization surgery may improve processing speed and attention in adult patients with MMD. Further, multimodal MRI may be useful for detecting subtle postsurgical brain structural changes, reorganization of white matter tracts, and brain connectivity alterations.
Collapse
Affiliation(s)
- Ken Kazumata
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Japan
| | - Khin Khin Tha
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Japan
| | - Kikutaro Tokairin
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Japan
| | - Masaki Ito
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Japan
| | - Haruto Uchino
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Japan
| | - Masahito Kawabori
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Japan
| | - Taku Sugiyama
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Japan
| |
Collapse
|
60
|
Colás I, Chica AB, Ródenas E, Busquier H, Olivares G, Triviño M. Conscious perception in patients with prefrontal damage. Neuropsychologia 2019; 129:284-293. [DOI: 10.1016/j.neuropsychologia.2019.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/25/2019] [Accepted: 03/06/2019] [Indexed: 11/24/2022]
|
61
|
Martín-Arévalo E, Lupiáñez J, Narganes-Pineda C, Marino G, Colás I, Chica AB. The causal role of the left parietal lobe in facilitation and inhibition of return. Cortex 2019; 117:311-322. [PMID: 31185374 DOI: 10.1016/j.cortex.2019.04.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/12/2019] [Accepted: 04/30/2019] [Indexed: 11/26/2022]
Abstract
Following non-informative peripheral cues, responses are facilitated at the cued compared to the uncued location at short cue-target intervals. This effect reverses at longer intervals, giving rise to Inhibition of Return (IOR). The integration-segregation hypothesis (Lupiáñez, 2010) suggests that peripheral cues always produce an onset-detection cost regardless the behavioral cueing effect that is measured - either facilitation or IOR. In the present study, we used transcranial magnetic stimulation (TMS) to investigate the causal contribution of this detection cost to performance. We used a cueing paradigm with a target discrimination task that was preceded by a non-informative peripheral cue. The presence-absence of a central intervening event was manipulated. Online TMS to the left superior parietal lobe (compared to an active vertex stimulation) lead to an overall more positive effect (faster responses for cued as compared to uncued trials), by putatively impairing the detection cost contribution to performance. The data revealed a strong association between overall RT and the TMS effect, and also between overall RT and the integrity of the first branch of the left superior longitudinal fascicule. These results have critical implications not only for the open debate about the mechanism/s underlying spatial orienting effects, but also for the growing literature demonstrating that white matter connectivity is crucial for explaining inter-individual behavioral variability.
Collapse
Affiliation(s)
- E Martín-Arévalo
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Spain.
| | - J Lupiáñez
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Spain
| | - C Narganes-Pineda
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Spain
| | - G Marino
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Spain
| | - I Colás
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Spain
| | - Ana B Chica
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Spain
| |
Collapse
|
62
|
Wasserman LI, Cherednikova TV, Wasserman EL, Wasserman MV, Shchelkova OY, Solovyova EV. [Psychological assessment of visual hemispatial neglect: standardization and approbation of the modified digit cancellation test]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 118:45-51. [PMID: 29560941 DOI: 10.17116/jnevro20181182145-51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To study the phenomena of visual-hemispatial neglect in healthy people and patients with brain diseases of different genesis. MATERIAL AND METHODS Eighty-eight patients with schizophrenia spectrum disorders, 68 patients with exogenous organic brain diseases and 240 healthy adults of different age were included in the study. The digit cancellation test modified by the authors was used. RESULTS AND CONCLUSION The validity of the modified digit cancellation test was approved and its age standards were obtained. In healthy right-handed people, there was the bias of attention focus to the left, the decrease of asymmetry intensity of visual-spatial inattention during physiological aging and the presence of some clinical peculiarities of neglect in schizophrenia spectrum disorders and lateralized organic damages of the brain. This variant of the test can be recommended for practical use as the sensitive psychometric tool.
Collapse
Affiliation(s)
- L I Wasserman
- St. Petersburg State University, St. Petersburg, Russia; Bekhterev St. Petersburg Psychoneurological Research Institute, St. Petersburg, Russia
| | - T V Cherednikova
- Frunzensky District Psychoneurological Dipensary, St. Petersburg, Russia
| | - E L Wasserman
- St. Petersburg State University, St. Petersburg, Russia; Herzen State Pedagogical University of Russia, St. Petersburg, Russia; St. Petersburg Institute for Informatics and Automation, Russian Academy of Sciences, St. Petersburg, Russia
| | - M V Wasserman
- Bekhterev St. Petersburg Psychoneurological Research Institute, St. Petersburg, Russia; St. Petersburg State Pediatric Medical University, St. Petersburg, Russia
| | - O Yu Shchelkova
- St. Petersburg State University, St. Petersburg, Russia; Bekhterev St. Petersburg Psychoneurological Research Institute, St. Petersburg, Russia
| | | |
Collapse
|
63
|
Bonato M, Romeo Z, Blini E, Pitteri M, Durgoni E, Passarini L, Meneghello F, Zorzi M. Ipsilesional Impairments of Visual Awareness After Right-Hemispheric Stroke. Front Psychol 2019; 10:697. [PMID: 31024378 PMCID: PMC6465520 DOI: 10.3389/fpsyg.2019.00697] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/13/2019] [Indexed: 11/23/2022] Open
Abstract
Unilateral brain damage following stroke frequently hampers the processing of contralesional space. Whether and how it also affects the processing of stimuli appearing on the same side of the lesion is still poorly understood. Three main alternative hypotheses have been proposed, namely that ipsilesional processing is functionally (i) hyperefficient, (ii) impaired, or (iii) spared. Here, we investigated ipsilesional space awareness through a computerized paradigm that exploits a manipulation of concurrent information processing demands (i.e., multitasking). Twelve chronic right-hemisphere stroke patients with a total lack of awareness for the contralesional side of space were administered a task that required the spatial monitoring of two locations within the ipsilesional hemispace. Targets were presented immediately to the right of a central fixation point (3° eccentricity), or farther to the right toward the screen edge (17° eccentricity), or on both locations. Response to target position occurred either in isolation or while performing a concurrent visual or auditory task. Results showed that most errors occurred when two targets were simultaneously presented and patients were faced with additional task demands (in the visual or auditory modalities). In the context of concurrent visual load, ipsilesional targets presented at the rightmost location were omitted more frequently than those presented closer to fixation. This pattern qualifies ipsilesional processing in right-hemisphere stroke patients as functionally impaired, arguing against the notion of ipsilesional hyperperformance, especially when under visual load.
Collapse
Affiliation(s)
- Mario Bonato
- Department of General Psychology and Padova Neuroscience Center, University of Padua, Padua, Italy
| | | | - Elvio Blini
- Integrative Multisensory Perception Action and Cognition Team, University Claude Bernard of Lyon, Lyon, France
| | - Marco Pitteri
- Neurology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | | | | | - Marco Zorzi
- Department of General Psychology and Padova Neuroscience Center, University of Padua, Padua, Italy.,IRCCS San Camillo Hospital, Venice, Italy
| |
Collapse
|
64
|
Abbate C, Trimarchi PD, Manzoni L, Quarenghi AM, Salvi GP, Inglese S, Giunco F, Bagarolo R, Mari D, Arosio B. A posterior variant of corticobasal syndrome: Evidence from a longitudinal study of cognitive and functional status in a single case. COGENT PSYCHOLOGY 2018. [DOI: 10.1080/23311908.2018.1452868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- Carlo Abbate
- Geriatric Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, via Pace 9, 20122 Milan, Italy
| | - Pietro Davide Trimarchi
- Alzheimer’s Assessment Unit, S. Maria Nascente, Fondazione IRCCS Don Carlo Gnocchi, via Alfonso Capecelatro 66, 20148 Milan, Italy
| | - Laura Manzoni
- Istituto Clinico Quarenghi, via San Carlo 70, 24016 San Pellegrino Terme, Italy
| | | | - Gian Pietro Salvi
- Istituto Clinico Quarenghi, via San Carlo 70, 24016 San Pellegrino Terme, Italy
| | - Silvia Inglese
- Geriatric Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, via Pace 9, 20122 Milan, Italy
| | - Fabrizio Giunco
- Alzheimer’s Assessment Unit, S. Maria Nascente, Fondazione IRCCS Don Carlo Gnocchi, via Alfonso Capecelatro 66, 20148 Milan, Italy
| | - Renzo Bagarolo
- Alzheimer’s Assessment Unit, S. Maria Nascente, Fondazione IRCCS Don Carlo Gnocchi, via Alfonso Capecelatro 66, 20148 Milan, Italy
| | - Daniela Mari
- Department of Medical Sciences and Community Health, University of Milan, via Francesco Sforza 35, 20122 Milan, Italy
| | - Beatrice Arosio
- Geriatric Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, via Pace 9, 20122 Milan, Italy
- Department of Medical Sciences and Community Health, University of Milan, via Francesco Sforza 35, 20122 Milan, Italy
| |
Collapse
|
65
|
Huygelier H, Gillebert CR. Quantifying egocentric spatial neglect with cancellation tasks: A theoretical validation. J Neuropsychol 2018; 14:1-19. [DOI: 10.1111/jnp.12177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 10/25/2018] [Indexed: 12/16/2022]
Affiliation(s)
| | - Céline R. Gillebert
- Department of Brain and Cognition KU Leuven Belgium
- Department of Experimental Psychology University of Oxford UK
| |
Collapse
|
66
|
Nenciovici L, Allaire-Duquette G, Masson S. Brain activations associated with scientific reasoning: a literature review. Cogn Process 2018; 20:139-161. [DOI: 10.1007/s10339-018-0896-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/04/2018] [Indexed: 12/15/2022]
|
67
|
Bourgeois A, Badier E, Baron N, Carruzzo F, Vuilleumier P. Influence of reward learning on visual attention and eye movements in a naturalistic environment: A virtual reality study. PLoS One 2018; 13:e0207990. [PMID: 30517170 PMCID: PMC6281232 DOI: 10.1371/journal.pone.0207990] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 11/09/2018] [Indexed: 11/30/2022] Open
Abstract
Rewards constitute crucial signals that motivate approach behavior and facilitate the perceptual processing of objects associated with favorable outcomes in past encounters. Reward-related influences on perception and attention have been reliably observed in studies where a reward is paired with a unidimensional low-level visual feature, such as the color or orientation of a line in visual search tasks. However, our environment is drastically different and composed of multidimensional and changing visual features, encountered in complex and dynamic scenes. Here, we designed an immersive virtual reality (VR) experiment using a 4-frame CAVE system to investigate the impact of rewards on attentional orienting and gaze patterns in a naturalistic and ecological environment. Forty-one healthy participants explored a virtual forest and responded to targets appearing on either the left or right side of their path. To test for reward-induced biases in spatial orienting, targets on one side were associated with high reward, whereas those on the opposite side were paired with a low reward. Eye-movements recording showed that left-side high rewards led to subsequent increase of eye gaze fixations towards this side of the path, but no such asymmetry was found after exposure to right-sided high rewards. A milder spatial bias was also observed after left-side high rewards during subsequent exploration of a virtual castle yard, but not during route turn choices along the forest path. Our results indicate that reward-related influences on attention and behavior may be better learned in left than right space, in line with a right hemisphere dominance, and could generalize to another environment to some extent, but not to spatial choices in another decision task, suggesting some domain- or context-specificity. This proof-of-concept study also outlines the advantages and the possible drawbacks of the use of the 3D CAVE immersive platform for VR in neuroscience.
Collapse
Affiliation(s)
- Alexia Bourgeois
- Neuroscience Department, Laboratory for Behavioral Neurology and Imaging of Cognition, University of Geneva, Geneva, Switzerland
- * E-mail:
| | - Emmanuel Badier
- Swiss Center for Affective Sciences, University of Geneva-CISA, Geneva, Switzerland
| | - Naem Baron
- Swiss Center for Affective Sciences, University of Geneva-CISA, Geneva, Switzerland
| | - Fabien Carruzzo
- Neuroscience Department, Laboratory for Behavioral Neurology and Imaging of Cognition, University of Geneva, Geneva, Switzerland
| | - Patrik Vuilleumier
- Neuroscience Department, Laboratory for Behavioral Neurology and Imaging of Cognition, University of Geneva, Geneva, Switzerland
| |
Collapse
|
68
|
Parr T, Friston KJ. The Anatomy of Inference: Generative Models and Brain Structure. Front Comput Neurosci 2018; 12:90. [PMID: 30483088 PMCID: PMC6243103 DOI: 10.3389/fncom.2018.00090] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/25/2018] [Indexed: 01/02/2023] Open
Abstract
To infer the causes of its sensations, the brain must call on a generative (predictive) model. This necessitates passing local messages between populations of neurons to update beliefs about hidden variables in the world beyond its sensory samples. It also entails inferences about how we will act. Active inference is a principled framework that frames perception and action as approximate Bayesian inference. This has been successful in accounting for a wide range of physiological and behavioral phenomena. Recently, a process theory has emerged that attempts to relate inferences to their neurobiological substrates. In this paper, we review and develop the anatomical aspects of this process theory. We argue that the form of the generative models required for inference constrains the way in which brain regions connect to one another. Specifically, neuronal populations representing beliefs about a variable must receive input from populations representing the Markov blanket of that variable. We illustrate this idea in four different domains: perception, planning, attention, and movement. In doing so, we attempt to show how appealing to generative models enables us to account for anatomical brain architectures. Ultimately, committing to an anatomical theory of inference ensures we can form empirical hypotheses that can be tested using neuroimaging, neuropsychological, and electrophysiological experiments.
Collapse
Affiliation(s)
- Thomas Parr
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, United Kingdom
| | | |
Collapse
|
69
|
Bourgeois A, Saj A, Vuilleumier P. Value-driven attentional capture in neglect. Cortex 2018; 109:260-271. [PMID: 30391880 DOI: 10.1016/j.cortex.2018.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/08/2018] [Accepted: 09/25/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVE Recent studies suggest that motivational cues such as rewards may be a powerful determinant of attentional selection, both in healthy subjects and in brain-damaged patients suffering from neglect. However, the exact brain mechanisms underlying these effects and their relation to other well-known attentional systems are still poorly known. METHODS We designed a visual search paradigm to examine how value-based attentional priority could modulate spatial orienting in patients with pathological biases due to neglect after right hemispheric stroke. Targets were preceded by exogenous valid or invalid spatial cues, in the presence or absence of distractors that were associated with high reward values subsequent to an initial reinforcement training phase. RESULTS We found that the learned reward value of distractors interfered with spatial reorienting toward the left (neglected) side when neglect patients were invalidly cued to the right side. Moreover, the presence of reward-associated distractors in the contralesional field interfered most with the detection of task-relevant targets on the same side, and this interference was exaggerated with more severe neglect. Voxelwise anatomical lesion analysis indicated that damage to the right angular gyrus, as well as lateral occipital and inferior temporal areas of the right hemisphere, were associated with stronger value-driven attentional effects. CONCLUSIONS Visual stimuli previously associated with rewards receive higher attentional priority during visual search despite pathological spatial biases due to neglect, and thus interfere with orienting to contralesional targets, presumably by competing with top-down mechanisms controlling exogenous spatial attention. Reward signals may bias neural activity evoked by visual stimuli, independent of conscious control, through a common priority map integrating several different attentional influences. These results do not only provide novel insights to link spatial orienting and motivational signals within current models of attention, but also open new perspectives that may usefully be exploited for neurological rehabilitation strategies in patients suffering from attentional deficits and neglect.
Collapse
Affiliation(s)
- Alexia Bourgeois
- Neuroscience Department, Laboratory for Behavioral Neurology and Imaging of Cognition, University of Geneva, Geneva, Switzerland; Neurology Department, University Hospital of Geneva, Geneva, Switzerland.
| | - Arnaud Saj
- Neuroscience Department, Laboratory for Behavioral Neurology and Imaging of Cognition, University of Geneva, Geneva, Switzerland; Neurology Department, University Hospital of Geneva, Geneva, Switzerland; Département de Psychologie, Université de Montréal, Montréal, Québec, Canada
| | - Patrik Vuilleumier
- Neuroscience Department, Laboratory for Behavioral Neurology and Imaging of Cognition, University of Geneva, Geneva, Switzerland
| |
Collapse
|
70
|
Abstract
The use of intraoperative cognitive mapping and monitoring during awake surgery is not new, but this surgical approach has undergone important changes in recent years, especially in the context of low-grade glioma surgery. This rapid development is related to the growing awareness from neurosurgeons that sustaining quality of life in patients with a long-survival expectancy implies assessment and preservation of a range of important functions during surgery, beyond "overt" functions, such as language or motricity. Here we describe the different behavioral paradigms typically used, and how they are selected and modulated to identify and spare critical brain-wide cognitive systems.
Collapse
Affiliation(s)
- Guillaume Herbet
- Department of Neurosurgery, Montpellier University Medical Center, 80, Avenue Augustin Fliche, Montpellier 34295, France; Institute for Neuroscience of Montpellier, Saint-Eloi Hospital, INSERM U1051, University of Montpellier, 80, Avenue Augustin Fliche, Montpellier 34091, France.
| | - Sylvie Moritz-Gasser
- Department of Neurosurgery, Montpellier University Medical Center, 80, Avenue Augustin Fliche, Montpellier 34295, France; Institute for Neuroscience of Montpellier, Saint-Eloi Hospital, INSERM U1051, University of Montpellier, 80, Avenue Augustin Fliche, Montpellier 34091, France
| |
Collapse
|
71
|
Lewald J, Schlüter MC, Getzmann S. Cortical processing of location changes in a “cocktail-party” situation: Spatial oddball effects on electrophysiological correlates of auditory selective attention. Hear Res 2018; 365:49-61. [DOI: 10.1016/j.heares.2018.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/12/2018] [Accepted: 04/25/2018] [Indexed: 11/24/2022]
|
72
|
Giglhuber K, Maurer S, Zimmer C, Meyer B, Krieg SM. Mapping visuospatial attention: the greyscales task in combination with repetitive navigated transcranial magnetic stimulation. BMC Neurosci 2018; 19:40. [PMID: 29996777 PMCID: PMC6042394 DOI: 10.1186/s12868-018-0440-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 07/04/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Visuospatial attention is executed by the frontoparietal cortical areas of the brain. Damage to these areas can result in visual neglect. We therefore aimed to assess a combination of the greyscales task and repetitive navigated transcranial magnetic stimulation (rTMS) to identify cortical regions involved in visuospatial attention processes. This pilot study was designed to evaluate an approach in a cohort of healthy volunteers, with the future aim of using this technique to map brain tumor patients before surgery. Ten healthy, right-handed subjects underwent rTMS mapping of 52 cortical spots in both hemispheres. The greyscales task was presented tachistoscopically and was time-locked to rTMS pulses. The task pictures showed pairs of horizontal rectangles shaded continuously from black at one end to white at the other, mirror-reversed. On each picture the subject was asked to report which of the two greyscales appeared darker overall. The responses were categorized into "leftward" and "rightward," depending on whether the subject had chosen the rectangle with the darker end on the left or the right. rTMS applied to cortical areas involved in visuospatial attention is supposed to affect lateral shifts in spatial bias. These shifts result in an altered performance on the greyscales task compared to the baseline performance without rTMS stimulation. RESULTS In baseline conditions, 9/10 subjects showed classic pseudoneglect to the left. Leftward effects also occurred more often in mapping conditions. Yet, calculated rightward deviations were strikingly greater in magnitude (p < 0.0001). Overall, the right hemisphere was found to be more suggestible than the left hemisphere. Both rightward and leftward deviation scores were higher for the rTMS of this brain side (p < 0.0001). Right hemispheric distributions accord well with current models of visuospatial attention (Corbetta et al. Nat Neurosci 8(11):1603-1610, 2005). We observed leftward deviations triggered by rTMS within superior frontal and posterior parietal areas and rightward deviations within inferior frontal areas and the temporoparietal junction (TPJ). CONCLUSION The greyscales task, in combination with rTMS, yields encouraging results in the examination of the visuospatial attention function. Future clinical implications should be evaluated.
Collapse
Affiliation(s)
- Katrin Giglhuber
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stefanie Maurer
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Claus Zimmer
- Section of Neuroradiology, Department of Radiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany. .,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
| |
Collapse
|
73
|
Common brain networks for distinct deficits in visual neglect. A combined structural and tractography MRI approach. Neuropsychologia 2018; 115:167-178. [DOI: 10.1016/j.neuropsychologia.2017.10.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 11/20/2022]
|
74
|
Saj A, Verdon V, Hauert CA, Vuilleumier P. Dissociable components of spatial neglect associated with frontal and parietal lesions. Neuropsychologia 2018; 115:60-69. [DOI: 10.1016/j.neuropsychologia.2018.02.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 02/03/2018] [Accepted: 02/16/2018] [Indexed: 12/19/2022]
|
75
|
Dalmaijer ES, Li KMS, Gorgoraptis N, Leff AP, Cohen DL, Parton AD, Husain M, Malhotra PA. Randomised, double-blind, placebo-controlled crossover study of single-dose guanfacine in unilateral neglect following stroke. J Neurol Neurosurg Psychiatry 2018; 89:593-598. [PMID: 29436486 PMCID: PMC6031270 DOI: 10.1136/jnnp-2017-317338] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/04/2017] [Accepted: 12/18/2017] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Unilateral neglect is a poststroke disorder that impacts negatively on functional outcome and lacks established, effective treatment. This multicomponent syndrome is characterised by a directional bias of attention away from contralesional space, together with impairments in several cognitive domains, including sustained attention and spatial working memory. This study aimed to test the effects of guanfacine, a noradrenergic alpha-2A agonist, on ameliorating aspects of neglect. METHODS Thirteen right hemisphere stroke patients with leftward neglect were included in a randomised, double-blind, placebo-controlled proof-of-concept crossover study that examined the effects of a single dose of guanfacine. Patients were tested on a computerised, time-limited cancellation paradigm, as well as tasks that independently assessed sustained attention and spatial working memory. RESULTS On guanfacine, there was a statistically significant improvement in the total number of targets found on the cancellation task when compared with placebo (mean improvement of 5, out of a possible 64). However, there was no evidence of a change in neglect patients' directional attention bias. Furthermore, Bayesian statistical analysis revealed reliable evidence against any effects of guanfacine on search organisation and performance on our sustained attention and spatial working memory tasks. CONCLUSIONS Guanfacine improves search in neglect by boosting the number of targets found but had no effects on directional bias or search organisation, nor did it improve sustained attention or working memory on independent tasks. Further work is necessary to determine whether longer term treatment with guanfacine may be effective for some neglect patients and whether it affects functional outcome measures. TRIAL REGISTRATION NUMBER NCT00955253.
Collapse
Affiliation(s)
- Edwin S Dalmaijer
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Korina M S Li
- Centre for Restorative Neuroscience, Division of Brain Sciences, Imperial College London, London, UK
| | - Nikos Gorgoraptis
- Centre for Restorative Neuroscience, Division of Brain Sciences, Imperial College London, London, UK
| | - Alexander P Leff
- Institute of Cognitive Neuroscience, University College London, London, UK
- Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, London, UK
| | - David L Cohen
- Hyper-acute Stroke Unit, Northwick Park Hospital, London, UK
| | - Andrew D Parton
- Division of Psychology, Department of Life Sciences, Brunel University, Uxbridge, UK
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Paresh A Malhotra
- Centre for Restorative Neuroscience, Division of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
76
|
Seidel Malkinson T, Bartolomeo P. Fronto-parietal organization for response times in inhibition of return: The FORTIOR model. Cortex 2018; 102:176-192. [DOI: 10.1016/j.cortex.2017.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/10/2017] [Accepted: 11/07/2017] [Indexed: 10/18/2022]
|
77
|
Budisavljevic S, Dell'Acqua F, Zanatto D, Begliomini C, Miotto D, Motta R, Castiello U. Asymmetry and Structure of the Fronto-Parietal Networks Underlie Visuomotor Processing in Humans. Cereb Cortex 2018; 27:1532-1544. [PMID: 26759477 DOI: 10.1093/cercor/bhv348] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Research in both humans and monkeys has shown that even simple hand movements require cortical control beyond primary sensorimotor areas. An extensive functional neuroimaging literature demonstrates the key role that cortical fronto-parietal regions play for movements such as reaching and reach-to-grasp. However, no study so far has examined the specific white matter connections linking the fronto-parietal regions, namely the 3 parallel pathways of the superior longitudinal fasciculus (SLF). The aim of the current study was to explore how selective fronto-parietal connections are for different kinds of hand movement in 30 right-handed subjects by correlating diffusion imaging tractography and kinematic data. We showed that a common network, consisting of bilateral SLF II and SLF III, was involved in both reaching and reach-to-grasp movements. Larger SLF II and SLF III in the right hemisphere were associated with faster speed of visuomotor processing, while the left SLF II and SLF III played a role in the initial movement trajectory control. Furthermore, the right SLF II was involved in the closing grip phase necessary for efficient grasping of the object. We demonstrated for the first time that individual differences in asymmetry and structure of the fronto-parietal networks were associated with visuomotor processing in humans.
Collapse
Affiliation(s)
| | - Flavio Dell'Acqua
- Natbrainlab, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Debora Zanatto
- Department of General Psychology.,Cognitive Neuroscience Center
| | | | - Diego Miotto
- Department of Medicine, University of Padova, Padova, Italy
| | | | - Umberto Castiello
- Department of General Psychology.,Cognitive Neuroscience Center.,Centro Linceo Interdisciplinare, Accademia dei Lincei, Roma, Italy
| |
Collapse
|
78
|
Chelazzi L, Bisley JW, Bartolomeo P. The unconscious guidance of attention. Cortex 2018; 102:1-5. [PMID: 29549966 DOI: 10.1016/j.cortex.2018.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Leonardo Chelazzi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Italy; National Institute of Neuroscience, Italy.
| | - James W Bisley
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Paolo Bartolomeo
- Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Institut du Cerveau et de la Moelle épinière, ICM, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
79
|
Parr T, Friston KJ. The Computational Anatomy of Visual Neglect. Cereb Cortex 2018; 28:777-790. [PMID: 29190328 PMCID: PMC6005118 DOI: 10.1093/cercor/bhx316] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 11/21/2022] Open
Abstract
Visual neglect is a debilitating neuropsychological phenomenon that has many clinical implications and-in cognitive neuroscience-offers an important lesion deficit model. In this article, we describe a computational model of visual neglect based upon active inference. Our objective is to establish a computational and neurophysiological process theory that can be used to disambiguate among the various causes of this important syndrome; namely, a computational neuropsychology of visual neglect. We introduce a Bayes optimal model based upon Markov decision processes that reproduces the visual searches induced by the line cancellation task (used to characterize visual neglect at the bedside). We then consider 3 distinct ways in which the model could be lesioned to reproduce neuropsychological (visual search) deficits. Crucially, these 3 levels of pathology map nicely onto the neuroanatomy of saccadic eye movements and the systems implicated in visual neglect.
Collapse
Affiliation(s)
- Thomas Parr
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Karl J Friston
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
80
|
Bartolomeo P. Sindrome parieto-occipitale. Neurologia 2018. [DOI: 10.1016/s1634-7072(17)87846-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
81
|
|
82
|
Piervincenzi C, Ben-Soussan TD, Mauro F, Mallio CA, Errante Y, Quattrocchi CC, Carducci F. White Matter Microstructural Changes Following Quadrato Motor Training: A Longitudinal Study. Front Hum Neurosci 2017; 11:590. [PMID: 29270117 PMCID: PMC5725444 DOI: 10.3389/fnhum.2017.00590] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/21/2017] [Indexed: 01/18/2023] Open
Abstract
Diffusion tensor imaging (DTI) is an important way to characterize white matter (WM) microstructural changes. While several cross-sectional DTI studies investigated possible links between mindfulness practices and WM, only few longitudinal investigations focused on the effects of these practices on WM architecture, behavioral change, and the relationship between them. To this aim, in the current study, we chose to conduct an unbiased tract-based spatial statistics (TBSS) analysis (n = 35 healthy participants) to identify longitudinal changes in WM diffusion parameters following 6 and 12 weeks of daily Quadrato Motor Training (QMT), a whole-body mindful movement practice aimed at improving well-being by enhancing attention, coordination, and creativity. We also investigated the possible relationship between training-induced WM changes and concomitant changes in creativity, self-efficacy, and motivation. Our results indicate that following 6 weeks of daily QMT, there was a bilateral increase of fractional anisotropy (FA) in tracts related to sensorimotor and cognitive functions, including the corticospinal tracts, anterior thalamic radiations, and uncinate fasciculi, as well as in the left inferior fronto-occipital, superior and inferior longitudinal fasciculi. Interestingly, significant FA increments were still present after 12 weeks of QMT in most of the above WM tracts, but only in the left hemisphere. FA increase was accompanied by a significant decrease of radial diffusivity (RD), supporting the leading role of myelination processes in training-related FA changes. Finally, significant correlations were found between training-induced diffusion changes and increased self-efficacy as well as creativity. Together, these findings suggest that QMT can improve WM integrity and support the existence of possible relationships between training-related WM microstructural changes and behavioral change.
Collapse
Affiliation(s)
- Claudia Piervincenzi
- Neuroimaging Laboratory, Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Tal D Ben-Soussan
- Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation, Assisi, Italy
| | - Federica Mauro
- Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation, Assisi, Italy
| | - Carlo A Mallio
- Departmental Faculty of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Yuri Errante
- Departmental Faculty of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Carlo C Quattrocchi
- Departmental Faculty of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Filippo Carducci
- Neuroimaging Laboratory, Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
83
|
Boukrina O, Barrett AM. Disruption of the ascending arousal system and cortical attention networks in post-stroke delirium and spatial neglect. Neurosci Biobehav Rev 2017; 83:1-10. [PMID: 28963037 DOI: 10.1016/j.neubiorev.2017.09.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 08/11/2017] [Accepted: 09/22/2017] [Indexed: 11/22/2022]
Abstract
Delirium is an acute attention and cognitive dysfunction, adversely affecting functional outcomes and mortality. As many as half of hospitalized right brain stroke survivors may develop delirium. Further, about 50% of right stroke patients experience spatial neglect, impairing safety and recovery. In this review we explore the brain mechanisms, which may explain the high incidence of delirium and spatial neglect after right-brain stroke. We suggest that brain networks for spatial attention and arousal, composed of ascending projections from the midbrain nuclei and integrating dorsal and ventral cortical and limbic components, may underlie impairments in delirium and spatial neglect. We propose that lateralized deficits in spatial neglect may arise because cortical and limbic components of these functional networks are disproportionally impaired by right-brain strokes, and that spatial neglect may lower the threshold for developing delirium. An improved understanding of the brain basis of delirium and spatial neglect could provide a critical biomarker for initiating preventive care in stroke patients at high risk of hospital morbidity and loss of independence.
Collapse
Affiliation(s)
- Olga Boukrina
- Stroke Rehabilitation Research, Kessler Foundation, 1199 Pleasant Valley Way, West Orange, NJ, 07052, USA.
| | - A M Barrett
- Stroke Rehabilitation Research, Kessler Foundation, 1199 Pleasant Valley Way, West Orange, NJ, 07052, USA; Department of Physical Medicine and Rehabilitation, Rutgers-New Jersey Medical School, 185 S Orange Avenue, Newark, NJ, 07103, USA; Kessler Institute for Rehabilitation, 1199 Pleasant Valley Way, West Orange, NJ, USA.
| |
Collapse
|
84
|
Yamasaki T, Maekawa T, Fujita T, Tobimatsu S. Connectopathy in Autism Spectrum Disorders: A Review of Evidence from Visual Evoked Potentials and Diffusion Magnetic Resonance Imaging. Front Neurosci 2017; 11:627. [PMID: 29170625 PMCID: PMC5684146 DOI: 10.3389/fnins.2017.00627] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 10/26/2017] [Indexed: 12/04/2022] Open
Abstract
Individuals with autism spectrum disorder (ASD) show superior performance in processing fine details; however, they often exhibit impairments of gestalt face, global motion perception, and visual attention as well as core social deficits. Increasing evidence has suggested that social deficits in ASD arise from abnormal functional and structural connectivities between and within distributed cortical networks that are recruited during social information processing. Because the human visual system is characterized by a set of parallel, hierarchical, multistage network systems, we hypothesized that the altered connectivity of visual networks contributes to social cognition impairment in ASD. In the present review, we focused on studies of altered connectivity of visual and attention networks in ASD using visual evoked potentials (VEPs), event-related potentials (ERPs), and diffusion tensor imaging (DTI). A series of VEP, ERP, and DTI studies conducted in our laboratory have demonstrated complex alterations (impairment and enhancement) of visual and attention networks in ASD. Recent data have suggested that the atypical visual perception observed in ASD is caused by altered connectivity within parallel visual pathways and attention networks, thereby contributing to the impaired social communication observed in ASD. Therefore, we conclude that the underlying pathophysiological mechanism of ASD constitutes a “connectopathy.”
Collapse
Affiliation(s)
- Takao Yamasaki
- Department of Clinical Neurophysiology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Neurology, Minkodo Minohara Hospital, Fukuoka, Japan
| | - Toshihiko Maekawa
- Department of Clinical Neurophysiology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takako Fujita
- Department of Pediatrics, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Shozo Tobimatsu
- Department of Clinical Neurophysiology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
85
|
Gigliotta O, Seidel Malkinson T, Miglino O, Bartolomeo P. Pseudoneglect in Visual Search: Behavioral Evidence and Connectional Constraints in Simulated Neural Circuitry. eNeuro 2017; 4:ENEURO.0154-17.2017. [PMID: 29291241 PMCID: PMC5745611 DOI: 10.1523/eneuro.0154-17.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 11/30/2017] [Accepted: 12/04/2017] [Indexed: 11/29/2022] Open
Abstract
Most people tend to bisect horizontal lines slightly to the left of their true center (pseudoneglect) and start visual search from left-sided items. This physiological leftward spatial bias may depend on hemispheric asymmetries in the organization of attentional networks, but the precise mechanisms are unknown. Here, we modeled relevant aspects of the ventral and dorsal attentional networks (VAN and DAN) of the human brain. First, we demonstrated pseudoneglect in visual search in 101 right-handed psychology students. Participants consistently tended to start the task from a left-sided item, thus showing pseudoneglect. Second, we trained populations of simulated neurorobots to perform a similar task, by using a genetic algorithm. The neurorobots' behavior was controlled by artificial neural networks, which simulated the human VAN and DAN in the two brain hemispheres. Neurorobots differed in the connectional constraints that were applied to the anatomy and function of the attention networks. Results indicated that (1) neurorobots provided with a biologically plausible hemispheric asymmetry of the VAN-DAN connections, as well as with interhemispheric inhibition, displayed the best match with human data; however; (2) anatomical asymmetry per se was not sufficient to generate pseudoneglect; in addition, the VAN must have an excitatory influence on the ipsilateral DAN; and (3) neurorobots provided with bilateral competence in the VAN but without interhemispheric inhibition failed to display pseudoneglect. These findings provide a proof of concept of the causal link between connectional asymmetries and pseudoneglect and specify important biological constraints that result in physiological asymmetries of human behavior.
Collapse
Affiliation(s)
- Onofrio Gigliotta
- Department of Humanistic Studies, University of Naples Federico II, 80133 Naples, Italy
| | - Tal Seidel Malkinson
- Institut National de la Santé et de la Recherche Médicale Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 7225, Sorbonne Universités, Université Pierre-et-Marie-Curie Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle Épinière ICM, 75013 Paris, France
| | - Orazio Miglino
- Department of Humanistic Studies, University of Naples Federico II, 80133 Naples, Italy
- Institute of Cognitive Sciences and Technologies, National Research Council, 00185 Rome, Italy
| | - Paolo Bartolomeo
- Institut National de la Santé et de la Recherche Médicale Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 7225, Sorbonne Universités, Université Pierre-et-Marie-Curie Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle Épinière ICM, 75013 Paris, France
| |
Collapse
|
86
|
White matter microstructure of attentional networks predicts attention and consciousness functional interactions. Brain Struct Funct 2017; 223:653-668. [PMID: 28905109 DOI: 10.1007/s00429-017-1511-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022]
Abstract
Attention is considered as one of the pre-requisites of conscious perception. Phasic alerting and exogenous orienting improve conscious perception of near-threshold information through segregated brain networks. Using a multimodal neuroimaging approach, combining data from functional MRI (fMRI) and diffusion-weighted imaging (DWI), we investigated the influence of white matter properties of the ventral branch of superior longitudinal fasciculus (SLF III) in functional interactions between attentional systems and conscious perception. Results revealed that (1) reduced integrity of the left hemisphere SLF III was predictive of the neural interactions observed between exogenous orienting and conscious perception, and (2) increased integrity of the left hemisphere SLF III was predictive of the neural interactions observed between phasic alerting and conscious perception. Our results combining fMRI and DWI data demonstrate that structural properties of the white matter organization determine attentional modulations over conscious perception.
Collapse
|
87
|
Tonin L, Pitteri M, Leeb R, Zhang H, Menegatti E, Piccione F, Millán JDR. Behavioral and Cortical Effects during Attention Driven Brain-Computer Interface Operations in Spatial Neglect: A Feasibility Case Study. Front Hum Neurosci 2017; 11:336. [PMID: 28701939 PMCID: PMC5487481 DOI: 10.3389/fnhum.2017.00336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/12/2017] [Indexed: 11/13/2022] Open
Abstract
During the last years, several studies have suggested that Brain-Computer Interface (BCI) can play a critical role in the field of motor rehabilitation. In this case report, we aim to investigate the feasibility of a covert visuospatial attention (CVSA) driven BCI in three patients with left spatial neglect (SN). We hypothesize that such a BCI is able to detect attention task-specific brain patterns in SN patients and can induce significant changes in their abnormal cortical activity (α-power modulation, feature recruitment, and connectivity). The three patients were asked to control online a CVSA BCI by focusing their attention at different spatial locations, including their neglected (left) space. As primary outcome, results show a significant improvement of the reaction time in the neglected space between calibration and online modalities (p < 0.01) for the two out of three patients that had the slowest initial behavioral response. Such an evolution of reaction time negatively correlates (p < 0.05) with an increment of the Individual α-Power computed in the pre-cue interval. Furthermore, all patients exhibited a significant reduction of the inter-hemispheric imbalance (p < 0.05) over time in the parieto-occipital regions. Finally, analysis on the inter-hemispheric functional connectivity suggests an increment across modalities for regions in the affected (right) hemisphere and decrement for those in the healthy. Although preliminary, this feasibility study suggests a possible role of BCI in the therapeutic treatment of lateralized, attention-based visuospatial deficits.
Collapse
Affiliation(s)
- Luca Tonin
- Chair in Brain-Machine Interface, Center for Neuroprosthetics, École Polytechnique Fédérale de LausanneGeneva, Switzerland
| | - Marco Pitteri
- Neurology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of VeronaVerona, Italy
| | - Robert Leeb
- Chair in Brain-Machine Interface, Center for Neuroprosthetics, École Polytechnique Fédérale de LausanneGeneva, Switzerland
| | - Huaijian Zhang
- Chair in Brain-Machine Interface, Center for Neuroprosthetics, École Polytechnique Fédérale de LausanneGeneva, Switzerland
| | - Emanuele Menegatti
- Intelligent Autonomous Systems Laboratory, Department of Information Engineering, University of PadovaPadova, Italy
| | - Francesco Piccione
- Laboratory of Neuropsychology, IRCCS San Camillo Hospital FoundationVenice, Italy.,Laboratory of Neurophysiology, IRCCS San Camillo Hospital FoundationVenice, Italy
| | - José Del R Millán
- Chair in Brain-Machine Interface, Center for Neuroprosthetics, École Polytechnique Fédérale de LausanneGeneva, Switzerland
| |
Collapse
|
88
|
Herbet G, Rigaux-Viodé O, Moritz-Gasser S. Peri- and intraoperative cognitive and language assessment for surgical resection in brain eloquent structures. Neurochirurgie 2017; 63:135-141. [PMID: 28506481 DOI: 10.1016/j.neuchi.2016.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 10/10/2016] [Accepted: 10/17/2016] [Indexed: 11/15/2022]
Abstract
Neuropsychological care of patients suffering from an infiltrative glioma and candidates for a neurosurgery under awake condition with intraoperative functional mapping is a critical and mandatory stage in therapeutic management. It enables to estimate the functional impact of the tumor and, consequently, the efficacy of functional reorganization typically observed in these patients, not only to better predict surgery outcomes and select appropriate tasks for intraoperative functional mapping, but also to plan efficient and individualized postoperative cognitive rehabilitation strategies. Neuropsychological care management also enables patients to benefit from a solid psychological preparation both to the surgery and its associated transitory functional consequences, as well as provide a personalized psychological and emotional long-term support. Based on their solid experience in the peri-operative care of diffuse low-grade glioma patients, the authors thoroughly describe the different stages of neuropsychological management. Cognitive, emotional and language assessments typically used by the authors around and during surgery are reported, and different possible avenues of improvement are further discussed.
Collapse
Affiliation(s)
- G Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University medical center, 80, avenue Augustin Fliche, 34295 Montpellier, France; Institute for Neuroscience of Montpellier, Inserm U-1051, Saint-Eloi Hospital, 80, rue Augustin-Fliche, 34091 Montpellier cedex 5, France.
| | - O Rigaux-Viodé
- Department of Neurosurgery, Saint-Anne Hospital Center, 1, rue Cabanis, 75014 Paris, France; University Paris-Descartes, 12, rue de l'École de Médecine, 75006 Paris, France
| | - S Moritz-Gasser
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University medical center, 80, avenue Augustin Fliche, 34295 Montpellier, France; Institute for Neuroscience of Montpellier, Inserm U-1051, Saint-Eloi Hospital, 80, rue Augustin-Fliche, 34091 Montpellier cedex 5, France
| |
Collapse
|
89
|
Schrooten M, Ghumare EG, Seynaeve L, Theys T, Dupont P, Van Paesschen W, Vandenberghe R. Electrocorticography of Spatial Shifting and Attentional Selection in Human Superior Parietal Cortex. Front Hum Neurosci 2017; 11:240. [PMID: 28553217 PMCID: PMC5425472 DOI: 10.3389/fnhum.2017.00240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/25/2017] [Indexed: 12/01/2022] Open
Abstract
Spatial-attentional reorienting and selection between competing stimuli are two distinct attentional processes of clinical and fundamental relevance. In the past, reorienting has been mainly associated with inferior parietal cortex. In a patient with a subdural grid covering the upper and lower bank of the left anterior and middle intraparietal sulcus (IPS) and the superior parietal lobule (SPL), we examined the involvement of superior parietal cortex using a hybrid spatial cueing paradigm identical to that previously applied in stroke and in healthy controls. In SPL, as early as 164 ms following target onset, an invalidly compared to a validly cued target elicited a positive event-related potential (ERP) and an increase in intertrial coherence (ITC) in the theta band, regardless of the direction of attention. From around 400–650 ms, functional connectivity [weighted phase lag index (wPLI) analysis] between SPL and IPS briefly inverted such that SPL activity was driving IPS activity. In contrast, the presence of a competing distracter elicited a robust change mainly in IPS from 300 to 600 ms. Within superior parietal cortex reorienting of attention is associated with a distinct and early electrophysiological response in SPL while attentional selection is indexed by a relatively late electrophysiological response in the IPS. The long latency suggests a role of IPS in working memory or cognitive control rather than early selection.
Collapse
Affiliation(s)
- Maarten Schrooten
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU LeuvenLeuven, Belgium.,Neurology Department, University Hospitals LeuvenLeuven, Belgium
| | - Eshwar G Ghumare
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU LeuvenLeuven, Belgium
| | - Laura Seynaeve
- Neurology Department, University Hospitals LeuvenLeuven, Belgium.,Laboratory for Epilepsy Research, KU LeuvenLeuven, Belgium
| | - Tom Theys
- Neurosurgery Department, University Hospitals LeuvenLeuven, Belgium.,Laboratory for Neuro- and Psychophysiology, KU LeuvenLeuven, Belgium
| | - Patrick Dupont
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU LeuvenLeuven, Belgium
| | - Wim Van Paesschen
- Neurology Department, University Hospitals LeuvenLeuven, Belgium.,Laboratory for Epilepsy Research, KU LeuvenLeuven, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU LeuvenLeuven, Belgium.,Neurology Department, University Hospitals LeuvenLeuven, Belgium
| |
Collapse
|
90
|
Trojano L, Caccavale M, De Bellis F, Crisci C. The brain and the subjective experience of time. A voxel based symptom-lesion mapping study. Behav Brain Res 2017; 329:26-34. [PMID: 28438556 DOI: 10.1016/j.bbr.2017.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/06/2017] [Accepted: 04/17/2017] [Indexed: 12/27/2022]
Abstract
The aim of the study was to identify the anatomical bases involved in the subjective experience of time, by means of a voxel based symptom-lesion mapping (VLSM) study on patients with focal brain damage. Thirty-three patients (nineteen with right-hemisphere lesions -RBD, and fourteen with left lesion- LBD) and twenty-eight non-neurological controls (NNC) underwent the semi-structured QUEstionnaire for the Subjective experience of Time (QUEST) requiring retrospective and prospective judgements on self-relevant time intervals. All participants also completed tests to assess general cognitive functioning and two questionnaires to evaluate their emotional state. Both groups of brain-damaged patients achieved significantly different scores from NNC on the time performance, without differences between RBD and LBD. VLSM showed a cluster of voxels located in the right inferior parietal lobule significantly related to errors in the prospective items. The lesion subtraction analysis revealed two different patterns possibly associated with errors in the prospective items (the right inferior parietal cortex, rolandic operculum and posterior middle temporal gyrus) and in the retrospective items (superior middle temporal gyrus, white matter posterior to the insula).
Collapse
Affiliation(s)
- Luigi Trojano
- Dept. of Psychology, University of Campania "Luigi Vanvitelli", Italy; ICS Maugeri, Telese Terme, Italy.
| | | | | | | |
Collapse
|
91
|
Robineau F, Saj A, Neveu R, Van De Ville D, Scharnowski F, Vuilleumier P. Using real-time fMRI neurofeedback to restore right occipital cortex activity in patients with left visuo-spatial neglect: proof-of-principle and preliminary results. Neuropsychol Rehabil 2017; 29:339-360. [DOI: 10.1080/09602011.2017.1301262] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Fabien Robineau
- Laboratory of Behavioural Neurology and Imaging of Cognition, Department of Neuroscience, University Medical Center, Geneva, Switzerland
| | - Arnaud Saj
- Laboratory of Behavioural Neurology and Imaging of Cognition, Department of Neuroscience, University Medical Center, Geneva, Switzerland
- Department of Neurology, University Hospital, Geneva, Switzerland
| | - Rémi Neveu
- Laboratory of Behavioural Neurology and Imaging of Cognition, Department of Neuroscience, University Medical Center, Geneva, Switzerland
| | - Dimitri Van De Ville
- Department of Radiology and Medical Informatics, CIBM, University of Geneva, Geneva, Switzerland
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Frank Scharnowski
- Department of Radiology and Medical Informatics, CIBM, University of Geneva, Geneva, Switzerland
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Patrik Vuilleumier
- Laboratory of Behavioural Neurology and Imaging of Cognition, Department of Neuroscience, University Medical Center, Geneva, Switzerland
- Department of Neurology, University Hospital, Geneva, Switzerland
| |
Collapse
|
92
|
Low E, Laycock R, Crewther S. Neural Markers Associated with the Temporal Deployment of Attention: A Systematic Review of Non-motor Psychophysical Measures Post-stroke. Front Hum Neurosci 2017; 11:31. [PMID: 28239343 PMCID: PMC5301011 DOI: 10.3389/fnhum.2017.00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 01/16/2017] [Indexed: 11/13/2022] Open
|
93
|
Guilbert A, Clément S, Moroni C. A rehabilitation program based on music practice for patients with unilateral spatial neglect: a single-case study. Neurocase 2017; 23:12-21. [PMID: 27934544 DOI: 10.1080/13554794.2016.1265652] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Two major limitations of unilateral spatial neglect (USN) rehabilitation methods are actually reported: a lack of long-term efficiency and a lack of generalization to daily life. The aim of our case study was to underline how a multisensory method-music practice-could avoid these limitations. Mrs BV suffered from a chronic severe USN. She had rehabilitation sessions of music practice over 8 weeks. An improvement of her USN was found on paper-pencil tests but also in daily activities. Benefits subsisted 4 months after rehabilitation. Music practice seemed to avoid the major limitations of USN rehabilitations and could represent a promising tool.
Collapse
Affiliation(s)
- Alma Guilbert
- a Axe "Neuropsychologie, Audition, Cognition, Action" (NACA), Laboratoire "Psychologie: Interactions, Temps, Emotions, Cognition" (PSITEC), EA 4072 , Université Lille Nord de France , Villeneuve d'Ascq , France
| | - Sylvain Clément
- a Axe "Neuropsychologie, Audition, Cognition, Action" (NACA), Laboratoire "Psychologie: Interactions, Temps, Emotions, Cognition" (PSITEC), EA 4072 , Université Lille Nord de France , Villeneuve d'Ascq , France
| | - Christine Moroni
- a Axe "Neuropsychologie, Audition, Cognition, Action" (NACA), Laboratoire "Psychologie: Interactions, Temps, Emotions, Cognition" (PSITEC), EA 4072 , Université Lille Nord de France , Villeneuve d'Ascq , France.,b Service d'exploration fonctionnelle de la vision et neuro-ophtalmologie , Hôpital Salengro, CHRU de Lille, Boulevard Emile-Laine , Lille , France
| |
Collapse
|
94
|
Ten Brink AF, Verwer JH, Biesbroek JM, Visser-Meily JMA, Nijboer TCW. Differences between left- and right-sided neglect revisited: A large cohort study across multiple domains. J Clin Exp Neuropsychol 2016; 39:707-723. [DOI: 10.1080/13803395.2016.1262333] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Antonia F. Ten Brink
- Center of Excellence in Rehabilitation Medicine, Brain Center Rudolf Magnus, University Medical Center Utrecht, and De Hoogstraat Rehabilitation, Utrecht, The Netherlands
| | - Jurre H. Verwer
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J. Matthijs Biesbroek
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johanna M. A. Visser-Meily
- Center of Excellence in Rehabilitation Medicine, Brain Center Rudolf Magnus, University Medical Center Utrecht, and De Hoogstraat Rehabilitation, Utrecht, The Netherlands
- Department of Rehabilitation, Physical Therapy Science & Sports, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tanja C. W. Nijboer
- Center of Excellence in Rehabilitation Medicine, Brain Center Rudolf Magnus, University Medical Center Utrecht, and De Hoogstraat Rehabilitation, Utrecht, The Netherlands
- Department of Rehabilitation, Physical Therapy Science & Sports, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
95
|
Synchronization of fronto-parietal beta and theta networks as a signature of visual awareness in neglect. Neuroimage 2016; 146:341-354. [PMID: 27840240 DOI: 10.1016/j.neuroimage.2016.11.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/25/2016] [Accepted: 11/04/2016] [Indexed: 12/31/2022] Open
Abstract
In the neglect syndrome, the perceptual deficit for contra-lesional hemi-space is increasingly viewed as a dysfunction of fronto-parietal cortical networks, the disruption of which has been described in neuroanatomical and hemodynamic studies. Here we exploit the superior temporal resolution of electroencephalography (EEG) to study dynamic transient connectivity of fronto-parietal circuits at early stages of visual perception in neglect. As reflected by inter-regional phase synchronization in a full-field attention task, two functionally distinct fronto-parietal networks, in beta (15-25Hz) and theta (4-8Hz) frequency bands, were related to stimulus discrimination within the first 200 ms of visual processing. Neglect pathology was specifically associated with significant suppressions of both beta and theta networks engaging right parietal regions. These connectivity abnormalities occurred in a pattern that was distinctly different from what was observed in right-hemisphere lesion patients without neglect. Also, both beta and theta abnormalities contributed additively to visual awareness decrease, quantified in the Behavioural Inattention Test. These results provide evidence for the impairment of fast dynamic fronto-parietal interactions during early stages of visual processing in neglect pathology. Also, they reveal that different modes of fronto-parietal dysfunction contribute independently to deficits in visual awareness at the behavioural level.
Collapse
|
96
|
Erel H, Levy DA. Orienting of visual attention in aging. Neurosci Biobehav Rev 2016; 69:357-80. [DOI: 10.1016/j.neubiorev.2016.08.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 08/01/2016] [Accepted: 08/06/2016] [Indexed: 11/28/2022]
|
97
|
Rossor M, Collinge J, Fox N, Mead S, Mummery C, Rohrer J, Schott J, Warren J. Dementia and Cognitive Impairment. Neurology 2016. [DOI: 10.1002/9781118486160.ch8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
98
|
Resting state brain dynamics and its transients: a combined TMS-EEG study. Sci Rep 2016; 6:31220. [PMID: 27488504 PMCID: PMC4973226 DOI: 10.1038/srep31220] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/14/2016] [Indexed: 11/08/2022] Open
Abstract
The brain at rest exhibits a spatio-temporally rich dynamics which adheres to systematic behaviours that persist in task paradigms but appear altered in disease. Despite this hypothesis, many rest state paradigms do not act directly upon the rest state and therefore cannot confirm hypotheses about its mechanisms. To address this challenge, we combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to study brain's relaxation toward rest following a transient perturbation. Specifically, TMS targeted either the medial prefrontal cortex (MPFC), i.e. part of the Default Mode Network (DMN) or the superior parietal lobule (SPL), involved in the Dorsal Attention Network. TMS was triggered by a given brain state, namely an increase in occipital alpha rhythm power. Following the initial TMS-Evoked Potential, TMS at MPFC enhances the induced occipital alpha rhythm, called Event Related Synchronisation, with a longer transient lifetime than TMS at SPL, and a higher amplitude. Our findings show a strong coupling between MPFC and the occipital alpha power. Although the rest state is organized around a core of resting state networks, the DMN functionally takes a special role among these resting state networks.
Collapse
|
99
|
Philippi N, Noblet V, Duron E, Cretin B, Boully C, Wisniewski I, Seux ML, Martin-Hunyadi C, Chaussade E, Demuynck C, Kremer S, Lehéricy S, Gounot D, Armspach JP, Hanon O, Blanc F. Exploring anterograde memory: a volumetric MRI study in patients with mild cognitive impairment. ALZHEIMERS RESEARCH & THERAPY 2016; 8:26. [PMID: 27473839 PMCID: PMC4967326 DOI: 10.1186/s13195-016-0190-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/29/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND The aim of this volumetric study was to explore the neuroanatomical correlates of the Free and Cued Selective Reminding Test (FCSRT) and the Delayed Matching-to-Sample-48 items (DMS-48), two tests widely used in France to assess verbal and visual anterograde memory. We wanted to determine to what extent the two tests rely on the medial temporal lobe, and could therefore be predictive of Alzheimer's disease, in which pathological changes typically start in this region. METHODS We analysed data from a cohort of 138 patients with mild cognitive impairment participating in a longitudinal multicentre clinical research study. Verbal memory was assessed using the FCSRT and visual recognition memory was evaluated using the DMS-48. Performances on these two tests were correlated to local grey matter atrophy via structural MRI using voxel-based morphometry. RESULTS Our results confirm the existence of a positive correlation between the volume of the medial temporal lobe and the performance on the FCSRT, prominently on the left, and the performance on the DMS-48, on the right, for the whole group of patients (family-wise error, P < 0.05). Interestingly, this region remained implicated only in the subgroup of patients who had deficient scores on the cued recall of the FCSRT, whereas the free recall was associated with prefrontal aspects. For the DMS-48, it was only implicated for the group of patients whose performances declined between the immediate and delayed trial. Conversely, temporo-parietal cortices were implicated when no decline was observed. Within the medial temporal lobe, the parahippocampal gyrus was prominently involved for the FCSRT and the immediate trial of the DMS-48, whereas the hippocampus was solely involved for the delayed trial of the DMS-48. CONCLUSIONS The two tests are able to detect an amnestic profile of the medial temporal type, under the condition that the scores remain deficient after the cued recall of the FCSRT or decline on the delayed recognition trial of the DMS-48. Strategic retrieval as well as perceptual/attentional processes, supported by prefrontal and temporo-parietal cortices, were also found to have an impact on the performances. Finally, the implication of the hippocampus appears time dependent, triggered by a longer delay than the parahippocampus, rather than determined by the sense of recollection or the encoding strength associated with the memory trace.
Collapse
Affiliation(s)
- N Philippi
- Department of Neurology, University Hospital of Strasbourg, Neuropsychology Unit, Strasbourg, France. .,University of Strasbourg, CNRS, ICube laboratory, FMTS, Strasbourg, France. .,University Hospital of Strasbourg, Centre Mémoire Ressources et Recherche, Strasbourg, France. .,Department of Geriatrics, University Hospital of Strasbourg, Strasbourg, France.
| | - V Noblet
- University of Strasbourg, CNRS, ICube laboratory, FMTS, Strasbourg, France
| | - E Duron
- Department of Geriatrics, Broca Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - B Cretin
- Department of Neurology, University Hospital of Strasbourg, Neuropsychology Unit, Strasbourg, France.,University Hospital of Strasbourg, Centre Mémoire Ressources et Recherche, Strasbourg, France
| | - C Boully
- Department of Geriatrics, Broca Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - I Wisniewski
- University of Strasbourg, CNRS, ICube laboratory, FMTS, Strasbourg, France
| | - M L Seux
- Department of Geriatrics, Broca Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - C Martin-Hunyadi
- University Hospital of Strasbourg, Centre Mémoire Ressources et Recherche, Strasbourg, France.,Department of Geriatrics, University Hospital of Strasbourg, Strasbourg, France
| | - E Chaussade
- Department of Geriatrics, Broca Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - C Demuynck
- University Hospital of Strasbourg, Centre Mémoire Ressources et Recherche, Strasbourg, France.,Department of Geriatrics, University Hospital of Strasbourg, Strasbourg, France
| | - S Kremer
- University of Strasbourg, CNRS, ICube laboratory, FMTS, Strasbourg, France.,Department of Radiology, University Hospital of Strasbourg, Strasbourg, France
| | - S Lehéricy
- Department of Neuroradiology, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,UPMC Paris 6-Inserm U1127, CNRS 7225, Institut du Cerveau et de la Moelle (ICM), Centre de NeuroImagerie de Recherche (CENIR), Paris, France
| | - D Gounot
- University of Strasbourg, CNRS, ICube laboratory, FMTS, Strasbourg, France
| | - J P Armspach
- University of Strasbourg, CNRS, ICube laboratory, FMTS, Strasbourg, France
| | - O Hanon
- Department of Geriatrics, Broca Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, EA4468, Paris, France
| | - F Blanc
- Department of Neurology, University Hospital of Strasbourg, Neuropsychology Unit, Strasbourg, France.,University of Strasbourg, CNRS, ICube laboratory, FMTS, Strasbourg, France.,University Hospital of Strasbourg, Centre Mémoire Ressources et Recherche, Strasbourg, France.,Department of Geriatrics, University Hospital of Strasbourg, Strasbourg, France
| |
Collapse
|
100
|
Implicit learning: A way to improve visual search in spatial neglect? Conscious Cogn 2016; 43:102-12. [PMID: 27262690 DOI: 10.1016/j.concog.2016.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 05/25/2016] [Accepted: 05/25/2016] [Indexed: 11/22/2022]
Abstract
Studies have shown that neglect patients are able to use stimulus regularities to orient faster toward the neglected side, without necessarily being aware of that information, or at the very least without being able to verbalize their knowledge. In order to better control for the involvement of explicit processes, the present study sought to test neglect patients' ability to detect more complex associations between stimuli using tasks similar to those used in implicit learning studies. Our results demonstrate that neglect patients had difficulties implicitly learning complex associations, contrary to what we found with controls. The possible influence of attentional and working memory impairments are discussed.
Collapse
|