51
|
Alexander ML, Alagapan S, Lugo CE, Mellin JM, Lustenberger C, Rubinow DR, Fröhlich F. Double-blind, randomized pilot clinical trial targeting alpha oscillations with transcranial alternating current stimulation (tACS) for the treatment of major depressive disorder (MDD). Transl Psychiatry 2019; 9:106. [PMID: 30837453 PMCID: PMC6401041 DOI: 10.1038/s41398-019-0439-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 12/26/2022] Open
Abstract
Major depressive disorder (MDD) is one of the most common psychiatric disorders, but pharmacological treatments are ineffective in a substantial fraction of patients and are accompanied by unwanted side effects. Here we evaluated the feasibility and efficacy of transcranial alternating current stimulation (tACS) at 10 Hz, which we hypothesized would improve clinical symptoms by renormalizing alpha oscillations in the left dorsolateral prefrontal cortex (dlPFC). To this end, 32 participants with MDD were randomized to 1 of 3 arms and received daily 40 min sessions of either 10 Hz-tACS, 40 Hz-tACS, or active sham stimulation for 5 consecutive days. Symptom improvement was assessed using the Montgomery-Åsberg Depression Rating Scale (MADRS) as the primary outcome. High-density electroencephalograms (hdEEGs) were recorded to measure changes in alpha oscillations as the secondary outcome. For the primary outcome, we did not observe a significant interaction between treatment condition (10 Hz-tACS, 40 Hz-tACS, sham) and session (baseline to 4 weeks after completion of treatment); however, exploratory analyses show that 2 weeks after completion of the intervention, the 10 Hz-tACS group had more responders (MADRS and HDRS) compared with 40 Hz-tACS and sham groups (n = 30, p = 0.026). Concurrently, we found a significant reduction in alpha power over the left frontal regions in EEG after completion of the intervention for the group that received per-protocol 10 Hz-tACS (n = 26, p < 0.05). Our data suggest that targeting oscillations with tACS has potential as a therapeutic intervention for treatment of MDD.
Collapse
Affiliation(s)
- Morgan L. Alexander
- 0000000122483208grid.10698.36Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ,0000000122483208grid.10698.36Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Sankaraleengam Alagapan
- 0000000122483208grid.10698.36Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ,0000000122483208grid.10698.36Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Courtney E. Lugo
- 0000000122483208grid.10698.36Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Juliann M. Mellin
- 0000000122483208grid.10698.36Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ,0000000122483208grid.10698.36Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Caroline Lustenberger
- 0000000122483208grid.10698.36Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ,0000 0001 2156 2780grid.5801.cNeural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, 8092 Switzerland
| | - David R. Rubinow
- 0000000122483208grid.10698.36Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Flavio Fröhlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
52
|
Miyauchi E, Ide M, Tachikawa H, Nemoto K, Arai T, Kawasaki M. A novel approach for assessing neuromodulation using phase-locked information measured with TMS-EEG. Sci Rep 2019; 9:428. [PMID: 30674902 PMCID: PMC6344580 DOI: 10.1038/s41598-018-36317-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/23/2018] [Indexed: 02/05/2023] Open
Abstract
Neuromodulation therapies such as electroconvulsive therapy (ECT) are used to treat several neuropsychiatric disorders, including major depressive disorder (MDD). Recent work has highlighted the use of combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) to evaluate the therapeutic effects of neuromodulation; particularly, the phase locking factor (PLF) and phase locking value (PLV) can reportedly assess neuromodulation-induced functional changes in cortical networks. To examine changes in TMS-induced PLV and PLF before and after ECT, and their relationship with depression severity in patients with MDD, TMS-EEG and the Montgomery–Åsberg Depression Rating Scale (MADRS; depression severity) were implemented before and after ECT in 10 patients with MDD. Single-pulse TMS was applied to the visual and motor areas to induce phase propagation in the visuo-motor network at rest. Functional changes were assessed using PLF and PLV data. Pre-ECT TMS-induced alpha band (9–12 Hz) PLV was negatively correlated with depression severity, and increments of post-ECT from pre-ECT TMS-induced alpha band PLV were positively correlated with the reduction in depression severity. Moreover, we found a negative correlation between pre-ECT TMS-induced PLF at TMS-destination and depression severity. Finally, differences in post-ECT TMS-induced PLF peak latencies between visual and motor areas were positively correlated with depression severity. TMS-EEG-based PLV and PLF may be used to assess the therapeutic effects of neuromodulation and depressive states, respectively. Furthermore, our results provide new insights about the neural mechanisms of ECT and depression.
Collapse
Affiliation(s)
- Eri Miyauchi
- Department of Intelligent Interaction Technology, Graduate School of Systems and Information Engineering, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Masayuki Ide
- Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Hirokazu Tachikawa
- Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Kiyotaka Nemoto
- Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Tetsuaki Arai
- Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Masahiro Kawasaki
- Department of Intelligent Interaction Technology, Graduate School of Systems and Information Engineering, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.
| |
Collapse
|
53
|
Cook IA, Wilson AC, Corlier J, Leuchter AF. Brain Activity and Clinical Outcomes in Adults With Depression Treated With Synchronized Transcranial Magnetic Stimulation: An Exploratory Study. Neuromodulation 2019; 22:894-897. [DOI: 10.1111/ner.12914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/28/2018] [Accepted: 11/14/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Ian A. Cook
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles Los Angeles CA USA
- Department of Psychiatry & Biobehavioral SciencesDavid Geffen School of Medicine, University of California Los Angeles Los Angeles CA USA
- Department of BioengineeringHenry Samueli School of Engineering & Applied Science, University of California Los Angeles Los Angeles CA USA
| | - Andrew C. Wilson
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles Los Angeles CA USA
- Department of Psychiatry & Biobehavioral SciencesDavid Geffen School of Medicine, University of California Los Angeles Los Angeles CA USA
| | - Juliana Corlier
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles Los Angeles CA USA
- Department of Psychiatry & Biobehavioral SciencesDavid Geffen School of Medicine, University of California Los Angeles Los Angeles CA USA
| | - Andrew F. Leuchter
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles Los Angeles CA USA
- Department of Psychiatry & Biobehavioral SciencesDavid Geffen School of Medicine, University of California Los Angeles Los Angeles CA USA
| |
Collapse
|
54
|
Bailey NW, Hoy KE, Rogasch NC, Thomson RH, McQueen S, Elliot D, Sullivan CM, Fulcher BD, Daskalakis ZJ, Fitzgerald PB. Differentiating responders and non-responders to rTMS treatment for depression after one week using resting EEG connectivity measures. J Affect Disord 2019; 242:68-79. [PMID: 30172227 DOI: 10.1016/j.jad.2018.08.058] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/30/2018] [Accepted: 08/12/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Non-response to repetitive transcranial magnetic stimulation (rTMS) treatment for depression is costly for both patients and clinics. Simple and cheap methods to predict response would reduce this burden. Resting EEG measures differentiate responders from non-responders, so may have utility for response prediction. METHODS Fifty patients with treatment resistant depression and 21 controls had resting electroencephalography (EEG) recorded at baseline (BL). Patients underwent 5-8 weeks of rTMS treatment, with EEG recordings repeated at week 1 (W1). Forty-two participants had valid BL and W1 EEG data, and 12 were responders. Responders and non-responders were compared at BL and W1 in measures of theta (4-8 Hz) and alpha (8-13 Hz) power and connectivity, frontal theta cordance and alpha peak frequency. Control group comparisons were made for measures that differed between responders and non-responders. A machine learning algorithm assessed the potential to differentiate responders from non-responders using EEG measures in combination with change in depression scores from BL to W1. RESULTS Responders showed elevated theta connectivity across BL and W1. No other EEG measures differed between groups. Responders could be distinguished from non-responders with a mean sensitivity of 0.84 (p = 0.001) and specificity of 0.89 (p = 0.002) using cross-validated machine learning classification on the combination of all EEG and mood measures. LIMITATIONS The low response rate limited our sample size to only 12 responders. CONCLUSION Resting theta connectivity at BL and W1 differ between responders and non-responders, and show potential for predicting response to rTMS treatment for depression.
Collapse
Affiliation(s)
- N W Bailey
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School, Commercial Rd, Melbourne, Victoria, Australia..
| | - K E Hoy
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School, Commercial Rd, Melbourne, Victoria, Australia
| | - N C Rogasch
- Brain and Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton 3168, Victoria, Australia
| | - R H Thomson
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School, Commercial Rd, Melbourne, Victoria, Australia
| | - S McQueen
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School, Commercial Rd, Melbourne, Victoria, Australia
| | - D Elliot
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School, Commercial Rd, Melbourne, Victoria, Australia
| | - C M Sullivan
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School, Commercial Rd, Melbourne, Victoria, Australia
| | - B D Fulcher
- Brain and Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton 3168, Victoria, Australia
| | - Z J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - P B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School, Commercial Rd, Melbourne, Victoria, Australia.; Epworth Healthcare, The Epworth Clinic, Camberwell 3004, Victoria, Australia
| |
Collapse
|
55
|
Petrosino NJ, Zandvakili A, Carpenter LL, Philip NS. Pilot Testing of Peak Alpha Frequency Stability During Repetitive Transcranial Magnetic Stimulation. Front Psychiatry 2018; 9:605. [PMID: 30515110 PMCID: PMC6256033 DOI: 10.3389/fpsyt.2018.00605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/29/2018] [Indexed: 01/13/2023] Open
Abstract
Over half of those diagnosed with post-traumatic stress disorder (PTSD) have comorbid major depressive disorder (MDD), and rates are even higher among military veterans. Transcranial magnetic stimulation (TMS) may be a safe and efficacious treatment for PTSD, both with and without comorbid MDD. Still, the mechanism of action of TMS is not fully understood, and it remains unclear which stimulation techniques (e.g., target regions, pulse strength/frequency, waveform) optimize treatment for these patients. Recent research indicated that a patient's unique individualized alpha frequency (IAF) may be used to guide brain stimulation treatment, and emerging data suggests that stimulation synchronized to the IAF may be efficacious for MDD. However, to our knowledge there are no studies to date that evaluate the stability of IAF over time in patients with comorbid PTSD and MDD. To this end, we used an eight-lead electroencephalography (EEG) system to record IAF before and after a course of TMS. Stimulation parameters were informed by prior studies of TMS for comorbid PTSD and MDD and included 5 Hz TMS to the left dorsolateral prefrontal cortex, at 120% of motor threshold, 3,000-4,000 pulses per session for up to 40 sessions. We tested whether IAF was changed with a course of TMS therapy and evaluated whether IAF predicted clinical outcomes. We observed no significant changes in IAF from baseline to post-treatment, and there was no relationship between IAF and clinical symptom change. These data demonstrate the stability of IAF with TMS and indicate its utility as a trait marker for future brain stimulation studies. This work does not support the use of IAF as predictor of clinical response to TMS as administered.
Collapse
Affiliation(s)
- Nicholas J. Petrosino
- Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, RI, United States
- Department of Psychiatry and Human Behavior, Butler Hospital, Alpert Medical School of Brown University, Providence, RI, United States
| | - Amin Zandvakili
- Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, RI, United States
- Department of Psychiatry and Human Behavior, Butler Hospital, Alpert Medical School of Brown University, Providence, RI, United States
| | - Linda L. Carpenter
- Department of Psychiatry and Human Behavior, Butler Hospital, Alpert Medical School of Brown University, Providence, RI, United States
| | - Noah S. Philip
- Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, RI, United States
- Department of Psychiatry and Human Behavior, Butler Hospital, Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
56
|
Negahbani E, Schmidt SL, Mishal N, Fröhlich F. Neuromodulation-dependent effect of gated high-frequency, LFMS-like electric field stimulation in mouse cortical slices. Eur J Neurosci 2018; 49:1288-1297. [PMID: 30450622 DOI: 10.1111/ejn.14273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 11/27/2022]
Abstract
Low-field magnetic stimulation (LFMS) is a gated high-frequency non-invasive brain stimulation method (500 Hz gated at 2 Hz) with a proposed antidepressant effect. However, it has remained unknown how such stimulation paradigms modulate neuronal network activity and how the induced changes depend on network state. Here we examined the immediate and outlasting effects of the gated high-frequency electric field associated with LFMS on the cortical activity as a function of neuromodulatory tone that defines network state. We used a sham-controlled study design to investigate effects of stimulation (20 min of 0.5 s trains of 500 Hz charge-balanced pulse stimulation patterned at 0.5 Hz) on neural activity in mouse medial prefrontal cortex in vitro. Bath application of cholinergic and noradrenergic agents enabled us to examine the stimulation effects as a function of neuromodulatory tone. The stimulation attenuated the increase in firing rate of layer V cortical neurons during the post-stimulation period in the presence of cholinergic activation. The same stimulation had no significant immediate or outlasting effect in the absence of exogenous neuromodulators or in the presence of noradrenergic activation. These results provide electrophysiological insights into the neuromodulatory-dependent effects of gated high-frequency stimulation. More broadly, our results are the first to provide a mechanistic demonstration of how behavioral states and arousal levels may modify the effects of non-invasive brain stimulation.
Collapse
Affiliation(s)
- Ehsan Negahbani
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina.,Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, North Carolina
| | - Stephen L Schmidt
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina.,Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina
| | - Nadia Mishal
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina
| | - Flavio Fröhlich
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina.,Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, North Carolina.,Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina.,Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Neurology, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
57
|
Li G, Henriquez CS, Fröhlich F. Rhythmic modulation of thalamic oscillations depends on intrinsic cellular dynamics. J Neural Eng 2018; 16:016013. [PMID: 30524080 DOI: 10.1088/1741-2552/aaeb03] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Rhythmic brain stimulation has emerged as a powerful tool to modulate cognition and to target pathological oscillations related to neurological and psychiatric disorders. However, we lack a systematic understanding of how periodic stimulation interacts with endogenous neural activity as a function of the brain state and target. APPROACH To address this critical issue, we applied periodic stimulation to a unified biophysical thalamic network model that generates multiple distinct oscillations, and examined thoroughly the impact of rhythmic stimulation on different oscillatory states. MAIN RESULTS We found that rhythmic perturbation induces four basic response mechanisms: entrainment, acceleration, resonance and suppression. Importantly, the appearance and expression of these mechanisms depend highly on the intrinsic cellular dynamics in each state. Specifically, the low-threshold bursting of thalamocortical cells (TCs) in delta (δ) oscillation renders the network relatively insensitive to entrainment; the high-threshold bursting of TCs in alpha (α) oscillation leads to widespread oscillation suppression while the tonic spiking of TC cells in gamma (γ) oscillation results in prominent entrainment and resonance. In addition, we observed entrainment discontinuity during α oscillation that is mediated by firing pattern switching of high-threshold bursting TC cells. Furthermore, we demonstrate that direct excitatory stimulation of the lateral geniculate nucleus (LGN) entrains thalamic oscillations via an asymmetric Arnold tongue that favors higher frequency entrainment and resonance, while stimulation of the inhibitory circuit, the reticular nucleus, induces much weaker and more symmetric entrainment and resonance. These results support the notion that rhythmic stimulation engages brain oscillations in a state- and target-dependent manner. SIGNIFICANCE Overall, our study provides, for the first time, insights into how the biophysics of thalamic oscillations guide the emergence of complex, state-dependent mechanisms of target engagement, which can be leveraged for the future rational design of novel therapeutic stimulation modalities.
Collapse
Affiliation(s)
- Guoshi Li
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | | | | |
Collapse
|
58
|
McGirr A, Berlim MT. Clinical Usefulness of Therapeutic Neuromodulation for Major Depression: A Systematic Meta-Review of Recent Meta-Analyses. Psychiatr Clin North Am 2018; 41:485-503. [PMID: 30098660 DOI: 10.1016/j.psc.2018.04.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The authors conducted a meta-review of meta-analyses published in the past decade on therapeutic neuromodulation (ie, repetitive transcranial magnetic stimulation, transcranial direct current stimulation, vagus nerve stimulation and deep brain stimulation) for major depression. Active repetitive transcranial magnetic stimulation and transcranial direct current stimulation have been generally associated with small to moderate effect sizes vis-à-vis their efficacy and with similar acceptability compared with sham. Vagus nerve stimulation and deep brain stimulation (although more challenging to investigate) have demonstrated preliminary effectiveness, particularly during longer-term follow-up.
Collapse
Affiliation(s)
- Alexander McGirr
- Department of Psychiatry, Hotchkiss Brain Institute, Mathison Centre for Mental Health Research and Education, University of Calgary, TRW-4D68, 3280 Hospital Drive Northwest, Calgary, Alberta T2N 4Z6, Canada.
| | - Marcelo T Berlim
- Neuromodulation Research Clinic, Depressive Disorders Program, Douglas Mental Health University Institute, McGill University, 6875 LaSalle Boulevard, Montréal, Québec H4H 1R3, Canada.
| |
Collapse
|
59
|
Mutz J, Edgcumbe DR, Brunoni AR, Fu CH. Efficacy and acceptability of non-invasive brain stimulation for the treatment of adult unipolar and bipolar depression: A systematic review and meta-analysis of randomised sham-controlled trials. Neurosci Biobehav Rev 2018; 92:291-303. [DOI: 10.1016/j.neubiorev.2018.05.015] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/30/2018] [Accepted: 05/09/2018] [Indexed: 12/15/2022]
|
60
|
Garnaat SL, Yuan S, Wang H, Philip NS, Carpenter LL. Updates on Transcranial Magnetic Stimulation Therapy for Major Depressive Disorder. Psychiatr Clin North Am 2018; 41:419-431. [PMID: 30098655 PMCID: PMC6979370 DOI: 10.1016/j.psc.2018.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Transcranial magnetic stimulation has emerged as a treatment option for treatment-resistant depression. While existing data largely support efficacy of transcranial magnetic stimulation for major depressive disorder, ongoing research aims to optimize treatment parameters and identify biomarkers of treatment response. In this article, the authors describe data from controlled trials and ongoing efforts to enhance transcranial magnetic stimulation outcomes for major depressive disorder. Findings from preliminary research aimed at identifying neuroimaging and neurophysiological biomarkers of transcranial magnetic stimulation effects are discussed.
Collapse
Affiliation(s)
- Sarah L. Garnaat
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA,Butler Hospital, Providence, RI, USA
| | - Shiwen Yuan
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Haizhi Wang
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Noah S. Philip
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA,Butler Hospital, Providence, RI, USA,Providence VA Medical Center, Providence, RI, USA
| | - Linda L. Carpenter
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA,Butler Hospital, Providence, RI, USA
| |
Collapse
|
61
|
Kurmann R, Gast H, Schindler K, Fröhlich F. Rational design of transcranial alternating current stimulation. CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2018. [DOI: 10.1177/2514183x18793515] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Rebekka Kurmann
- Sleep-Wake-Epilepsy-Center, Department of Neurology, InselSpital, University of Bern, Bern, Switzerland
| | - Heidemarie Gast
- Sleep-Wake-Epilepsy-Center, Department of Neurology, InselSpital, University of Bern, Bern, Switzerland
| | - Kaspar Schindler
- Sleep-Wake-Epilepsy-Center, Department of Neurology, InselSpital, University of Bern, Bern, Switzerland
| | - Flavio Fröhlich
- Sleep-Wake-Epilepsy-Center, Department of Neurology, InselSpital, University of Bern, Bern, Switzerland
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
62
|
A precision medicine approach to repetitive Transcranial Magnetic Stimulation (rTMS). Brain Stimul 2018; 11:463-464. [DOI: 10.1016/j.brs.2018.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 02/03/2018] [Indexed: 11/19/2022] Open
|
63
|
Lisanby SH. Electric field characteristics of low-field synchronized transcranial magnetic stimulation (sTMS). ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:1445-1448. [PMID: 29060150 DOI: 10.1109/embc.2017.8037106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Low-field synchronized trancranial magnetic stimulation (sTMS) was hypothesized to have significant therapeutic effects in patients with major depressive disorder by entrainment of neural oscillations. The sTMS device is comprised of neodymium magnets mounted over multiple brain regions and set to rotate at the patients alpha frequency. We characterized the electric field strength and distribution of sTMS using the finite element method. We found that the maximum induced electric field strength on the surfaces of the head and cortex are approximately 0.06Vm-1 and 0.02Vm-1, respectively. These field strengths are an order of magnitude lower than that delivered by transcranial current stimulation.
Collapse
|
64
|
Chung SW, Lewis BP, Rogasch NC, Saeki T, Thomson RH, Hoy KE, Bailey NW, Fitzgerald PB. Demonstration of short-term plasticity in the dorsolateral prefrontal cortex with theta burst stimulation: A TMS-EEG study. Clin Neurophysiol 2017; 128:1117-1126. [DOI: 10.1016/j.clinph.2017.04.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/28/2017] [Accepted: 04/04/2017] [Indexed: 12/13/2022]
|
65
|
Scanlon GC, Jain FA, Hunter AM, Cook IA, Leuchter AF. Neurophysiologic Correlates of Headache Pain in Subjects With Major Depressive Disorder. Clin EEG Neurosci 2017; 48:159-167. [PMID: 27000108 DOI: 10.1177/1550059416632411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Headache pain is often comorbid with major depressive disorder (MDD) and is associated with greater symptom burden, disability, and suicidality. The biological correlates of headache pain in MDD, however, remain obscure. The purpose of this study was to examine the association between brain oscillatory activity and headache pain in MDD subjects. METHODS A total of 64 subjects with MDD who were free of psychoactive medications were evaluated for severity of headache pain in the past week. Brain function was assessed using resting-state quantitative electroencephalography (qEEG). We derived cordance in the theta (4-8 Hz) and alpha (8-12 Hz) frequency bands at each electrode, and examined correlations with headache pain in regions of interest while controlling for depression severity. Frontal and posterior asymmetry in alpha power was calculated in regions of interest. RESULTS Headache pain severity was associated with depression severity ( r = 0.447, P < .001). In bilateral frontal and right posterior regions, alpha cordance was significantly associated with headache intensity, including when controlling for depression severity. The direction of the correlation was positive anteriorly and negative posteriorly. Frontal left dominant alpha asymmetry correlated with severity of headache but not depression symptoms. CONCLUSION Alterations in brain oscillations identified by alpha cordance and alpha asymmetry may be associated with the pathophysiology of headache pain in depression. These findings should be prospectively confirmed.
Collapse
Affiliation(s)
- Graham C Scanlon
- 1 UCLA Laboratory of Brain, Behavior, and Pharmacology and the Depression Research and Clinic Program, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Felipe A Jain
- 1 UCLA Laboratory of Brain, Behavior, and Pharmacology and the Depression Research and Clinic Program, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Aimee M Hunter
- 1 UCLA Laboratory of Brain, Behavior, and Pharmacology and the Depression Research and Clinic Program, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ian A Cook
- 1 UCLA Laboratory of Brain, Behavior, and Pharmacology and the Depression Research and Clinic Program, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Andrew F Leuchter
- 1 UCLA Laboratory of Brain, Behavior, and Pharmacology and the Depression Research and Clinic Program, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
66
|
Huang YJ, Lane HY, Lin CH. New Treatment Strategies of Depression: Based on Mechanisms Related to Neuroplasticity. Neural Plast 2017; 2017:4605971. [PMID: 28491480 PMCID: PMC5405587 DOI: 10.1155/2017/4605971] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/10/2017] [Accepted: 03/23/2017] [Indexed: 12/22/2022] Open
Abstract
Major depressive disorder is a severe and complex mental disorder. Impaired neurotransmission and disrupted signalling pathways may influence neuroplasticity, which is involved in the brain dysfunction in depression. Traditional neurobiological theories of depression, such as monoamine hypothesis, cannot fully explain the whole picture of depressive disorders. In this review, we discussed new treatment directions of depression, including modulation of glutamatergic system and noninvasive brain stimulation. Dysfunction of glutamatergic neurotransmission plays an important role in the pathophysiology of depression. Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, has rapid and lasting antidepressive effects in previous studies. In addition to ketamine, other glutamatergic modulators, such as sarcosine, also show potential antidepressant effect in animal models or clinical trials. Noninvasive brain stimulation is another new treatment strategy beyond pharmacotherapy. Growing evidence has demonstrated that superficial brain stimulations, such as transcranial magnetic stimulation, transcranial direct current stimulation, cranial electrotherapy stimulation, and magnetic seizure therapy, can improve depressive symptoms. The antidepressive effect of these brain stimulations may be through modulating neuroplasticity. In conclusion, drugs that modulate neurotransmission via NMDA receptor and noninvasive brain stimulation may provide new directions of treatment for depression. Furthermore, exploring the underlying mechanisms will help in developing novel therapies for depression in the future.
Collapse
Affiliation(s)
- Yu-Jhen Huang
- Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Hsien-Yuan Lane
- Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| | - Chieh-Hsin Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for General Education, Cheng Shiu University, Kaohsiung, Taiwan
| |
Collapse
|
67
|
Abstract
With the antidepressant efficacy of Transcranial Magnetic Stimulation well-established by several meta-analyses, there is growing interest in its mechanism of action. TMS has been shown to engage, and in some cases, normalize functional connectivity and neurotransmitter levels within networks dysfunctional in the depressed state. In this review, I will suggest candidate biomarkers, based on neuroimaging, that may be predictive of response to TMS. I will then review the effects of TMS on networks and neurotransmitter systems involved in depression. Throughout, I will also discuss how our current understanding of response predication and network engagement may be used to personalize treatment and optimize its efficacy.
Collapse
|
68
|
Dubin MJ, Liston C, Avissar MA, Ilieva I, Gunning FM. Network-Guided Transcranial Magnetic Stimulation for Depression. Curr Behav Neurosci Rep 2017; 4:70-77. [PMID: 28316903 DOI: 10.1007/s40473-017-0108-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW First, we will identify candidate predictive biomarkers of antidepressant response of TMS based on the neuroimaging literature. Next, we will review the effects of TMS on networks involved in depression. Finally, we will discuss ways in which our current understanding of network engagement by TMS may be used to optimize its antidepressant effect. RECENT FINDINGS The past few years has seen significant interest in the antidepressant mechanisms of TMS. Studies using functional neuroimaging and neurochemical imaging have demonstrated engagement of networks known to be important in depression. Current evidence supports a model whereby TMS normalizes network function gradually over the course of several treatments. This may, in turn, mediate its antidepressant effect. SUMMARY One strategy to optimize the antidepressant effect of TMS is to more precisely target networks relevant in depression. We propose methods to achieve this using functional and neurochemical imaging.
Collapse
Affiliation(s)
- Marc J Dubin
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, 10065, USA; Feil Family Mind and Brain Institute, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Conor Liston
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, 10065, USA; Feil Family Mind and Brain Institute, Weill Cornell Medical College, New York, NY, 10065, USA; Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Michael A Avissar
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA; Division of Experimental Therapeutics, New York State Psychiatric Institute
| | - Irena Ilieva
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, 10065, USA; Institute of Geriatric Psychiatry, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Faith M Gunning
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, 10065, USA; Institute of Geriatric Psychiatry, Weill Cornell Medical College, New York, NY, 10065, USA
| |
Collapse
|
69
|
Escitalopram but not placebo modulates brain rhythmic oscillatory activity in the first week of treatment of Major Depressive Disorder. J Psychiatr Res 2017; 84:174-183. [PMID: 27770740 DOI: 10.1016/j.jpsychires.2016.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 09/23/2016] [Accepted: 10/06/2016] [Indexed: 01/15/2023]
Abstract
Serotonin modulates brain oscillatory activity, and serotonergic projections to the thalamus and cortex modulate the frequency of prefrontal rhythmic oscillations. Changes in serotonergic tone have been reported to shift oscillations between the combined delta-theta (2.5-8 Hz) and the alpha (8-12 Hz) frequency ranges. Such frequency shifts may constitute a useful biomarker for the effects of selective serotonin reuptake inhibitor (SSRI) medications in Major Depressive Disorder (MDD). We utilized quantitative electroencephalography (qEEG) to measure shifts in prefrontal rhythmic oscillations early in treatment with either the SSRI escitalopram or placebo, and examined the relationship between these changes and remission of depressive symptoms. Prefrontal delta-theta and alpha power were calculated for 194 subjects with moderate MDD prior to and one week after start of treatment. Changes at one week in delta-theta and alpha power, as well as the delta-theta/alpha ratio, were examined in three cohorts: initial (N = 70) and replication (N = 76) cohorts treated with escitalopram, and a cohort treated with placebo (N = 48). Mean delta-theta power significantly increased and alpha power decreased after one week of escitalopram treatment, but did not significantly change with placebo treatment. The delta-theta/alpha ratio change was a specific predictor of the likelihood of remission after seven weeks of medication treatment: a large increase in this ratio was associated with non-remission in escitalopram-treated subjects, but not placebo-treated subjects. Escitalopram and placebo treatment have differential effects on delta-theta and alpha frequency oscillations. Early increase in delta-theta/alpha may constitute a replicable biomarker for non-remission during SSRI treatment of MDD.
Collapse
|
70
|
van Belkum SM, Bosker FJ, Kortekaas R, Beersma DGM, Schoevers RA. Treatment of depression with low-strength transcranial pulsed electromagnetic fields: A mechanistic point of view. Prog Neuropsychopharmacol Biol Psychiatry 2016; 71:137-43. [PMID: 27449361 DOI: 10.1016/j.pnpbp.2016.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/13/2016] [Accepted: 07/19/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mood disorders constitute a high burden for both patients and society. Notwithstanding the large arsenal of available treatment options, a considerable group of patients does not remit on current antidepressant treatment. There is an urgent need to develop alternative treatment strategies. Recently, low-strength transcranial pulsed electromagnetic field (tPEMF) stimulation has been purported as a promising strategy for such treatment-resistant depression (TRD). The mode of action of this new technique is however largely unknown. METHODS We searched PubMed for literature reports on the effects of tPEMF and for information regarding its working mechanism and biological substrate. RESULTS Most studies more or less connect with the major hypotheses of depression and concern the effects of tPEMF on brain metabolism, neuronal connectivity, brain plasticity, and the immune system. Relatively few studies paid attention to the possible chronobiologic effects of electromagnetic fields. LIMITATIONS We reviewed the literature of a new and still developing field. Some of the reports involved translational studies, which inevitably limits the reach of the conclusions. CONCLUSION Weak magnetic fields influence divergent neurobiological processes. The antidepressant effect of tPEMF may be specifically attributable to its effects on local brain activity and connectivity.
Collapse
Affiliation(s)
- S M van Belkum
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, CC 30, P.O. Box 30.001, 9700 RB Groningen, The Netherlands.
| | - F J Bosker
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, CC 30, P.O. Box 30.001, 9700 RB Groningen, The Netherlands
| | - R Kortekaas
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, CC 30, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, Department of Neuroscience, P.O. Box 196, 9700 AD Groningen, The Netherlands
| | - D G M Beersma
- Department Chronobiology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - R A Schoevers
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, CC 30, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, Research School of Behavioural and Cognitive Neurosciences (BCN), Interdisciplinary Center for Psychopathology and Emotion regulation (ICPE), CC 30, P.O. Box 30.001, 9700 RB Groningen, The Netherlands
| |
Collapse
|
71
|
Brain Networks and α-Oscillations: Structural and Functional Foundations of Cognitive Control. Trends Cogn Sci 2016; 20:805-817. [PMID: 27707588 DOI: 10.1016/j.tics.2016.09.004] [Citation(s) in RCA: 259] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/22/2016] [Accepted: 09/06/2016] [Indexed: 01/21/2023]
Abstract
The most salient electrical signal measured from the human brain is the α-rhythm, neural activity oscillating at ∼100ms intervals. Recent findings challenge the longstanding dogma of α-band oscillations as the signature of a passively idling brain state but diverge in terms of interpretation. Despite firm correlations with behavior, the mechanistic role of the α-rhythm in brain function remains debated. We suggest that three large-scale brain networks involved in different facets of top-down cognitive control differentially modulate α-oscillations, ranging from power within and synchrony between brain regions. Thereby, these networks selectively influence local signal processing, widespread information exchange, and ultimately perception and behavior.
Collapse
|
72
|
Yadollahpour A, Hosseini SA, Shakeri A. rTMS for the Treatment of Depression: a Comprehensive Review of Effective Protocols on Right DLPFC. Int J Ment Health Addict 2016. [DOI: 10.1007/s11469-016-9669-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
73
|
Schiller CE, Johnson SL, Abate AC, Schmidt PJ, Rubinow DR. Reproductive Steroid Regulation of Mood and Behavior. Compr Physiol 2016; 6:1135-60. [PMID: 27347888 PMCID: PMC6309888 DOI: 10.1002/cphy.c150014] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this article, we examine evidence supporting the role of reproductive steroids in the regulation of mood and behavior in women and the nature of that role. In the first half of the article, we review evidence for the following: (i) the reproductive system is designed to regulate behavior; (ii) from the subcellular to cellular to circuit to behavior, reproductive steroids are powerful neuroregulators; (iii) affective disorders are disorders of behavioral state; and (iv) reproductive steroids affect virtually every system implicated in the pathophysiology of depression. In the second half of the article, we discuss the diagnosis of the three reproductive endocrine-related mood disorders (premenstrual dysphoric disorder, postpartum depression, and perimenopausal depression) and present evidence supporting the relevance of reproductive steroids to these conditions. Existing evidence suggests that changes in reproductive steroid levels during specific reproductive states (i.e., the premenstrual phase of the menstrual cycle, pregnancy, parturition, and the menopause transition) trigger affective dysregulation in susceptible women, thus suggesting the etiopathogenic relevance of these hormonal changes in reproductive mood disorders. Understanding the source of individual susceptibility is critical to both preventing the onset of illness and developing novel, individualized treatments for reproductive-related affective dysregulation. © 2016 American Physiological Society. Compr Physiol 6:1135-1160, 2016e.
Collapse
Affiliation(s)
- Crystal Edler Schiller
- Psychiatry Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sarah L. Johnson
- Psychiatry Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Anna C. Abate
- Psychiatry Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Peter J. Schmidt
- Section on Behavioral Endocrinology, National Institute of Mental Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - David R. Rubinow
- Psychiatry Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
74
|
Livingston R, Anandan S, Moukaddam N. Electroconvulsive Therapy, Transcranial Magnetic Stimulation, and Deep Brain Stimulation in Treatment-Resistant Depression. Psychiatr Ann 2016. [DOI: 10.3928/00485713-20160219-01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
75
|
Alagapan S, Schmidt SL, Lefebvre J, Hadar E, Shin HW, Frӧhlich F. Modulation of Cortical Oscillations by Low-Frequency Direct Cortical Stimulation Is State-Dependent. PLoS Biol 2016; 14:e1002424. [PMID: 27023427 PMCID: PMC4811434 DOI: 10.1371/journal.pbio.1002424] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 03/02/2016] [Indexed: 01/05/2023] Open
Abstract
Cortical oscillations play a fundamental role in organizing large-scale functional brain networks. Noninvasive brain stimulation with temporally patterned waveforms such as repetitive transcranial magnetic stimulation (rTMS) and transcranial alternating current stimulation (tACS) have been proposed to modulate these oscillations. Thus, these stimulation modalities represent promising new approaches for the treatment of psychiatric illnesses in which these oscillations are impaired. However, the mechanism by which periodic brain stimulation alters endogenous oscillation dynamics is debated and appears to depend on brain state. Here, we demonstrate with a static model and a neural oscillator model that recurrent excitation in the thalamo-cortical circuit, together with recruitment of cortico-cortical connections, can explain the enhancement of oscillations by brain stimulation as a function of brain state. We then performed concurrent invasive recording and stimulation of the human cortical surface to elucidate the response of cortical oscillations to periodic stimulation and support the findings from the computational models. We found that (1) stimulation enhanced the targeted oscillation power, (2) this enhancement outlasted stimulation, and (3) the effect of stimulation depended on behavioral state. Together, our results show successful target engagement of oscillations by periodic brain stimulation and highlight the role of nonlinear interaction between endogenous network oscillations and stimulation. These mechanistic insights will contribute to the design of adaptive, more targeted stimulation paradigms. This study presents mathematical models that explain the effect of temporally patterned electrical stimulation on cortical oscillations and provides supporting evidence using data recorded directly from human cortex during transcranial electrical stimulation. Rhythms in the brain are believed to play an important role in cognition. Disruptions in these oscillations are associated with a number of neurological and psychiatric disorders. Therefore, noninvasive brain stimulation techniques that target these oscillations offer promise as therapeutic tools. In particular, transcranial alternating current stimulation (tACS) applies a periodic stimulation waveform to engage specific oscillations in the cortex. Although recent studies provide evidence for the modulation of cortical oscillations by tACS, the exact mechanism by which the effects are produced is poorly understood. We propose two mathematical models of interaction between periodic electrical stimulation and ongoing brain activity that may explain the effects of tACS. In addition, we present a unique dataset in which we stimulated the patients’ cortical surface with subdural electrodes and observed the responses to stimulation in neighboring electrodes. We found that stimulation enhanced ongoing oscillations both during and immediately after stimulation. This enhancement depended on the brain state, thereby supporting our proposed models. Our results demonstrate the effect of electrical stimulation on cortical oscillations and highlight the importance of considering the state of the brain when designing electrical stimulation therapies for disorders of the central nervous system.
Collapse
Affiliation(s)
- Sankaraleengam Alagapan
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Stephen L Schmidt
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.,UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jérémie Lefebvre
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Mathematics, University of Toronto, Toronto, Ontario, Canada
| | - Eldad Hadar
- Department of Neurosurgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Hae Won Shin
- Department of Neurosurgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.,Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Flavio Frӧhlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.,UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.,Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.,Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.,Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
76
|
Tang R, Zhang G, Weng X, Han Y, Lang Y, Zhao Y, Zhao X, Wang K, Lin Q, Wang C. In Vitro Assessment Reveals Parameters-Dependent Modulation on Excitability and Functional Connectivity of Cerebellar Slice by Repetitive Transcranial Magnetic Stimulation. Sci Rep 2016; 6:23420. [PMID: 27000527 PMCID: PMC4802318 DOI: 10.1038/srep23420] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 03/07/2016] [Indexed: 11/09/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is an increasingly common technique used to selectively modify neural excitability and plasticity. There is still controversy concerning the cortical response to rTMS of different frequencies. In this study, a novel in vitro paradigm utilizing the Multi-Electrodes Array (MEA) system and acute cerebellar slicing is described. In a controllable environment that comprises perfusion, incubation, recording and stimulation modules, the spontaneous single-unit spiking activity in response to rTMS of different frequencies and powers was directly measured and analyzed. Investigation using this in vitro paradigm revealed frequency-dependent modulation upon the excitability and functional connectivity of cerebellar slices. The 1-Hz rTMS sessions induced short-term inhibition or lagged inhibition, whereas 20-Hz sessions induced excitation. The level of modulation is influenced by the value of power. However the long-term response fluctuated without persistent direction. The choice of evaluation method may also interfere with the interpretation of modulation direction. Furthermore, both short-term and long-term functional connectivity was strengthened by 1-Hz rTMS and weakened by 20-Hz rTMS.
Collapse
Affiliation(s)
- Rongyu Tang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing 100850, China
| | - Guanghao Zhang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiechuan Weng
- State Key Laboratory of Proteomics, Department of Neurobiology, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing 100850, China
| | - Yao Han
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing 100850, China
| | - Yiran Lang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing 100850, China
| | - Yuwei Zhao
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing 100850, China
| | - Xiaobo Zhao
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing 100850, China
| | - Kun Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing 100850, China
| | - Qiuxia Lin
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing 100850, China
| | - Changyong Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing 100850, China
| |
Collapse
|
77
|
Philip NS, Ridout SJ, Albright SE, Sanchez G, Carpenter LL. 5-Hz Transcranial Magnetic Stimulation for Comorbid Posttraumatic Stress Disorder and Major Depression. J Trauma Stress 2016; 29:93-6. [PMID: 26748883 PMCID: PMC4849266 DOI: 10.1002/jts.22065] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Current treatment options for posttraumatic stress disorder (PTSD) offer modest benefits, underscoring the need for new treatments. Repetitive transcranial magnetic stimulation (rTMS) depolarizes neurons in a targeted brain region with magnetic fields typically pulsed at low (1 Hz) or high (10 Hz) frequency to relieve major depressive disorder (MDD). Prior work suggests an intermediate pulse frequency, 5 Hz, is also efficacious for treating comorbid depressive and anxiety symptoms. In this chart review study, we systematically examined the clinical and safety outcomes in 10 patients with comorbid MDD and PTSD syndromes who received 5-Hz rTMS therapy at the Providence VA Medical Center Neuromodulation Clinic. Self-report scales measured illness severity prior to treatment, after every 5 treatments, and upon completion of treatment. Results showed significant reduction in symptoms of PTSD (p = .003, effect size = 1.12, 8/10 with reliable change) and MDD (p = .005, effect size = 1.09, 6/10 with reliable change). Stimulation was well tolerated and there were no serious adverse events. These data indicate 5-Hz rTMS may be a useful option to treat these comorbid disorders. Larger, controlled trials are needed to confirm the benefits of 5-Hz protocols observed in this pilot study.
Collapse
Affiliation(s)
- Noah S. Philip
- Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, Rhode Island, USA
| | - Samuel J. Ridout
- Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Sarah E. Albright
- Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, Rhode Island, USA
| | - George Sanchez
- Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, Rhode Island, USA
| | - Linda L. Carpenter
- Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
78
|
Cook IA, Abrams M, Leuchter AF. Trigeminal Nerve Stimulation for Comorbid Posttraumatic Stress Disorder and Major Depressive Disorder. Neuromodulation 2016; 19:299-305. [PMID: 26818103 DOI: 10.1111/ner.12399] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/27/2015] [Accepted: 12/28/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVES External stimulation of the trigeminal nerve (eTNS) is an emerging neuromodulation therapy for epilepsy and depression. Preliminary studies suggest it has an excellent safety profile and is associated with significant improvements in seizures and mood. Neuroanatomical projections of the trigeminal system suggest eTNS may alter activity in structures regulating mood, anxiety, and sleep. In this proof-of-concept trial, the effects of eTNS were evaluated in adults with posttraumatic stress disorder (PTSD) and comorbid unipolar major depressive disorder (MDD) as an adjunct to pharmacotherapy for these commonly co-occurring conditions. MATERIALS AND METHODS Twelve adults with PTSD and MDD were studied in an eight-week open outpatient trial (age 52.8 [13.7 sd], 8F:4M). Stimulation was applied to the supraorbital and supratrochlear nerves for eight hours each night as an adjunct to pharmacotherapy. Changes in symptoms were monitored using the PTSD Patient Checklist (PCL), Hamilton Depression Rating Scale (HDRS-17), Quick Inventory of Depressive Symptomatology (QIDS-C), and the Quality of Life Enjoyment and Satisfaction Questionnaire (Q-LES-Q). RESULTS Over the eight weeks, eTNS treatment was associated with significant decreases in PCL (p = 0.003; median decrease of 15 points; effect size d 1.5), HDRS-17 (p < 0.001; 42% response rate, 25% remission; d 2.1), and QIDS-C scores (p < 0.001; d 1.8), as well as an improvement in quality of life (Q-LES-Q, p < 0.01). eTNS was well tolerated with few treatment emergent adverse events. CONCLUSIONS Significant improvements in PTSD and depression severity were achieved in the eight weeks of acute eTNS treatment. This novel approach to wearable brain stimulation may have use as an adjunct to pharmacotherapy in these disorders if efficacy and tolerability are confirmed with additional studies.
Collapse
Affiliation(s)
- Ian A Cook
- Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences at UCLA, Los Angeles, CA, USA.,NeuroSigma, Inc, Los Angeles, CA, USA
| | - Michelle Abrams
- Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Andrew F Leuchter
- Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
79
|
Noda Y, Silverstein WK, Barr MS, Vila-Rodriguez F, Downar J, Rajji TK, Fitzgerald PB, Mulsant BH, Vigod SN, Daskalakis ZJ, Blumberger DM. Neurobiological mechanisms of repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex in depression: a systematic review. Psychol Med 2015; 45:3411-3432. [PMID: 26349810 DOI: 10.1017/s0033291715001609] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Depression is one of the most prevalent mental illnesses worldwide and a leading cause of disability, especially in the setting of treatment resistance. In recent years, repetitive transcranial magnetic stimulation (rTMS) has emerged as a promising alternative strategy for treatment-resistant depression and its clinical efficacy has been investigated intensively across the world. However, the underlying neurobiological mechanisms of the antidepressant effect of rTMS are still not fully understood. This review aims to systematically synthesize the literature on the neurobiological mechanisms of treatment response to rTMS in patients with depression. Medline (1996-2014), Embase (1980-2014) and PsycINFO (1806-2014) were searched under set terms. Three authors reviewed each article and came to consensus on the inclusion and exclusion criteria. All eligible studies were reviewed, duplicates were removed, and data were extracted individually. Of 1647 articles identified, 66 studies met both inclusion and exclusion criteria. rTMS affects various biological factors that can be measured by current biological techniques. Although a number of studies have explored the neurobiological mechanisms of rTMS, a large variety of rTMS protocols and parameters limits the ability to synthesize these findings into a coherent understanding. However, a convergence of findings suggest that rTMS exerts its therapeutic effects by altering levels of various neurochemicals, electrophysiology as well as blood flow and activity in the brain in a frequency-dependent manner. More research is needed to delineate the neurobiological mechanisms of the antidepressant effect of rTMS. The incorporation of biological assessments into future rTMS clinical trials will help in this regard.
Collapse
Affiliation(s)
- Y Noda
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health,Toronto,Ontario,Canada
| | - W K Silverstein
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health,Toronto,Ontario,Canada
| | - M S Barr
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health,Toronto,Ontario,Canada
| | - F Vila-Rodriguez
- Non-Invasive Neurostimulation Therapies Laboratory,Department of Psychiatry,Faculty of Medicine,University of British Columbia,Vancouver,British Columbia,Canada
| | - J Downar
- Department of Psychiatry,University of Toronto,Toronto,Ontario,Canada
| | - T K Rajji
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health,Toronto,Ontario,Canada
| | - P B Fitzgerald
- Monash Alfred Psychiatry Research Centre,The Alfred and Monash University Central Clinical School,Melbourne,Victoria,Australia
| | - B H Mulsant
- Department of Psychiatry,University of Toronto,Toronto,Ontario,Canada
| | - S N Vigod
- Department of Psychiatry,University of Toronto,Toronto,Ontario,Canada
| | - Z J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health,Toronto,Ontario,Canada
| | - D M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health,Toronto,Ontario,Canada
| |
Collapse
|
80
|
Leuchter AF, Hunter AM, Krantz DE, Cook IA. Intermediate phenotypes and biomarkers of treatment outcome in major depressive disorder. DIALOGUES IN CLINICAL NEUROSCIENCE 2015. [PMID: 25733956 PMCID: PMC4336921 DOI: 10.31887/dcns.2014.16.4/aleuchter] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Major depressive disorder (MDD) is a pleomorphic illness originating from gene x environment interactions. Patients with differing symptom phenotypes receive the same diagnosis and similar treatment recommendations without regard to genomics, brain structure or function, or other physiologic or psychosocial factors. Using this present approach, only one third of patients enter remission with the first medication prescribed, and patients may take longer than 1 year to enter remission with repeated trials. Research to improve treatment effectiveness recently has focused on identification of intermediate phenotypes (IPs) that could parse the heterogeneous population of patients with MDD into subgroups with more homogeneous responses to treatment. Such IPs could be used to develop biomarkers that could be applied clinically to match patients with the treatment that would be most likely to lead to remission. Putative biomarkers include genetic polymorphisms, RNA and protein expression (transcriptome and proteome), neurotransmitter levels (metabolome), additional measures of signaling cascades, oscillatory synchrony, neuronal circuits and neural pathways (connectome), along with other possible physiologic measures. All of these measures represent components of a continuum that extends from proximity to the genome to proximity to the clinical phenotype of depression, and there are many levels along this continuum at which useful IPs may be defined. Because of the highly integrative nature of brain systems and the complex neurobiology of depression, the most useful biomarkers are likely to be those with intermediate proximity both to the genome and the clinical phenotype of MDD. Translation of findings across the spectrum from genotype to phenotype promises to better characterize the complex disruptions in signaling and neuroplasticity that accompany MDD, and ultimately to lead to greater understanding of the causes of depressive illness.
Collapse
Affiliation(s)
- Andrew F Leuchter
- Laboratory of Brain, Behavior, and Pharmacology, and the Depression Research and Clinical Program, Semel Institute for Neuroscience and Human Behavior, UCLA; the Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Aimee M Hunter
- Laboratory of Brain, Behavior, and Pharmacology, and the Depression Research and Clinical Program, Semel Institute for Neuroscience and Human Behavior, UCLA; the Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - David E Krantz
- Laboratory of Brain, Behavior, and Pharmacology, and the Depression Research and Clinical Program, Semel Institute for Neuroscience and Human Behavior, UCLA; the Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Ian A Cook
- Laboratory of Brain, Behavior, and Pharmacology, and the Depression Research and Clinical Program, Semel Institute for Neuroscience and Human Behavior, UCLA; the Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, UCLA; the Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, UCLA, Los Angeles, California, USA
| |
Collapse
|
81
|
Philip NS, Carpenter SL, Ridout SJ, Sanchez G, Albright SE, Tyrka AR, Price LH, Carpenter LL. 5Hz Repetitive transcranial magnetic stimulation to left prefrontal cortex for major depression. J Affect Disord 2015; 186:13-7. [PMID: 26210705 PMCID: PMC4565741 DOI: 10.1016/j.jad.2014.12.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 12/04/2014] [Indexed: 10/23/2022]
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) to left prefrontal cortex at 10Hz is the most commonly utilized protocol for major depressive disorder (MDD). Published data suggests that left sided 5Hz rTMS may be efficacious and well tolerated. OBJECTIVE We analyzed outcomes in a naturalistic cohort of MDD patients who could not tolerate 10Hz rTMS and were routinely switched to 5Hz. We hypothesized that the efficacy of 5Hz rTMS would be equivalent to 10Hz. METHODS Records were reviewed for patients (n=98) who received 15 or more acute rTMS treatments. The sample was split based upon the frequency (10 or 5Hz) at which the majority of treatments were delivered. The Inventory of Depressive Symptoms (IDS-SR) and 9-Item Patient Health Questionnaire (PHQ-9) were used to evaluate outcomes. RESULTS Baseline IDS-SR was higher in the 5Hz (n=27) than in the 10Hz (n=71) group (p<.05), as was frequency of comorbid anxiety (p=.002). Depression outcomes did not differ between groups, and there were no differences in response or remission rates (all p>.1). Statistical power was sufficient to detect small group differences (d=.26). LIMITATIONS Open-label data in a naturalistic setting. CONCLUSION Outcomes associated with 5Hz rTMS did not differ from 10Hz, despite higher baseline depressive symptom severity and anxiety in 5Hz patients. 5Hz stimulation may be an alternative treatment option for patients unable to tolerate 10Hz rTMS.
Collapse
Affiliation(s)
- Noah S Philip
- Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, RI, United States; Butler Hospital Mood Disorders Research Program, Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, United States.
| | - S Louisa Carpenter
- Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, RI, United States
| | - Samuel J Ridout
- Butler Hospital Mood Disorders Research Program, Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, United States
| | - George Sanchez
- Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, RI, United States
| | - Sarah E Albright
- Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, RI, United States
| | - Audrey R Tyrka
- Butler Hospital Mood Disorders Research Program, Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, United States
| | - Lawrence H Price
- Butler Hospital Mood Disorders Research Program, Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, United States
| | - Linda L Carpenter
- Butler Hospital Mood Disorders Research Program, Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, United States
| |
Collapse
|
82
|
Caudill MM, Hunter AM, Cook IA, Leuchter AF. The Antidepressant Treatment Response Index as a Predictor of Reboxetine Treatment Outcome in Major Depressive Disorder. Clin EEG Neurosci 2015; 46:277-84. [PMID: 25258429 DOI: 10.1177/1550059414532443] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 02/19/2014] [Indexed: 12/20/2022]
Abstract
Biomarkers to predict clinical outcomes early during the treatment of major depressive disorder (MDD) could reduce suffering and improve outcomes. A quantitative electroencephalogram (qEEG) biomarker, the Antidepressant Treatment Response (ATR) index, has been associated with outcomes of treatment with selective serotonin reuptake inhibitor antidepressants in patients with MDD. Here, we report the results of a post hoc analysis initiated to evaluate whether the ATR index may also be associated with reboxetine treatment outcome, given that its putative mechanism of action is via norepinephrine reuptake inhibition (NRI). Twenty-five adults with MDD underwent qEEG studies during open-label treatment with reboxetine at doses of 8 to 10 mg daily for 8 weeks. The ATR index calculated after 1 week of reboxetine treatment was significantly associated with overall Hamilton Depression Rating Scale (HAM-D) improvement at week 8 (r=0.605, P=.001), even after controlling for baseline depression severity (P=.002). The ATR index predicted response (≥50% reduction in HAM-D) with 70.6% sensitivity and 87.5% specificity, and remission (final HAM-D≤7) with 87.5% sensitivity and 64.7% specificity. These results suggest that the ATR index may be a useful biomarker of clinical response during NRI treatment of adults with MDD. Future studies are warranted to investigate further the potential utility of the ATR index as a predictor of noradrenergic antidepressant treatment response.
Collapse
Affiliation(s)
- Marissa M Caudill
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Aimee M Hunter
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Ian A Cook
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Andrew F Leuchter
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
83
|
Fröhlich F. Tuning out the Blues--Thalamo-Cortical Rhythms as a Successful Target for Treating Depression. Brain Stimul 2015; 8:1007-9. [PMID: 26341450 DOI: 10.1016/j.brs.2015.07.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 07/23/2015] [Accepted: 07/26/2015] [Indexed: 11/29/2022] Open
Affiliation(s)
- Flavio Fröhlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
84
|
Razumov AN, Melnikova EA. [The neurophysiological basis of the effectiveness of transcranial methods for the treatment of neuropathic pain]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOI FIZICHESKOI KULTURY 2015; 92:37-42. [PMID: 26036087 DOI: 10.17116/kurort2015237-42] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The present article reports the data concerning the prevalence of chronic pain syndromes in clinical practice. The importance of addressing the problem of finding effective treatment modalities for the patients presenting with these conditions is emphasized. The mechanisms of neuropathic pain are analyzed. The possible pathogenetically sound substantiations for the pharmacological and non-pharmacological treatment of chronic pain are discussed. The article highlights the results of recent meta-analyses of the comparative effectiveness of transcranial methods. The mail lines of further investigations in the field of monotherapy and combined treatment of neuropathic pain are outlined.
Collapse
Affiliation(s)
- A N Razumov
- GBUZ 'Moskovskij nauchno-prakticheskij tsentr meditsinskoj reabilitatsii, vosstanovitel'noj i sportivnoj meditsiny' Departamenta zdravoohranenija Moskvy, ul. Zemljanoj val, 53, Moskva, Rossijskaja Federatsija, 105120
| | - E A Melnikova
- GBUZ 'Moskovskij nauchno-prakticheskij tsentr meditsinskoj reabilitatsii, vosstanovitel'noj i sportivnoj meditsiny' Departamenta zdravoohranenija Moskvy, ul. Zemljanoj val, 53, Moskva, Rossijskaja Federatsija, 105120
| |
Collapse
|
85
|
Leuchter AF, Hunter AM, Krantz DE, Cook IA. Rhythms and blues: modulation of oscillatory synchrony and the mechanism of action of antidepressant treatments. Ann N Y Acad Sci 2015; 1344:78-91. [PMID: 25809789 DOI: 10.1111/nyas.12742] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Treatments for major depressive disorder (MDD) act at different hierarchical levels of biological complexity, ranging from the individual synapse to the brain as a whole. Theories of antidepressant medication action traditionally have focused on the level of cell-to-cell interaction and synaptic neurotransmission. However, recent evidence suggests that modulation of synchronized electrical activity in neuronal networks is a common effect of antidepressant treatments, including not only medications, but also neuromodulatory treatments such as repetitive transcranial magnetic stimulation. Synchronization of oscillatory network activity in particular frequency bands has been proposed to underlie neurodevelopmental and learning processes, and also may be important in the mechanism of action of antidepressant treatments. Here, we review current research on the relationship between neuroplasticity and oscillatory synchrony, which suggests that oscillatory synchrony may help mediate neuroplastic changes related to neurodevelopment, learning, and memory, as well as medication and neuromodulatory treatment for MDD. We hypothesize that medication and neuromodulation treatments may have related effects on the rate and pattern of neuronal firing, and that these effects underlie antidepressant efficacy. Elucidating the mechanisms through which oscillatory synchrony may be related to neuroplasticity could lead to enhanced treatment strategies for MDD.
Collapse
Affiliation(s)
- Andrew F Leuchter
- Laboratory of Brain, Behavior, and Pharmacology, and the Depression Research and Clinic Program, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, California; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California
| | | | | | | |
Collapse
|
86
|
Gong Q, He Y. Depression, neuroimaging and connectomics: a selective overview. Biol Psychiatry 2015; 77:223-235. [PMID: 25444171 DOI: 10.1016/j.biopsych.2014.08.009] [Citation(s) in RCA: 354] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 07/27/2014] [Accepted: 08/16/2014] [Indexed: 12/31/2022]
Abstract
Depression is a multifactorial disorder with clinically heterogeneous features involving disturbances of mood and cognitive function. Noninvasive neuroimaging studies have provided rich evidence that these behavioral deficits in depression are associated with structural and functional abnormalities in specific regions and connections. Recent advances in brain connectomics through the use of graph theory highlight disrupted topological organization of large-scale functional and structural brain networks in depression, involving global topology (e.g., local clustering, shortest-path lengths, and global and local efficiencies), modular structure, and network hubs. These system-level disruptions show important correlates with genetic and environmental factors, which provide an integrative perspective on mood and cognitive deficits in depressive syndrome. Moreover, research suggests that the pathologic networks associated with depression represent potentially valuable biomarkers for early detection of this disorder and they are likely to be regulated and recalibrated by using pharmacologic, psychological, and brain stimulation therapies. These connectome-based imaging studies present new opportunities to reconceptualize the pathogenesis of depression, improve our knowledge of the biological mechanisms of therapeutic effects, and identify appropriate stimulation targets to optimize the clinical response in depression treatment. Here, we summarize the current findings and historical understanding of structural and functional connectomes in depression, focusing on graph analyses of depressive brain networks. We also consider methodological factors such as sample heterogeneity and poor test-retest reliability of recordings due to physiological, head motion, and imaging artifacts to discuss result inconsistencies among studies. We conclude with suggestions for future research directions on the emerging field of imaging connectomics in depression.
Collapse
Affiliation(s)
- Qiyong Gong
- Huaxi Magnetic Resonance Research Center, Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China; Department of Psychiatry , Yale University School of Medicine, New Haven, Connecticut; Department of Psychiatry, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning and International Digital Group/McGovern Institute for Brain Research; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China..
| |
Collapse
|
87
|
Neuromodulation for depression: invasive and noninvasive (deep brain stimulation, transcranial magnetic stimulation, trigeminal nerve stimulation). Neurosurg Clin N Am 2014; 25:103-16. [PMID: 24262903 DOI: 10.1016/j.nec.2013.10.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Major depressive disorder is among the most disabling illnesses and, despite best practices with medication and psychotherapy, many patients remain ill even after several treatment trials. For many of these patients with treatment-resistant or pharmacoresistant depression, treatment with neuromodulation offers an alternative. Options range from systems that are implanted to others that are entirely noninvasive. This review surveys recent literature to update readers on 3 particular interventions: deep brain stimulation, transcranial magnetic stimulation, and trigeminal nerve stimulation. Additional comparative research is needed to delineate the relative advantages of these treatments, and how best to match individual patients to neuromodulation intervention.
Collapse
|
88
|
Janicak PG, Carpenter L. The Efficacy of Transcranial Magnetic Stimulation for Major Depression: A Review of the Evidence. Psychiatr Ann 2014. [DOI: 10.3928/00485713-20140609-06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
89
|
Jin Y, Phillips B. A pilot study of the use of EEG-based synchronized Transcranial Magnetic Stimulation (sTMS) for treatment of Major Depression. BMC Psychiatry 2014; 14:13. [PMID: 24438321 PMCID: PMC3904196 DOI: 10.1186/1471-244x-14-13] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 01/16/2014] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Repetitive Transcranial Magnetic Stimulation (rTMS) is an effective treatment for Major Depressive Disorder (MDD), and is based upon delivery of focal high-energy pulses of electromagnetic stimulation. We postulated that delivery of rTMS at the subject's individual alpha frequency (synchronized TMS, or sTMS) would achieve efficacy with lower energy of stimulation. We developed a device that rotates neodymium cylindrical magnets at three locations along the midline above the subject's scalp to impart low-energy, sinusoidal-waveform magnetic brain stimulation over a broad area, and performed this efficacy study. METHOD Fifty-two subjects with MDD were enrolled in a randomized, sham controlled, double-blind treatment study (Trial Registration: NCT01683019). Forty-six subjects were included in the final analysis. Most subjects received concurrent antidepressant medications that remained unchanged during the study. Subjects were randomized to three treatment groups: 1) active sTMS with a fixed frequency at the subject's alpha frequency; 2) active sTMS with a random stimulus frequency that varied between 8 Hz and 13 Hz; and, 3) sham sTMS. 20 half-hour sTMS sessions were administered 5 days per week for 4 weeks. RESULTS Subjects with either fixed or random frequency active sTMS had statistically significantly greater percentage reduction in depression severity compared to sham (48.5% vs. 19.3%, respectively; p = 0.001). No significant difference was found between fixed and random groups (p = 0.30). No significant side effects were reported. CONCLUSIONS These results suggest that sTMS may be an effective treatment for MDD.
Collapse
Affiliation(s)
- Yi Jin
- NeoSync, Inc., 4019 Westerly Pl., #201, Newport Beach, CA 92660, USA
| | - Bill Phillips
- NeoSync, Inc,, 4019 Westerly Pl,, #201, Newport Beach, CA 92660, USA.
| |
Collapse
|
90
|
Pellicciari MC, Cordone S, Marzano C, Bignotti S, Gazzoli A, Miniussi C, De Gennaro L. Dorsolateral prefrontal transcranial magnetic stimulation in patients with major depression locally affects alpha power of REM sleep. Front Hum Neurosci 2013; 7:433. [PMID: 23935577 PMCID: PMC3731627 DOI: 10.3389/fnhum.2013.00433] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/16/2013] [Indexed: 02/05/2023] Open
Abstract
Sleep alterations are among the most important disabling manifestation symptoms of Major Depression Disorder (MDD). A critical role of sleep importance is also underlined by the fact that its adjustment has been proposed as an objective marker of clinical remission in MDD. Repetitive transcranial magnetic stimulation (rTMS) represents a relatively novel therapeutic tool for the treatment of drug-resistant depression. Nevertheless, besides clinical evaluation of the mood improvement after rTMS, we have no clear understanding of what are the neurophysiological correlates of such treatment. One possible marker underlying the clinical outcome of rTMS in MDD could be cortical changes on wakefulness and sleep activity. The aim of this open-label study was to evaluate the efficacy of a sequential bilateral rTMS treatment over the dorsolateral prefrontal cortex (DLPFC) to improve the mood in MDD patients, and to determine if rTMS can induce changes on the sleep structure, and if those changes can be used as a surrogate marker of the clinical state of the patient. Ten drug-resistant depressed patients participated to ten daily sessions of sequential bilateral rTMS with a low-frequency TMS (1 Hz) over right-DLPFC and a subsequent high-frequency (10 Hz) TMS over left-DLPFC. The clinical and neurophysiological effects induced by rTMS were evaluated, respectively by means of the Hamilton Depression Rating Scale (HDRS), and by comparing the sleep pattern modulations and the spatial changes of EEG frequency bands during both NREM and REM sleep, before and after the real rTMS treatment. The sequential bilateral rTMS treatment over the DLPFC induced topographical-specific decrease of the alpha activity during REM sleep over left-DLPFC, which is significantly associated to the clinical outcome. In line with the notion of a left frontal hypoactivation in MDD patients, the observed local decrease of alpha activity after rTMS treatment during the REM sleep suggests that alpha frequency reduction could be considered as a marker of up-regulation of cortical activity induced by rTMS, as well as a surrogate neurophysiological correlate of the clinical outcome.
Collapse
Affiliation(s)
| | - Susanna Cordone
- Department of Psychology, University of Rome SapienzaRome, Italy
| | - Cristina Marzano
- Department of Psychology, University of Rome SapienzaRome, Italy
| | - Stefano Bignotti
- Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio FatebenefratelliBrescia, Italy
| | - Anna Gazzoli
- Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio FatebenefratelliBrescia, Italy
| | - Carlo Miniussi
- Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio FatebenefratelliBrescia, Italy
- Department of Clinical and Experimental Sciences, National Institute of Neuroscience, University of BresciaBrescia, Italy
| | - Luigi De Gennaro
- Department of Psychology, University of Rome SapienzaRome, Italy
| |
Collapse
|