51
|
Abstract
It becomes increasingly clear that (non-)invasive neurostimulation is an effective treatment for obsessive-compulsive disorder (OCD). In this chapter we review the available evidence on techniques and targets, clinical results including a meta-analysis, mechanisms of action, and animal research. We focus on deep brain stimulation (DBS), but also cover non-invasive neurostimulation including transcranial magnetic stimulation (TMS). Data shows that most DBS studies target the ventral capsule/ventral striatum (VC/VS), with an overall 76% response rate in treatment-refractory OCD. Also TMS holds clinical promise. Increased insight in the normalizing effects of neurostimulation on cortico-striatal-thalamic-cortical (CSTC) loops - through neuroimaging and animal research - provides novel opportunities to further optimize treatment strategies. Advancing clinical implementation of neurostimulation techniques is essential to ameliorate the lives of the many treatment-refractory OCD patients.
Collapse
|
52
|
da Silva Machado CB, da Silva LM, Gonçalves AF, de Andrade PR, Mendes CKTT, de Assis TJCF, Godeiro Júnior CDO, Andrade SM. Multisite non-invasive brain stimulation in Parkinson's disease: A scoping review. NeuroRehabilitation 2021; 49:515-531. [PMID: 34776426 PMCID: PMC8764602 DOI: 10.3233/nre-210190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/18/2021] [Indexed: 12/03/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurodegenerative disorder, characterized by cardinal motor symptoms in addition to cognitive impairment. New insights concerning multisite non-invasive brain stimulation effects have been gained, which can now be used to develop innovative treatment approaches. OBJECTIVE Map the researchs involving multisite non-invasive brain stimulation in PD, synthesize the available evidence and discuss future directions. METHODS The databases PubMed, PsycINFO, CINAHL, LILACS and The Cochrane Library were searched from inception until April 2020, without restrictions on the date of publication or the language in which it was published. The reviewers worked in pairs and sequentially evaluated the titles, abstracts and then the full text of all publications identified as potentially relevant. RESULTS Twelve articles met the inclusion criteria. The target brain regions included mainly the combination of a motor and a frontal area, such as stimulation of the primary motor córtex associated with the dorsolateral prefrontal cortex. Most of the trials showed that this modality was only more effective for the motor component, or for the cognitive and/or non-motor, separately. CONCLUSIONS Despite the results being encouraging for the use of the multisite aproach, the indication for PD management should be carried out with caution and deserves scientific deepening.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Clécio de Oliveira Godeiro Júnior
- Division of Neurology, CHU of Grenoble, Grenoble Alpes University, La Tronche, Grenoble, France
- Division of Neurology, Hospital Universitario Onofre Lopes, Federal University of Rio Grande do Norte, Natal, Brazil
| | | |
Collapse
|
53
|
Lefebvre-Demers M, Doyon N, Fecteau S. Non-invasive neuromodulation for tinnitus: A meta-analysis and modeling studies. Brain Stimul 2020; 14:113-128. [PMID: 33276156 DOI: 10.1016/j.brs.2020.11.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/07/2020] [Accepted: 11/15/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Patients with tinnitus often have poor quality of life, as well as severe anxiety and depression. New approaches to treat tinnitus are needed. OBJECTIVE Evaluate the effects of non-invasive neuromodulation on tinnitus through a metaanalysis and modeling study. The main hypothesis was that real as compared to sham neuromodulation that decreases tinnitus will modulate regions in line with the neurobiological models of tinnitus. METHODS AND RESULTS The systematic review, conducted from Pubmed, Cochrane and PsycINFO databases, showed that active as compared to sham repetitive transcranial magnetic stimulation (rTMS) reduced tinnitus, but active and sham transcranial direct current stimulation did not significantly differ. Further, rTMS over the auditory cortex was the most effective protocol. The modeling results indicate that this rTMS protocol elicited the strongest electric fields in the insula. Also, rTMS was particularly beneficial in women. Finally, the placebo effects were highly variable, highlighting the importance of conducting sham-controlled trials. CONCLUSION In sum, neuromodulation protocols that target the auditory cortex and the insula may hold clinical potential to treat tinnitus.
Collapse
Affiliation(s)
- Mathilde Lefebvre-Demers
- CERVO Brain Research Centre, Institut Universitaire En Santé Mentale de Québec, Centre Intégré Universitaire De Santé Et De Services Sociaux De La Capitale-Nationale, Canada; Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Canada
| | - Nicolas Doyon
- CERVO Brain Research Centre, Institut Universitaire En Santé Mentale de Québec, Centre Intégré Universitaire De Santé Et De Services Sociaux De La Capitale-Nationale, Canada; Faculty of Science and Engineering, Université Laval, Canada
| | - Shirley Fecteau
- CERVO Brain Research Centre, Institut Universitaire En Santé Mentale de Québec, Centre Intégré Universitaire De Santé Et De Services Sociaux De La Capitale-Nationale, Canada; Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Canada.
| |
Collapse
|
54
|
Corlier J, Wilson A, Hunter AM, Vince-Cruz N, Krantz D, Levitt J, Minzenberg MJ, Ginder N, Cook IA, Leuchter AF. Changes in Functional Connectivity Predict Outcome of Repetitive Transcranial Magnetic Stimulation Treatment of Major Depressive Disorder. Cereb Cortex 2020; 29:4958-4967. [PMID: 30953441 DOI: 10.1093/cercor/bhz035] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/28/2019] [Accepted: 02/12/2019] [Indexed: 12/15/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) treatment of major depressive disorder (MDD) is associated with changes in brain functional connectivity (FC). These changes may be related to the mechanism of action of rTMS and explain the variability in clinical outcome. We examined changes in electroencephalographic FC during the first rTMS treatment in 109 subjects treated with 10 Hz stimulation to left dorsolateral prefrontal cortex. All subjects subsequently received 30 treatments and clinical response was defined as ≥40% improvement in the inventory of depressive symptomatology-30 SR score at treatment 30. Connectivity change was assessed with coherence, envelope correlation, and a novel measure, alpha spectral correlation (αSC). Machine learning was used to develop predictive models of outcome for each connectivity measure, which were compared with prediction based upon early clinical improvement. Significant connectivity changes were associated with clinical outcome (P < 0.001). Machine learning models based on αSC yielded the most accurate prediction (area under the curve, AUC = 0.83), and performance improved when combined with early clinical improvement measures (AUC = 0.91). The initial rTMS treatment session produced robust changes in FC, which were significant predictors of clinical outcome of a full course of treatment for MDD.
Collapse
Affiliation(s)
- Juliana Corlier
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles CA 90024, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Andrew Wilson
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles CA 90024, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Aimee M Hunter
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles CA 90024, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Nikita Vince-Cruz
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles CA 90024, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - David Krantz
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles CA 90024, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Jennifer Levitt
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles CA 90024, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Michael J Minzenberg
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles CA 90024, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Nathaniel Ginder
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles CA 90024, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Ian A Cook
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles CA 90024, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences at UCLA, Los Angeles, CA 90024, USA
| | - Andrew F Leuchter
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles CA 90024, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| |
Collapse
|
55
|
Papadopoulos L, Lynn CW, Battaglia D, Bassett DS. Relations between large-scale brain connectivity and effects of regional stimulation depend on collective dynamical state. PLoS Comput Biol 2020; 16:e1008144. [PMID: 32886673 PMCID: PMC7537889 DOI: 10.1371/journal.pcbi.1008144] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 10/06/2020] [Accepted: 07/12/2020] [Indexed: 01/09/2023] Open
Abstract
At the macroscale, the brain operates as a network of interconnected neuronal populations, which display coordinated rhythmic dynamics that support interareal communication. Understanding how stimulation of different brain areas impacts such activity is important for gaining basic insights into brain function and for further developing therapeutic neurmodulation. However, the complexity of brain structure and dynamics hinders predictions regarding the downstream effects of focal stimulation. More specifically, little is known about how the collective oscillatory regime of brain network activity—in concert with network structure—affects the outcomes of perturbations. Here, we combine human connectome data and biophysical modeling to begin filling these gaps. By tuning parameters that control collective system dynamics, we identify distinct states of simulated brain activity and investigate how the distributed effects of stimulation manifest at different dynamical working points. When baseline oscillations are weak, the stimulated area exhibits enhanced power and frequency, and due to network interactions, activity in this excited frequency band propagates to nearby regions. Notably, beyond these linear effects, we further find that focal stimulation causes more distributed modifications to interareal coherence in a band containing regions’ baseline oscillation frequencies. Importantly, depending on the dynamical state of the system, these broadband effects can be better predicted by functional rather than structural connectivity, emphasizing a complex interplay between anatomical organization, dynamics, and response to perturbation. In contrast, when the network operates in a regime of strong regional oscillations, stimulation causes only slight shifts in power and frequency, and structural connectivity becomes most predictive of stimulation-induced changes in network activity patterns. In sum, this work builds upon and extends previous computational studies investigating the impacts of stimulation, and underscores the fact that both the stimulation site, and, crucially, the regime of brain network dynamics, can influence the network-wide responses to local perturbations. Stimulation can be used to alter brain activity and is a therapeutic option for certain neurological conditions. However, predicting the distributed effects of local perturbations is difficult. Previous studies show that responses to stimulation depend on anatomical (or structural) coupling. In addition to structure, here we consider how stimulation effects also depend on the brain’s collective dynamical (or functional) state, arising from the coordination of rhythmic activity across large-scale networks. In a whole-brain computational model, we show that global responses to regional stimulation can indeed be contingent upon and differ across various dynamical working points. Notably, depending on the network’s oscillatory regime, stimulation can accelerate the activity of the stimulated site, and lead to widespread effects at both the new, excited frequency, as well as in a much broader frequency range including areas’ baseline frequencies. While structural connectivity is a good predictor of “excited band” changes, in some states “baseline band” effects can be better predicted by functional connectivity, which depends upon the system’s oscillatory regime. By integrating and extending past efforts, our results thus indicate that dynamical—in additional to structural—brain organization plays a role in governing how focal stimulation modulates interactions between distributed network elements.
Collapse
Affiliation(s)
- Lia Papadopoulos
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Christopher W. Lynn
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Demian Battaglia
- Université Aix-Marseille, INSERM UMR 1106, Institut de Neurosciences des Systèmes, F-13005, Marseille, France
| | - Danielle S. Bassett
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
56
|
The visual system as target of non-invasive brain stimulation for migraine treatment: Current insights and future challenges. PROGRESS IN BRAIN RESEARCH 2020. [PMID: 33008507 DOI: 10.1016/bs.pbr.2020.05.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The visual network is crucially implicated in the pathophysiology of migraine. Several lines of evidence indicate that migraine is characterized by an altered visual cortex excitability both during and between attacks. Visual symptoms, the most common clinical manifestation of migraine aura, are likely the result of cortical spreading depression originating from the extrastriate area V3A. Photophobia, a clinical hallmark of migraine, is linked to an abnormal sensory processing of the thalamus which is converged with the non-image forming visual pathway. Finally, visual snow is an increasingly recognized persistent visual phenomenon in migraine, possibly caused by increased perception of subthreshold visual stimuli. Emerging research in non-invasive brain stimulation (NIBS) has vastly developed into a diversity of areas with promising potential. One of its clinical applications is the single-pulse transcranial magnetic stimulation (sTMS) applied over the occipital cortex which has been approved for treating migraine with aura, albeit limited evidence. Studies have also investigated other NIBS techniques, such as repetitive TMS (rTMS) and transcranial direct current stimulation (tDCS), for migraine prophylaxis but with conflicting results. As a dynamic brain disorder with widespread pathophysiology, targeting migraine with NIBS is challenging. Furthermore, unlike the motor cortex, evidence suggests that the visual cortex may be less plastic. Controversy exists as to whether the same fundamental principles of NIBS, based mainly on findings in the motor cortex, can be applied to the visual cortex. This review aims to explore existing literature surrounding NIBS studies on the visual system of migraine. We will first provide an overview highlighting the direct implication of the visual network in migraine. Next, we will focus on the rationale behind using NIBS for migraine treatment, including its effects on the visual cortex, and the shortcomings of currently available evidence. Finally, we propose a broader perspective of how novel approaches, the concept of brain networks and the integration of multimodal imaging with computational modeling, can help refine current NIBS methods, with the ultimate goal of optimizing a more individualized treatment for migraine.
Collapse
|
57
|
Wang F, Zhang C, Hou S, Geng X. Synergistic Effects of Mesenchymal Stem Cell Transplantation and Repetitive Transcranial Magnetic Stimulation on Promoting Autophagy and Synaptic Plasticity in Vascular Dementia. J Gerontol A Biol Sci Med Sci 2020; 74:1341-1350. [PMID: 30256913 DOI: 10.1093/gerona/gly221] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Indexed: 02/07/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) and mesenchymal stem cells (MSCs) transplantation both showed therapeutic effects on cognition impairment in vascular dementia (VD) model rats. However, whether these two therapies have synergistic effects and the molecular mechanisms remain unclear. In our present study, rats were randomly divided into six groups: control group, sham operation group, VD group, MSC group, rTMS group, and MSC+rTMS group. The VD model rats were prepared using a modified 2VO method. rTMS treatment was implemented at a frequency of 5 Hz, the stimulation intensity for 0.5 Tesla, 20 strings every day with 10 pulses per string and six treatment courses. The results of the Morris water maze test showed that the learning and memory abilities of the MSC group, rTMS group, and MSC+rTMS group were better than that of the VD group, and the MSC+rTMS group showed the most significant effect. The protein expression levels of brain-derived neurotrophic factor, NR1, LC3-II, and Beclin-1 were the highest and p62 protein was the lowest in the MSC+rTMS group. Our findings demonstrated that rTMS could further enhance the effect of MSC transplantation on VD rats and provided an important basis for the combined application of MSC transplantation and rTMS to treat VD or other neurological diseases.
Collapse
Affiliation(s)
- Fei Wang
- Department of Neurology, General Hospital, Tianjin Medical University, China
| | - Chi Zhang
- Department of Neurology, General Hospital, Tianjin Medical University, China
| | - Siyuan Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, China.,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, China
| | - Xin Geng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, China.,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, China
| |
Collapse
|
58
|
Transcranial Magnetic Stimulation as Treatment for Mal de Debarquement Syndrome: Case Report and Literature Review. Cogn Behav Neurol 2020; 33:145-153. [PMID: 32496300 DOI: 10.1097/wnn.0000000000000224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This manuscript presents the case of an adult, male patient with mal de debarquement syndrome (MdDS); results from his experimental treatment with repetitive transcranial magnetic stimulation (rTMS) are also provided. Additionally, we included a review of literature related to the neurophysiology of MdDS and its treatment with rTMS. A 41-year-old man had been experiencing symptoms of MdDS, which initially emerged following a car ride, for 11 to 12 years. Pharmacologic approaches had failed to provide symptom relief; thus, we investigated an intervention using low-frequency (1 Hz) rTMS unilaterally for 2 consecutive weeks. The outcome measures included a standardized, computerized dynamic posturography test to quantify the patient's balance and identify abnormalities in his use of the sensory systems contributing to postural control, as well as the Hospital Anxiety and Depression Scale (HADS) to measure his anxiety and depression. An rTMS treatment log was created to document any adverse events. Following rTMS, the patient's balance scores improved significantly; these improvements were mostly related to the patient's increased reliance on the visual and vestibular systems. Our patient's HADS Anxiety and Depression subscores also showed improvement post-rTMS. The presented case study provides preliminary evidence that rTMS may be a noninvasive treatment option for improving balance, specifically in individuals with MdDS. This evidence can be used to further therapeutic research on, and provide strategies for treating, MdDS.
Collapse
|
59
|
Holczer A, Németh VL, Vékony T, Vécsei L, Klivényi P, Must A. Non-invasive Brain Stimulation in Alzheimer's Disease and Mild Cognitive Impairment-A State-of-the-Art Review on Methodological Characteristics and Stimulation Parameters. Front Hum Neurosci 2020; 14:179. [PMID: 32523520 PMCID: PMC7261902 DOI: 10.3389/fnhum.2020.00179] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/21/2020] [Indexed: 12/28/2022] Open
Abstract
Background: Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) have been proposed as a new therapeutic way to enhance the cognition of patients with dementia. However, serious methodological limitations appear to affect the estimates of their efficacy. We reviewed the stimulation parameters and methods of studies that used TMS or tDCS to alleviate the cognitive symptoms of patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI). Moreover, we evaluated the risk of bias in these studies. Our aim was to highlight the current vulnerabilities of the field and to formulate recommendations on how to manage these issues when designing studies. Methods: Electronic databases and citation searching were used to identify studies administering TMS or tDCS on patients with AD or MCI to enhance cognitive function. Data were extracted by one review author into summary tables with the supervision of the authors. The risk of bias analysis of randomized-controlled trials was conducted by two independent assessors with version 2 of the Cochrane risk-of-bias tool for randomized trials. Results: Overall, 36 trials were identified of which 23 randomized-controlled trials underwent a risk of bias assessment. More than 75% of randomized-controlled trials involved some levels of bias in at least one domain. Stimulation parameters were highly variable with some ranges of effectiveness emerging. Studies with low risk of bias indicated TMS to be potentially effective for patients with AD or MCI while questioned the efficacy of tDCS. Conclusions: The presence and extent of methodical issues affecting TMS and tDCS research involving patients with AD and MCI were examined for the first time. The risk of bias frequently affected the domains of the randomization process and selection of the reported data while missing outcome was rare. Unclear reporting was present involving randomization, allocation concealment, and blinding. Methodological awareness can potentially reduce the high variability of the estimates regarding the effectiveness of TMS and tDCS. Studies with low risk of bias delineate a range within TMS parameters seem to be effective but question the efficacy of tDCS.
Collapse
Affiliation(s)
- Adrienn Holczer
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Health Center, University of Szeged, Szeged, Hungary
| | - Viola Luca Németh
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Health Center, University of Szeged, Szeged, Hungary
| | - Teodóra Vékony
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Health Center, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Health Center, University of Szeged, Szeged, Hungary
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary
- Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Péter Klivényi
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Health Center, University of Szeged, Szeged, Hungary
| | - Anita Must
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary
- Faculty of Arts, Institute of Psychology, University of Szeged, Szeged, Hungary
| |
Collapse
|
60
|
Pugh J, Pugh C. Neurostimulation, doping, and the spirit of sport. NEUROETHICS-NETH 2020; 14:141-158. [PMID: 34824648 PMCID: PMC8590673 DOI: 10.1007/s12152-020-09435-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/27/2020] [Indexed: 12/19/2022]
Abstract
There is increasing interest in using neuro-stimulation devices to achieve an ergogenic effect in elite athletes. Although the World Anti-Doping Authority (WADA) does not currently prohibit neuro-stimulation techniques, a number of researchers have called on WADA to consider its position on this issue. Focusing on trans-cranial direct current stimulation (tDCS) as a case study of an imminent so-called ‘neuro-doping’ intervention, we argue that the emerging evidence suggests that tDCS may meet WADA’s own criteria (pertaining to safety, performance-enhancing effect, and incompatibility with the ‘spirit of sport’) for a method’s inclusion on its list of prohibited substances and methods. We begin by surveying WADA’s general approach to doping, and highlight important limitations to the current evidence base regarding the performance-enhancing effect of pharmacological doping substances. We then review the current evidence base for the safety and efficacy of tDCS, and argue that despite significant shortcomings, there may be sufficient evidence for WADA to consider prohibiting tDCS, in light of the comparable flaws in the evidence base for pharmacological doping substances. In the second half of the paper, we argue that the question of whether WADA ought to ban tDCS turns significantly on the question of whether it is compatible with the ‘spirit of sport’ criterion. We critique some of the previously published positions on this, and advocate our own sport-specific and application-specific approach. Despite these arguments, we finally conclude by suggesting that tDCS ought to be monitored rather than prohibited due to compelling non-ideal considerations.
Collapse
Affiliation(s)
- Jonathan Pugh
- The Oxford Uehiro Centre for Practical Ethics, University of Oxford, Suite 8, Littlegate House, St Ebbes Street, Oxford, OX1 1PT UK
| | - Christopher Pugh
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
- Cardiff Centre for Exercise and Health, Cardiff Metropolitan University, Cardiff, UK
| |
Collapse
|
61
|
Hanekamp S, Simonyan K. The large-scale structural connectome of task-specific focal dystonia. Hum Brain Mapp 2020; 41:3253-3265. [PMID: 32311207 PMCID: PMC7375103 DOI: 10.1002/hbm.25012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/27/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022] Open
Abstract
The emerging view of dystonia is that of a large‐scale functional network disorder, in which the communication is disrupted between sensorimotor cortical areas, basal ganglia, thalamus, and cerebellum. The structural underpinnings of functional alterations in dystonia are, however, poorly understood. Notably, it is unclear whether structural changes form a larger‐scale dystonic network or rather remain focal to isolated brain regions, merely underlying their functional abnormalities. Using diffusion‐weighted imaging and graph theoretical analysis, we examined inter‐regional white matter connectivity of the whole‐brain structural network in two different forms of task‐specific focal dystonia, writer's cramp and laryngeal dystonia, compared to healthy individuals. We show that, in addition to profoundly altered functional network in focal dystonia, its structural connectome is characterized by large‐scale aberrations due to abnormal transfer of prefrontal and parietal nodes between neural communities and the reorganization of normal hub architecture, commonly involving the insula and superior frontal gyrus in patients compared to controls. Other prominent common changes involved the basal ganglia, parietal and cingulate cortical regions, whereas premotor and occipital abnormalities distinctly characterized the two forms of dystonia. We propose a revised pathophysiological model of focal dystonia as a disorder of both functional and structural connectomes, where dystonia form‐specific abnormalities underlie the divergent mechanisms in the development of distinct clinical symptomatology. These findings may guide the development of novel therapeutic strategies directed at targeted neuromodulation of pathophysiological brain regions for the restoration of their structural and functional connectivity.
Collapse
Affiliation(s)
- Sandra Hanekamp
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Kristina Simonyan
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
62
|
Beuter A, Balossier A, Vassal F, Hemm S, Volpert V. Cortical stimulation in aphasia following ischemic stroke: toward model-guided electrical neuromodulation. BIOLOGICAL CYBERNETICS 2020; 114:5-21. [PMID: 32020368 DOI: 10.1007/s00422-020-00818-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
The aim of this paper is to integrate different bodies of research including brain traveling waves, brain neuromodulation, neural field modeling and post-stroke language disorders in order to explore the opportunity of implementing model-guided, cortical neuromodulation for the treatment of post-stroke aphasia. Worldwide according to WHO, strokes are the second leading cause of death and the third leading cause of disability. In ischemic stroke, there is not enough blood supply to provide enough oxygen and nutrients to parts of the brain, while in hemorrhagic stroke, there is bleeding within the enclosed cranial cavity. The present paper focuses on ischemic stroke. We first review accumulating observations of traveling waves occurring spontaneously or triggered by external stimuli in healthy subjects as well as in patients with brain disorders. We examine the putative functions of these waves and focus on post-stroke aphasia observed when brain language networks become fragmented and/or partly silent, thus perturbing the progression of traveling waves across perilesional areas. Secondly, we focus on a simplified model based on the current literature in the field and describe cortical traveling wave dynamics and their modulation. This model uses a biophysically realistic integro-differential equation describing spatially distributed and synaptically coupled neural networks producing traveling wave solutions. The model is used to calculate wave parameters (speed, amplitude and/or frequency) and to guide the reconstruction of the perturbed wave. A stimulation term is included in the model to restore wave propagation to a reasonably good level. Thirdly, we examine various issues related to the implementation model-guided neuromodulation in the treatment of post-stroke aphasia given that closed-loop invasive brain stimulation studies have recently produced encouraging results. Finally, we suggest that modulating traveling waves by acting selectively and dynamically across space and time to facilitate wave propagation is a promising therapeutic strategy especially at a time when a new generation of closed-loop cortical stimulation systems is about to arrive on the market.
Collapse
Affiliation(s)
- Anne Beuter
- Bordeaux INP, University of Bordeaux, Bordeaux, France.
| | - Anne Balossier
- Service de neurochirurgie fonctionnelle et stéréotaxique, AP-HM La Timone, Aix-Marseille University, Marseille, France
| | - François Vassal
- INSERM U1028 Neuropain, UMR 5292, Centre de Recherche en Neurosciences, Universités Lyon 1 et Saint-Etienne, Saint-Étienne, France
- Service de Neurochirurgie, Hôpital Nord, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Étienne, France
| | - Simone Hemm
- School of Life Sciences, Institute for Medical Engineering and Medical Informatics, University of Applied Sciences and Arts Northwestern Switzerland, 4132, Muttenz, Switzerland
| | - Vitaly Volpert
- Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, 69622, Villeurbanne, France
- INRIA Team Dracula, INRIA Lyon La Doua, 69603, Villeurbanne, France
- People's Friendship University of Russia (RUDN University), Miklukho-Maklaya St, Moscow, Russian Federation, 117198
| |
Collapse
|
63
|
|
64
|
Wang X, Zhou X, Bao J, Chen Z, Tang J, Gong X, Ni J, Fang Q, Liu Y, Su M. High-Frequency Repetitive Transcranial Magnetic Stimulation Mediates Autophagy Flux in Human Bone Mesenchymal Stromal Cells via NMDA Receptor-Ca 2+-Extracellular Signal-Regulated Kinase-Mammalian Target of Rapamycin Signaling. Front Neurosci 2019; 13:1225. [PMID: 31798406 PMCID: PMC6878833 DOI: 10.3389/fnins.2019.01225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/29/2019] [Indexed: 11/13/2022] Open
Abstract
Aim Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive and safe technique for treatment of central and peripheral nerve injury. In recent years, this technique has been widely used in clinic, and an increasing number of studies have reported its mechanisms. In this study, we investigated the mechanisms of rTMS-mediated autophagy flux in human bone mesenchymal stromal cells (BMSCs). Methods A frequency of 50 Hz was employed. Cells were divided into five groups: (1) normal, (2) sham, (3) 0.5 T, (4) 1.0 T, and (5) 1.5 T. Cells were stimulated for 20 min/day. The levels of p62, LC3-II/I, phosphorylated extracellular signal-regulated kinase (p-ERK), ERK, phosphorylated-AKT (p-AKT), AKT, phosphorylated mammalian target of rapamycin (p-mTOR), mTOR, phosphorylated protein kinase A (p-PKA), PKA, phosphorylated epidermal growth factor receptor (p-EGFR), EGFR, Nanog, Oct4, Sox2, and NMDA receptor (NMDAR1) were investigated by western blotting. Intracellular calcium (Ca2+) levels were quantified by flow cytometry. p62 and LC3 expression was also assessed by immunofluorescence analysis. Results In the 0.5 T group, rTMS increased the expression of LC3-II/I, p-ERK/ERK, and NMDAR1 and decreased the levels of p62 and p-mTOR/mTOR than in the normal group. The ratio of p-AKT/AKT, p-PKA/PKA, and p-EGFR/EGFR and the expression of Nanog, Oct4, and Sox2 remained unchanged. Immunofluorescence analysis revealed colocalization of p62 with LC3 puncta, and flow cytometry analysis displayed that Ca2+ levels were elevated. However, in the 1.0 and 1.5 T groups, no changes in the expression of these autophagy markers were observed. Conclusion In the 0.5 T group, high-frequency rTMS can induce autophagy through NMDAR–Ca2+–ERK–mTOR signaling in BMSCs. In the 1.0 and 1.5 T groups, autophagy is not activated.
Collapse
Affiliation(s)
- Xinlong Wang
- Department of Physical Medicine and Rehabilitation, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xing Zhou
- Department of Physical Medicine and Rehabilitation, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Children's Health Care Center, Wuxi Children's Hospital, Wuxi, China
| | - Jie Bao
- Sport Rehabilitation Center of Physical and Education School, Soochow University, Suzhou, China
| | - Zhiguo Chen
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingzhao Tang
- Department of Physical Medicine and Rehabilitation, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Medical Rehabilitation, Community Health Service Center of Yangming Street, Wuxi, China
| | - Xueyang Gong
- Department of Physical Medicine and Rehabilitation, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Cardiopulmonary Rehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
| | - Jing Ni
- Department of Physical Medicine and Rehabilitation, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Geriatric Rehabilitation, Jiangsu Rongjun Hospital, Wuxi, China
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yaobo Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Min Su
- Department of Physical Medicine and Rehabilitation, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
65
|
The relationship between individual alpha peak frequency and clinical outcome with repetitive Transcranial Magnetic Stimulation (rTMS) treatment of Major Depressive Disorder (MDD). Brain Stimul 2019; 12:1572-1578. [DOI: 10.1016/j.brs.2019.07.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 07/04/2019] [Accepted: 07/23/2019] [Indexed: 02/01/2023] Open
|
66
|
Besteher B, Gaser C, Ivanšić D, Guntinas-Lichius O, Dobel C, Nenadić I. Chronic tinnitus and the limbic system: Reappraising brain structural effects of distress and affective symptoms. NEUROIMAGE-CLINICAL 2019; 24:101976. [PMID: 31494400 PMCID: PMC6734051 DOI: 10.1016/j.nicl.2019.101976] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/14/2019] [Accepted: 08/06/2019] [Indexed: 12/18/2022]
Abstract
Chronic tinnitus has been associated with brain structural changes in both the auditory system as well as limbic system. While there is considerable inconsistency across brain structural findings, growing evidence suggests that distress and other non-auditory symptoms modulate effects. In this study we addressed this issue, testing the hypothesis that limbic changes in tinnitus relate to both disease-related distress as well as co-morbid psychopathology. We obtained high-resolution structural magnetic resonance imaging (MRI) scans from a total of 125 subjects: 59 patients with bilateral chronic tinnitus (29 with a co-morbid psychiatric condition, 30 without), 40 healthy controls and 26 psychiatric controls with depression/anxiety disorders (without tinnitus). Voxel-based morphometry with the CAT12 software package was used to analyse data. First, we analysed data based on a 2 × 2 factorial design (tinnitus; psychiatric co-morbidity), showing trend-level effects for tinnitus in ROI analyses of the anterior cingulate cortex and superior/transverse temporal gyri, and for voxel-based analysis in the left parahippocampal cortex. Multiple regression analyses showed that the parahippocampal finding was mostly predicted by tinnitus rather than (dimensional) psychopathology ratings. Comparing only low-distress tinnitus patients (independent of co-morbid conditions) with healthy controls also showed reduced left parahippocampal grey matter. Our findings demonstrate that depression and anxiety (not only subjective distress) are major modulators of brain structural effects in tinnitus, calling for a stronger consideration of psychopathology in future neurobiological and clinical studies of tinnitus. Chronic tinnitus is associated with high psychiatric co-morbidity and distress. Parahippocamal grey matter is associated with tinnitus rather than distress. Psychiatric co-morbidity modulates tinnitus-related structural patterns.
Collapse
Affiliation(s)
- Bianca Besteher
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.
| | - Christian Gaser
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Department of Neurology, Jena University Hospital, Jena, Germany
| | - Daniela Ivanšić
- Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany
| | | | - Christian Dobel
- Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Department of Psychiatry and Psychotherapy, Philipps-University Marburg/Marburg University Hospital - UKGM, Marburg, Germany
| |
Collapse
|
67
|
da Silva RDMF, Batistuzzo MC, Shavitt RG, Miguel EC, Stern E, Mezger E, Padberg F, D'Urso G, Brunoni AR. Transcranial direct current stimulation in obsessive-compulsive disorder: an update in electric field modeling and investigations for optimal electrode montage. Expert Rev Neurother 2019; 19:1025-1035. [PMID: 31244347 DOI: 10.1080/14737175.2019.1637257] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: Transcranial Direct Current Stimulation (tDCS) is a non-invasive brain stimulation intervention that has been investigated for several psychiatric disorders, including Obsessive-Compulsive Disorder (OCD). As there are several candidate brain regions for targeting OCD relevant networks, clinical studies using tDCS have considerably varied in terms of the electrode montages used. Computer modeling of electric field currents induced by tDCS can help guiding the research of relevant targets for OCD. In this review, the authors used this tool to investigate targeted brain areas from previous studies of tDCS in OCD. Areas covered: A literature search for articles with the keywords 'tDCS', 'Transcranial Direct Current Stimulation' and 'Obsessive Compulsive Disorder' was conducted to identify relevant publications. For comparing different electrode montages, electric field (EF) models were performed using high-resolution brain scan templates. Authors found 13 studies mostly showing an improvement in OCD symptoms. The electrode montages varied considerably between studies. Nonetheless, two main patterns of EFs could be identified: 'focal montages', with EFs concentrated in the prefrontal cortex, and 'diffuse montages', with widespread EFs over cortical areas. Expert opinion: Electric field simulation can guide future clinical trials in psychiatry, using personalized tDCS montages with distinct electrode positioning according to clusters of symptoms.
Collapse
Affiliation(s)
- Renata de Melo Felipe da Silva
- Department and Institute of Psychiatry, Obsessive-Compulsive Spectrum Disorders Program, Laboratory of Psychopathology and Psychiatric treatment (LIM-23), Service of Interdisciplinary Neuromodulation (SIN), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo , Sao Paulo , Brazil
| | - Marcelo Camargo Batistuzzo
- Department and Institute of Psychiatry, Obsessive-Compulsive Spectrum Disorders Program, Laboratory of Psychopathology and Psychiatric treatment (LIM-23), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo , Sao Paulo , Brazil
| | - Roseli Gedanke Shavitt
- Department and Institute of Psychiatry, Obsessive-Compulsive Spectrum Disorders Program, Laboratory of Psychopathology and Psychiatric treatment (LIM-23), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo , Sao Paulo , Brazil
| | - Eurípedes Constantino Miguel
- Department and Institute of Psychiatry, Obsessive-Compulsive Spectrum Disorders Program, Laboratory of Psychopathology and Psychiatric treatment (LIM-23), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo , Sao Paulo , Brazil
| | - Emily Stern
- Department of Psychiatry, New York University School of Medicine , New York , NY , USA.,Nathan Kline Institute for Psychiatric Research , Orangeburg , NY , USA
| | - Eva Mezger
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich , Munich , Germany
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich , Munich , Germany
| | - Giordano D'Urso
- Unit of Psychiatry, Department of Clinical Neuroscience, University of Naples Federico II , Naples , Italy
| | - Andre R Brunoni
- Service of Interdisciplinary Neuromodulation, Laboratory of Neurosciences (LIM-27) and National Institute of Biomarkers in Psychiatry (INBioN), Department and Institute of Psychiatry, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo , Sao Paulo , Brazil
| |
Collapse
|
68
|
Ljubisavljevic MR, Oommen J, Filipovic S, Bjekic J, Szolics M, Nagelkerke N. Effects of tDCS of Dorsolateral Prefrontal Cortex on Dual-Task Performance Involving Manual Dexterity and Cognitive Task in Healthy Older Adults. Front Aging Neurosci 2019; 11:144. [PMID: 31275139 PMCID: PMC6592113 DOI: 10.3389/fnagi.2019.00144] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 05/31/2019] [Indexed: 01/29/2023] Open
Abstract
Healthy aging limits the activities of daily living and personal independence. Furthermore, cognitive-motor interference in dual-task (e.g., walking while talking) appears to be more pronounced in the elderly. Transcranial direct current stimulation (tDCS), a form of the non-invasive brain stimulation technique, is known to modify cortical excitability and has been investigated as a tool for enhancing motor and cognitive performance in health and disease. The present study examined whether tDCS targeting the dorsolateral prefrontal cortex (DLPFC) could improve dual-task performance in healthy older adults. The effects of tDCS, among other factors, depend on stimulation polarity (anodal vs. cathodal), electrode setup (unilateral vs. bilateral) and the time of application (off-line vs. on-line). We therefore explored the effects of unilateral and simultaneous bilateral tDCS (anodal and cathodal) of left DLPFC while performing (on-line) the Grooved Pegboard Test (GPT) and Serial Seven Subtraction Test (SSST) alone or together (dual-tasking). The number of pegs and the number of correct subtractions were recorded before, during and 30 min after tDCS. The dual-task performance was measured as the percent change from single- to the dual-task condition (dual-task cost DTC). Only bilateral, anode left tDCS, induced a significant increase in subtracted numbers while dual-tasking, i.e., it reduced the DTC of manual dexterity (GPT) to a cognitive task. Significant changes 30 min after the stimulation were only present after bilateral anode right (BAR) tDCS on GPT dual-task costs. These findings suggest that anodal tDCS applied on-line interacts with a dual-task performance involving demanding cognitive and manual dexterity tasks. The results support the potential use of non-invasive brain stimulation for improvement of cognitive functioning in daily activities in older individuals.
Collapse
Affiliation(s)
- Milos R Ljubisavljevic
- Department of Physiology, College of Medicine and Health Sciences (CMHS), UAE University, Al Ain, United Arab Emirates
| | - Joji Oommen
- Department of Physiology, College of Medicine and Health Sciences (CMHS), UAE University, Al Ain, United Arab Emirates
| | - Sasa Filipovic
- Department of Neuroscience, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Jovana Bjekic
- Department of Neuroscience, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Miklos Szolics
- Department of Internal Medicine, Neurology Section, Tawam Hospital, Al Ain, United Arab Emirates
| | - Nico Nagelkerke
- Institute of Public Health, College of Medicine and Health Sciences (CMHS), UAE University, Al Ain, United Arab Emirates
| |
Collapse
|
69
|
Spagnolo PA, Gómez Pérez LJ, Terraneo A, Gallimberti L, Bonci A. Neural correlates of cue‐ and stress‐induced craving in gambling disorders: implications for transcranial magnetic stimulation interventions. Eur J Neurosci 2019; 50:2370-2383. [DOI: 10.1111/ejn.14313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/28/2018] [Accepted: 11/26/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Primavera A. Spagnolo
- Human Motor Control Section National Institute on Neurological Disorders and Stroke National Institutes of Health 10 Center Drive Room I3471:10CRC Bethesda MD 20892‐9412 USA
| | - Luis J. Gómez Pérez
- Novella Fronda Foundation for Studies and Applied Clinical Research in the Field of Addiction Medicine Padua Italy
| | - Alberto Terraneo
- Novella Fronda Foundation for Studies and Applied Clinical Research in the Field of Addiction Medicine Padua Italy
| | - Luigi Gallimberti
- Novella Fronda Foundation for Studies and Applied Clinical Research in the Field of Addiction Medicine Padua Italy
| | - Antonello Bonci
- Intramural Research Program National Institute on Drug Abuse US National Institutes of Health Baltimore MD USA
- Solomon H. Snyder Department of Neuroscience Johns Hopkins University School of Medicine Baltimore MD USA
- Department of Psychiatry Johns Hopkins University School of Medicine Baltimore MD USA
| |
Collapse
|
70
|
Sahlsten H, Holm A, Rauhala E, Takala M, Löyttyniemi E, Karukivi M, Nikkilä J, Ylitalo K, Paavola J, Johansson R, Taiminen T, Jääskeläinen SK. Neuronavigated Versus Non-navigated Repetitive Transcranial Magnetic Stimulation for Chronic Tinnitus: A Randomized Study. Trends Hear 2019; 23:2331216518822198. [PMID: 30803387 PMCID: PMC6327327 DOI: 10.1177/2331216518822198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/26/2018] [Accepted: 12/05/2018] [Indexed: 12/11/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has shown variable effect on tinnitus. A prospective, randomized 6-month follow-up study on parallel groups was conducted to compare the effects of neuronavigated rTMS to non-navigated rTMS in chronic tinnitus. Forty patients (20 men, 20 women), mean age of 52.9 years (standard deviation [ SD] = 11.7), with a mean tinnitus duration of 5.8 years ( SD = 3.2) and a mean tinnitus intensity of 62.2/100 ( SD = 12.8) on Visual Analog Scale (VAS 0-100) participated. Patients received 10 sessions of 1-Hz rTMS to the left temporal area overlying auditory cortex with or without neuronavigation. The main outcome measures were VAS scores for tinnitus intensity, annoyance, and distress, and Tinnitus Handicap Inventory (THI) immediately and at 1, 3, and 6 months after treatment. The mean tinnitus intensity (hierarchical linear mixed model: F3 = 7.34, p = .0006), annoyance ( F3 = 4.45, p = .0093), distress ( F3 = 5.04, p = .0051), and THI scores ( F4 = 17.30, p < .0001) decreased in both groups with non-significant differences between the groups, except for tinnitus intensity ( F3 = 2.96, p = .0451) favoring the non-navigated rTMS. Reduction in THI scores persisted for up to 6 months in both groups. Cohen's d for tinnitus intensity ranged between 0.33 and 0.47 in navigated rTMS and between 0.55 and 1.07 in non-navigated rTMS. The responder rates for VAS or THI ranged between 35% and 85% with no differences between groups ( p = .054-1.0). In conclusion, rTMS was effective for chronic tinnitus, but the method of coil localization was not a critical factor for the treatment outcome.
Collapse
Affiliation(s)
| | - Anu Holm
- Department of Clinical Neurophysiology, SataDiag, Satakunta Hospital District, Pori, Finland
| | - Esa Rauhala
- Department of Clinical Neurophysiology, SataDiag, Satakunta Hospital District, Pori, Finland
| | - Mari Takala
- Department of Clinical Neurophysiology, SataDiag, Satakunta Hospital District, Pori, Finland
| | | | - Max Karukivi
- Unit of Adolescent Psychiatry, Satakunta Hospital District, Pori, Finland
- Department of Psychiatry, University of Turku and Turku University Hospital, Finland
| | - Johanna Nikkilä
- Unit of Adolescent Psychiatry, Satakunta Hospital District, Pori, Finland
- Department of Psychiatry, University of Turku and Turku University Hospital, Finland
| | - Kirsi Ylitalo
- Department of Ear, Nose and Throat, Satakunta Hospital District, Pori, Finland
| | - Janika Paavola
- Department of Medical Physics, Turku University Hospital, Finland
| | - Reijo Johansson
- Department of Ear, Nose and Throat, Turku University Hospital, Finland
| | - Tero Taiminen
- Department of Psychiatry, Turku University Hospital, Finland
| | - Satu K. Jääskeläinen
- Department of Clinical Neurophysiology, Division of Medical Imaging, Turku University Hospital and University of Turku, Finland
| |
Collapse
|
71
|
Almousa A, Alajaji R, Alaboudi M, Al-Sultan F, Bashir S. Safety of Transcranial Direct Current Stimulation of Frontal, Parietal, and Cerebellar Regions in Fasting Healthy Adults. Behav Sci (Basel) 2018; 8:bs8090081. [PMID: 30201910 PMCID: PMC6162609 DOI: 10.3390/bs8090081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/02/2018] [Accepted: 09/06/2018] [Indexed: 11/18/2022] Open
Abstract
(1) Background: Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation modality that has been investigated in a large number of studies in terms of it is effects on brain function, safety of use, and future implications. The principal aim of this study was to investigate the safety of 1.5-mA tDCS of three brain areas, that is, frontal, partial, and cerebellar cortices, in fasting healthy individuals during the month of Ramadan. (2) Methods: In a single-blinded, sham-controlled study, we assessed the safety of a 20-min tDCS current (1.5 mA, 35 cm2) over the right frontal, parietal, and cerebellar cortex areas after 8 h of fasting in healthy right-handed adult subjects using a standard safety questionnaire. (3) Results: A total of 49 subjects completed the tDCS sessions and safety questionnaire. None of the sessions were stopped due to pain or discomfort during stimulation. Moreover, no subject experienced serious adverse events such as seizures or loss of consciousness. (4) Conclusions: There was no significant difference in the frequency or type of side effects between active and sham stimulation sessions. The tDCS protocol applied in this study was found to be safe in fasting healthy adults.
Collapse
Affiliation(s)
- Abdullah Almousa
- Department of Medicine, King Saud University, Riyadh, P.O. 11445, Saudi Arabia.
| | - Reema Alajaji
- Department of Medicine, King Saud University, Riyadh, P.O. 11445, Saudi Arabia.
| | - Malak Alaboudi
- Department of Medicine, King Saud University, Riyadh, P.O. 11445, Saudi Arabia.
| | - Fahad Al-Sultan
- Department of Medicine, King Saud University, Riyadh, P.O. 11445, Saudi Arabia.
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, P.O. 15215, Saudi Arabia.
| |
Collapse
|
72
|
Jacquemin L, Shekhawat GS, Van de Heyning P, Mertens G, Fransen E, Van Rompaey V, Topsakal V, Moyaert J, Beyers J, Gilles A. Effects of Electrical Stimulation in Tinnitus Patients: Conventional Versus High-Definition tDCS. Neurorehabil Neural Repair 2018; 32:714-723. [PMID: 30019630 DOI: 10.1177/1545968318787916] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Contradictory results have been reported for transcranial direct current stimulation (tDCS) as treatment for tinnitus. The recently developed high-definition tDCS (HD tDCS) uses smaller electrodes to limit the excitation to the desired brain areas. OBJECTIVE The current study consisted of a retrospective part and a prospective part, aiming to compare 2 tDCS electrode placements and to explore effects of HD tDCS by matched pairs analyses. METHODS Two groups of 39 patients received tDCS of the dorsolateral prefrontal cortex (DLPFC) or tDCS of the right supraorbital-left temporal area (RSO-LTA). Therapeutic effects were assessed with the tinnitus functional index (TFI), a visual analogue scale (VAS) for tinnitus loudness, and the hyperacusis questionnaire (HQ) filled out at 3 visits: pretherapy, posttherapy, and follow-up. With a new group of patients and in a similar way, the effects of HD tDCS of the right DLPFC were assessed, with the tinnitus questionnaire (TQ) and the hospital anxiety and depression scale (HADS) added. RESULTS TFI total scores improved significantly after both tDCS and HD tDCS (DLPFC: P < .01; RSO-LTA: P < .01; HD tDCS: P = .05). In 32% of the patients, we observed a clinically significant improvement in TFI. The 2 tDCS groups and the HD tDCS group showed no differences on the evolution of outcomes over time (TFI: P = .16; HQ: P = .85; VAS: P = .20). CONCLUSIONS TDCS and HD tDCS resulted in a clinically significant improvement in TFI in 32% of the patients, with the 3 stimulation positions having similar results. Future research should focus on long-term effects of electrical stimulation.
Collapse
Affiliation(s)
- Laure Jacquemin
- 1 Department of Otorhinolaryngology and Head & Neck Surgery, Antwerp University Hospital, Edegem, Belgium.,2 Faculty of Medicine, Campus Drie Eiken, Antwerp University, Wilrijk, Belgium
| | - Giriraj Singh Shekhawat
- 3 University of Auckland, Auckland, New Zealand.,4 Tinnitus Research Initiative, Regensburg, Germany
| | - Paul Van de Heyning
- 1 Department of Otorhinolaryngology and Head & Neck Surgery, Antwerp University Hospital, Edegem, Belgium.,2 Faculty of Medicine, Campus Drie Eiken, Antwerp University, Wilrijk, Belgium
| | - Griet Mertens
- 1 Department of Otorhinolaryngology and Head & Neck Surgery, Antwerp University Hospital, Edegem, Belgium.,2 Faculty of Medicine, Campus Drie Eiken, Antwerp University, Wilrijk, Belgium
| | - Erik Fransen
- 1 Department of Otorhinolaryngology and Head & Neck Surgery, Antwerp University Hospital, Edegem, Belgium.,5 Center for Medical Genetics, Antwerp University Hospital and University of Antwerp, Edegem, Belgium.,6 StatUa Center for Statistics, University of Antwerp, Antwerp, Belgium
| | - Vincent Van Rompaey
- 1 Department of Otorhinolaryngology and Head & Neck Surgery, Antwerp University Hospital, Edegem, Belgium.,2 Faculty of Medicine, Campus Drie Eiken, Antwerp University, Wilrijk, Belgium
| | - Vedat Topsakal
- 1 Department of Otorhinolaryngology and Head & Neck Surgery, Antwerp University Hospital, Edegem, Belgium.,2 Faculty of Medicine, Campus Drie Eiken, Antwerp University, Wilrijk, Belgium
| | - Julie Moyaert
- 1 Department of Otorhinolaryngology and Head & Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Jolien Beyers
- 1 Department of Otorhinolaryngology and Head & Neck Surgery, Antwerp University Hospital, Edegem, Belgium.,2 Faculty of Medicine, Campus Drie Eiken, Antwerp University, Wilrijk, Belgium
| | - Annick Gilles
- 1 Department of Otorhinolaryngology and Head & Neck Surgery, Antwerp University Hospital, Edegem, Belgium.,2 Faculty of Medicine, Campus Drie Eiken, Antwerp University, Wilrijk, Belgium.,7 Department of Human and Social Welfare, University College Ghent, Ghent, Belgium
| |
Collapse
|
73
|
Abstract
AbstractPopulation ageing and the global burden of dementia pose a major challenge for human societies and a priority for public health. Cognitive enhancement,i.e.the targeted amplification of core cognitive abilities, is raising increasing attention among researchers as an effective strategy to complement traditional therapeutic and assistive approaches, and reduce the impact of age-related cognitive disability. In this paper, we discuss the possible applicability of cognitive enhancement for public health purposes to mitigate the burden of population ageing and dementia. After discussing the promises and challenges associated with enhancing ageing citizens and people with cognitive disabilities, we argue that global societies have a moral obligation to consider the careful use of cognitive enhancement technologies as a possible strategy to improve individual and public health. In addition, we address a few primary normative issues and possible objections that could arise from the implementation of public health-oriented cognitive enhancement technologies.
Collapse
|