51
|
Namba MD, Kupchik YM, Spencer SM, Garcia‐Keller C, Goenaga JG, Powell GL, Vicino IA, Hogue IB, Gipson CD. Accumbens neuroimmune signaling and dysregulation of astrocytic glutamate transport underlie conditioned nicotine-seeking behavior. Addict Biol 2020; 25:e12797. [PMID: 31330570 PMCID: PMC7323912 DOI: 10.1111/adb.12797] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/18/2019] [Accepted: 05/23/2019] [Indexed: 12/16/2022]
Abstract
Nicotine self-administration is associated with decreased expression of the glial glutamate transporter (GLT-1) and the cystine-glutamate exchange protein xCT within the nucleus accumbens core (NAcore). N-acetylcysteine (NAC) has been shown to restore these proteins in a rodent model of drug addiction and relapse. However, the specific molecular mechanisms driving its inhibitory effects on cue-induced nicotine reinstatement are unknown. Here, we confirm that extinction of nicotine-seeking behavior is associated with impaired NAcore GLT-1 function and expression and demonstrates that reinstatement of nicotine seeking rapidly enhances membrane fraction GLT-1 expression. Extinction and cue-induced reinstatement of nicotine seeking was also associated with increased tumor necrosis factor alpha (TNFα) and decreased glial fibrillary acidic protein (GFAP) expression in the NAcore. NAC treatment (100 mg/kg/day, i.p., for 5 d) inhibited cue-induced nicotine seeking and suppressed AMPA to NMDA current ratios, suggesting that NAC reduces NAcore postsynaptic excitability. In separate experiments, rats received NAC and an antisense vivo-morpholino to selectively suppress GLT-1 expression in the NAcore during extinction and were subsequently tested for cue-induced reinstatement of nicotine seeking. NAC treatment rescued NAcore GLT-1 expression and attenuated cue-induced nicotine seeking, which was blocked by GLT-1 antisense. NAC also reduced TNFα expression in the NAcore. Viral manipulation of the NF-κB pathway, which is downstream of TNFα, revealed that cue-induced nicotine seeking is regulated by NF-κB pathway signaling in the NAcore independent of GLT-1 expression. Ultimately, these results are the first to show that immunomodulatory mechanisms may regulate known nicotine-induced alterations in glutamatergic plasticity that mediate cue-induced nicotine-seeking behavior.
Collapse
Affiliation(s)
- Mark D. Namba
- Department of PsychologyArizona State University Tempe AZ USA
| | - Yonatan M. Kupchik
- Department of Medical NeurobiologyHebrew University of Jerusalem Jerusalem Israel
| | - Sade M. Spencer
- Department of PharmacologyUniversity of Minnesota Minneapolis MN USA
| | | | | | - Gregory L. Powell
- Department of PsychologyArizona State University Tempe AZ USA
- School of Life SciencesArizona State University Tempe AZ USA
| | - Ian A. Vicino
- School of Life SciencesArizona State University Tempe AZ USA
- Center for Immunotherapy, Vaccines, and Virotherapy, Biodesign InstituteArizona State University Tempe AZ USA
| | - Ian B. Hogue
- School of Life SciencesArizona State University Tempe AZ USA
- Center for Immunotherapy, Vaccines, and Virotherapy, Biodesign InstituteArizona State University Tempe AZ USA
| | | |
Collapse
|
52
|
Musaus M, Navabpour S, Jarome TJ. The diversity of linkage-specific polyubiquitin chains and their role in synaptic plasticity and memory formation. Neurobiol Learn Mem 2020; 174:107286. [PMID: 32745599 DOI: 10.1016/j.nlm.2020.107286] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/15/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022]
Abstract
Over the last 20 years, a number of studies have provided strong support for protein degradation mediated by the ubiquitin-proteasome system in synaptic plasticity and memory formation. In this system, target substrates become covalently modified by the small protein ubiquitin through a series of enzymatic reactions involving hundreds of different ligases. While some substrates will acquire only a single ubiquitin, most will be marked by multiple ubiquitin modifications, which link together at specific lysine sites or the N-terminal methionine on the previous ubiquitin to form a polyubiquitin chain. There are at least eight known linkage-specific polyubiquitin chains a target protein can acquire, many of which are independent of the proteasome, and these chains can be homogenous, mixed, or branched in nature, all of which result in different functional outcomes and fates for the target substrate. However, as the focus has remained on protein degradation, much remains unknown about the role of these diverse ubiquitin chains in the brain, particularly during activity- and learning-dependent synaptic plasticity. Here, we review the different types and functions of ubiquitin chains and summarize evidence suggesting a role for these diverse ubiquitin modifications in synaptic plasticity and memory formation. We conclude by discussing how technological limitations have limited our ability to identify and elucidate the role of different ubiquitin chains in the brain and speculate on the future directions and implications of understanding linkage-specific ubiquitin modifications in activity- and learning-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Madeline Musaus
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Shaghayegh Navabpour
- Fralin Biomedical Research Institute, Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Timothy J Jarome
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Fralin Biomedical Research Institute, Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA; Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
53
|
Kumar S, Fritz Z, Sulakhiya K, Theis T, Berthiaume F. Transcriptional Factors and Protein Biomarkers as Target Therapeutics in Traumatic Spinal Cord and Brain Injury. Curr Neuropharmacol 2020; 18:1092-1105. [PMID: 32442086 PMCID: PMC7709155 DOI: 10.2174/1570159x18666200522203542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/19/2020] [Accepted: 05/07/2020] [Indexed: 12/04/2022] Open
Abstract
Traumatic injury to the spinal cord (SCI) and brain (TBI) are serious health problems and affect many people every year throughout the world. These devastating injuries are affecting not only patients but also their families socially as well as financially. SCI and TBI lead to neurological dysfunction besides continuous inflammation, ischemia, and necrosis followed by progressive neurodegeneration. There are well-established changes in several other processes such as gene expression as well as protein levels that are the important key factors to control the progression of these diseases. We are not yet able to collect enough knowledge on the underlying mechanisms leading to the altered gene expression profiles and protein levels in SCI and TBI. Cell loss is hastened by the induction or imbalance of pro- or anti-inflammatory expression profiles and transcription factors for cell survival after or during trauma. There is a sequence of events of dysregulation of these factors from early to late stages of trauma that opens a therapeutic window for new interventions to prevent/restrict the progression of these diseases. There has been increasing interest in the modulation of these factors for improving the patient’s quality of life by targeting both SCI and TBI. Here, we review some of the recent transcriptional factors and protein biomarkers that have been developed and discovered in the last decade in the context of targeted therapeutics for SCI and TBI patients.
Collapse
Affiliation(s)
- Suneel Kumar
- Department of Biomedical Engineering, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Zachary Fritz
- Department of Biomedical Engineering, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Kunjbihari Sulakhiya
- Department of Pharmacy, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | - Thomas Theis
- W. M. Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers, The
State University of New Jersey, Piscataway, New Jersey, USA
| | - Francois Berthiaume
- Department of Biomedical Engineering, The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
54
|
Shetty AK, Attaluri S, Kodali M, Shuai B, Shetty GA, Upadhya D, Hattiangady B, Madhu LN, Upadhya R, Bates A, Rao X. Monosodium luminol reinstates redox homeostasis, improves cognition, mood and neurogenesis, and alleviates neuro- and systemic inflammation in a model of Gulf War Illness. Redox Biol 2019; 28:101389. [PMID: 31778892 PMCID: PMC6888767 DOI: 10.1016/j.redox.2019.101389] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 12/15/2022] Open
Abstract
Enduring brain dysfunction is amid the highly manifested symptoms in veterans with Gulf War Illness (GWI). Animal studies have established that lasting brain dysfunction in GWI is concomitant with augmented oxidative stress, inflammation, and declined neurogenesis in the brain, and systemic inflammation. We hypothesize that drugs capable of restoring redox homeostasis in GWI will improve cognitive and mood function with modulation of neuroinflammation and neurogenesis. We examined the efficacy of monosodium luminol-GVT (MSL), a drug that promotes redox homeostasis, for improving cognitive and mood function in GWI rats. Young rats were exposed to GWI-related chemicals and moderate restraint stress for four weeks. Four months later, GWI rats received different doses of MSL or vehicle for eight weeks. Behavioral analyses in the last three weeks of treatment revealed that GWI rats receiving higher doses of MSL displayed better cognitive and mood function associated with reinstatement of redox homeostasis. Such restoration was evident from the normalized expression of multiple genes encoding proteins involved in combating oxidative stress in the brain and the return of several oxidative stress markers to control levels in the brain and the circulating blood. Sustained redox homeostasis by MSL also resulted in antiinflammatory and pro-neurogenic effects, which were apparent from reduced densities of hypertrophied astrocytes and activated microglia, and increased neurogenesis with augmented neural stem cell proliferation. Moreover, MSL treatment normalized the concentration of multiple proinflammatory markers in the circulating blood. Thus, MSL treatment reinstated redox homeostasis in an animal model of GWI, which resulted in alleviation of both brain and systemic inflammation, improved neurogenesis, and better cognitive and mood function. Brain dysfunction in an animal model of Gulf War Illness is linked with persistently elevated oxidative stress. Monosodium Luminol treatment reinstated redox homeostasis in a model of Gulf War Illness. Reinstatement of redox balance improved cognitive and mood function. Restoration of redox balance modulated reactive astrocytes and activated microglia in the brain. Return of redox homeostasis enhanced neurogenesis and suppressed systemic inflammation.
Collapse
Affiliation(s)
- Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.
| | - Sahithi Attaluri
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Bing Shuai
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Geetha A Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Dinesh Upadhya
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Bharathi Hattiangady
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Leelavathi N Madhu
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Adrian Bates
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Xiaolan Rao
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| |
Collapse
|
55
|
Moreno C, Parellada M, MacDowell KS, García-Bueno B, Cabrera B, González-Pinto A, Saiz P, Lobo A, Rodriguez-Jimenez R, Berrocoso E, Bernardo M, Leza JC. Differences in the regulation of inflammatory pathways in adolescent- and adult-onset first-episode psychosis. Eur Child Adolesc Psychiatry 2019; 28:1395-1405. [PMID: 30843122 DOI: 10.1007/s00787-019-01295-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/09/2019] [Indexed: 12/16/2022]
Abstract
A precise description of the inflammatory response in first-episode psychosis (FEP) by age of onset does not exist. We explored baseline and 6-month follow-up differences in the pro/anti-inflammatory balance in plasma and peripheral blood mononuclear cells in adolescent-onset FEP (≤ 18 y.o., N = 27) and adult-onset FEP (≥ 25 y.o., N = 43) using non-parametric 1-category ANCOVA, with age group as an independent variable and values of pro- and anti-inflammatory markers at baseline and at follow-up as dependent variables. We used a non-parametric repeated-measures mixed-effects model to explore the baseline/6-month change in pro- and anti-inflammatory markers within adolescent- and adult-onset groups, exploring differential trajectories of change by means of the interaction of time by age-of-onset group. Levels of the nuclear transcription factor (NFκB), a master regulator of the inflammatory and oxido/nitrosative status of cells, were higher in adolescent-onset FEP both at baseline and after 6 months. During follow-up, we found further increases in levels of soluble inflammatory markers (PGE2 and NO2-) only in adolescent-onset FEP. In contrast, in adult-onset FEP, the expression of inducible NO synthase (iNOS), which is also pro-inflammatory, tended to decrease, with no further increase in other pro-inflammatory markers. Significant differences in the direction of change by age-of-onset cohort exist only for NFκB (F = 4.165, df = 2, 70.95, p = 0.019). Our results support the existence of changes in the pro/anti-inflammatory balance in FEP depending on the neurodevelopmental stage at illness onset. These results also suggest that inflammation may be a potential therapeutic target in adolescent-onset FEP.
Collapse
Affiliation(s)
- C Moreno
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense (UCM), IiSGM, Madrid, Spain.
| | - M Parellada
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense (UCM), IiSGM, Madrid, Spain
| | - K S MacDowell
- Department of Pharmacology and Toxicology, Faculty of Medicine, UCM, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), IUINQ, Madrid, Spain
| | - B García-Bueno
- Department of Pharmacology and Toxicology, Faculty of Medicine, UCM, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), IUINQ, Madrid, Spain
| | - B Cabrera
- Barcelona Clinic Schizophrenia Unit, Neuroscience Institute, Hospital Clinic of Barcelona, Barcelona, Spain
| | - A González-Pinto
- Hospital Universitario, Alava, EHU/UPV, BIOARABA, Vitoria, Spain
| | - P Saiz
- Department of Psychiatry, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| | - A Lobo
- Department of Psychiatry, Instituto de Investigación Sanitaria Aragón, University of Zaragoza, Zaragoza, Spain
| | - R Rodriguez-Jimenez
- Department of Psychiatry, Instituto de Investigación Hospital, 12 de Octubre (i+12), Madrid, Spain.,CogPsy-Group, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - E Berrocoso
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, University of Cádiz, Cádiz, Spain
| | - M Bernardo
- Barcelona Clinic Schizophrenia Unit, Neuroscience Institute, Hospital Clinic of Barcelona, Barcelona, Spain.,Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - J C Leza
- Department of Pharmacology and Toxicology, Faculty of Medicine, UCM, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), IUINQ, Madrid, Spain
| | | |
Collapse
|
56
|
Parra-Damas A, Saura CA. Synapse-to-Nucleus Signaling in Neurodegenerative and Neuropsychiatric Disorders. Biol Psychiatry 2019; 86:87-96. [PMID: 30846302 DOI: 10.1016/j.biopsych.2019.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/18/2018] [Accepted: 01/04/2019] [Indexed: 01/07/2023]
Abstract
Synapse-to-nucleus signaling is critical for converting signals received at synapses into transcriptional programs essential for cognition, memory, and emotion. This neuronal mechanism usually involves activity-dependent translocation of synaptonuclear factors from synapses to the nucleus resulting in regulation of transcriptional programs underlying synaptic plasticity. Acting as synapse-to-nucleus messengers, amyloid precursor protein intracellular domain associated-1 protein, cAMP response element binding protein (CREB)-regulated transcription coactivator-1, Jacob, nuclear factor kappa-light-chain-enhancer of activated B cells, RING finger protein 10, and SH3 and multiple ankyrin repeat domains 3 play essential roles in synapse remodeling and plasticity, which are considered the cellular basis of memory. Other synaptic proteins, such as extracellular signal-regulated kinase, calcium/calmodulin-dependent protein kinase II gamma, and CREB2, translocate from dendrites or cytosol to the nucleus upon synaptic activity, suggesting that they could contribute to synapse-to-nucleus signaling. Notably, some synaptonuclear factors converge on the transcription factor CREB, indicating that CREB signaling is a key hub mediating integration of synaptic signals into transcriptional programs required for neuronal function and plasticity. Although major efforts have been focused on identification and regulatory mechanisms of synaptonuclear factors, the relevance of synapse-to-nucleus communication in brain physiology and pathology is still unclear. Recent evidence, however, indicates that synaptonuclear factors are implicated in neuropsychiatric, neurodevelopmental, and neurodegenerative disorders, suggesting that uncoupling synaptic activity from nuclear signaling may prompt synapse pathology, contributing to a broad spectrum of brain disorders. This review summarizes current knowledge of synapse-to-nucleus signaling in neuron survival, synaptic function and plasticity, and memory. Finally, we discuss how altered synapse-to-nucleus signaling may lead to memory and emotional disturbances, which is relevant for clinical and therapeutic strategies in neurodegenerative and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Arnaldo Parra-Damas
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carlos A Saura
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
57
|
Kaldun JC, Sprecher SG. Initiated by CREB: Resolving Gene Regulatory Programs in Learning and Memory. Bioessays 2019; 41:e1900045. [DOI: 10.1002/bies.201900045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/29/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Jenifer C. Kaldun
- Department of BiologyUniversity of Fribourg1700 Fribourg Switzerland
| | - Simon G. Sprecher
- Department of BiologyUniversity of Fribourg1700 Fribourg Switzerland
| |
Collapse
|
58
|
Abstract
Innate immune signaling is an important feature in the pathology of alcohol use disorders. Alcohol abuse causes persistent innate immune activation in the brain. This is seen in postmortem human alcoholic brain specimens, as well as in primate and rodent models of alcohol consumption. Further, in vitro models of alcohol exposure in neurons and glia also demonstrate innate immune activation. The activation of the innate immune system seems to be important in the development of alcohol use pathology, as anti-immune therapies reduce pathology and ethanol self-administration in rodent models. Further, innate immune activation has been identified in each of the stages of addiction: binge/intoxication, withdrawal/negative affect, and preoccupation/craving. This suggests that innate immune activation may play a role both in the development and maintenance of alcoholic pathology. In this chapter, we discuss the known contributions of innate immune signaling in the pathology of alcohol use disorders, and present potential therapeutic interventions that may be beneficial for alcohol use disorders.
Collapse
Affiliation(s)
- Leon G Coleman
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Fulton T Crews
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
59
|
Dresselhaus EC, Meffert MK. Cellular Specificity of NF-κB Function in the Nervous System. Front Immunol 2019; 10:1043. [PMID: 31143184 PMCID: PMC6520659 DOI: 10.3389/fimmu.2019.01043] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/24/2019] [Indexed: 12/17/2022] Open
Abstract
Nuclear Factor Kappa B (NF-κB) is a ubiquitously expressed transcription factor with key functions in a wide array of biological systems. While the role of NF-κB in processes, such as host immunity and oncogenesis has been more clearly defined, an understanding of the basic functions of NF-κB in the nervous system has lagged behind. The vast cell-type heterogeneity within the central nervous system (CNS) and the interplay between cell-type specific roles of NF-κB contributes to the complexity of understanding NF-κB functions in the brain. In this review, we will focus on the emerging understanding of cell-autonomous regulation of NF-κB signaling as well as the non-cell-autonomous functional impacts of NF-κB activation in the mammalian nervous system. We will focus on recent work which is unlocking the pleiotropic roles of NF-κB in neurons and glial cells (including astrocytes and microglia). Normal physiology as well as disorders of the CNS in which NF-κB signaling has been implicated will be discussed with reference to the lens of cell-type specific responses.
Collapse
Affiliation(s)
- Erica C Dresselhaus
- Department of Biological Chemistry and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mollie K Meffert
- Department of Biological Chemistry and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
60
|
Jha NK, Jha SK, Kar R, Nand P, Swati K, Goswami VK. Nuclear factor-kappa β as a therapeutic target for Alzheimer's disease. J Neurochem 2019; 150:113-137. [PMID: 30802950 DOI: 10.1111/jnc.14687] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/06/2019] [Accepted: 02/16/2019] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a typical progressive, chronic neurodegenerative disorder with worldwide prevalence. Its clinical manifestation involves the presence of extracellular plaques and intracellular neurofibrillary tangles (NFTs). NFTs occur in brain tissues as a result of both Aβ agglomeration and Tau phosphorylation. Although there is no known cure for AD, research into possible cures and treatment options continues using cell-cultures and model animals/organisms. The nuclear factor-kappa β (NF-κβ) plays an active role in the progression of AD. Impairment to this signaling module triggers undesirable phenotypic changes such as neuroinflammation, activation of microglia, oxidative stress related complications, and apoptotic cell death. These imbalances further lead to homeostatic abnormalities in the brain or in initial stages of AD essentially pushing normal neurons toward the degeneration process. Interestingly, the role of NF-κβ signaling associated receptor-interacting protein kinase is currently observed in apoptotic and necrotic cell death, and has been reported in brains. Conversely, the NF-κβ signaling pathway has also been reported to be involved in normal brain functioning. This pathway plays a crucial role in maintaining synaptic plasticity and balancing between learning and memory. Since any impairment in the pathways associated with NF-κβ signaling causes altered neuronal dynamics, neurotherapeutics using compounds including, antioxidants, bioflavonoids, and non-steroidal anti-inflammatory drugs against such abnormalities offer possibilities to rectify aberrant excitatory neuronal activity in AD. In this review, we have provided an extensive overview of the crucial role of NF-κβ signaling in normal brain homeostasis. We have also thoroughly outlined several established pathomechanisms associated with NF-κβ pathways in AD, along with their respective therapeutic approaches.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, Noida Institute of Engineering & Technology (NIET), Greater Noida, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Rohan Kar
- Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Parma Nand
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Kumari Swati
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Vineet Kumar Goswami
- Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| |
Collapse
|
61
|
Orellana AM, Leite JA, Kinoshita PF, Vasconcelos AR, Andreotti DZ, de Sá Lima L, Xavier GF, Kawamoto EM, Scavone C. Ouabain increases neuronal branching in hippocampus and improves spatial memory. Neuropharmacology 2018; 140:260-274. [PMID: 30099050 DOI: 10.1016/j.neuropharm.2018.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/05/2018] [Accepted: 08/06/2018] [Indexed: 12/20/2022]
Abstract
Previous research shows Ouabain (OUA) to bind Na, K-ATPase, thereby triggering a number of signaling pathways, including the transcription factors NFᴋB and CREB. These transcription factors play a key role in the regulation of BDNF and WNT-β-catenin signaling cascades, which are involved in neuroprotection and memory regulation. This study investigated the effects of OUA (10 nM) in the modulation of the principal signaling pathways involved in morphological plasticity and memory formation in the hippocampus of adult rats. The results show intrahippocampal injection of OUA 10 nM to activate the Wnt/β-Catenin signaling pathway and to increase CREB/BDNF and NFᴋB levels. These effects contribute to important changes in the cellular microenvironment, resulting in enhanced levels of dendritic branching in hippocampal neurons, in association with an improvement in spatial reference memory and the inhibition of long-term memory extinction.
Collapse
Affiliation(s)
- Ana Maria Orellana
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| | - Jacqueline Alves Leite
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| | - Paula Fernanda Kinoshita
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| | - Andrea Rodrigues Vasconcelos
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| | - Diana Zukas Andreotti
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| | - Larissa de Sá Lima
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| | - Gilberto Fernando Xavier
- Department of Physiology, Institute of Bioscience, University of São Paulo, Adress: Rua do Matão, Travessa 14, 101, São Paulo, 05508-090, Brazil.
| | - Elisa Mitiko Kawamoto
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| | - Cristoforo Scavone
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| |
Collapse
|
62
|
Martín-Hernández D, Caso JR, Javier Meana J, Callado LF, Madrigal JLM, García-Bueno B, Leza JC. Intracellular inflammatory and antioxidant pathways in postmortem frontal cortex of subjects with major depression: effect of antidepressants. J Neuroinflammation 2018; 15:251. [PMID: 30180869 PMCID: PMC6122627 DOI: 10.1186/s12974-018-1294-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/28/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Studies show that Toll-like receptors (TLRs), members of the innate immune system, might participate in the pathogenesis of the major depressive disorder (MDD). However, evidence of this participation in the brain of patients with MDD has been elusive. METHODS This work explores whether the protein expression by immunodetection assays (Western blot) of elements of TLR-4 pathways controlling inflammation and the oxidative/nitrosative stress are altered in postmortem dorsolateral prefrontal cortex of subjects with MDD. The potential modulation induced by the antidepressant treatment on these parameters was also assessed. Thirty MDD subjects (15 antidepressant-free and 15 under antidepressant treatment) were matched for gender and age to 30 controls in a paired design. RESULTS No significant changes in TLR-4 expression were detected. An increased expression of the TLR-4 endogenous ligand Hsp70 (+ 33%), but not of Hsp60, and the activated forms of mitogen-activated protein kinases (MAPKs) p38 (+ 47%) and JNK (+ 56%) was observed in MDD. Concomitantly, MDD subjects present a 45% decreased expression of DUSP2 (a regulator of MAPKs) and reduced (- 21%) expression of the antioxidant nuclear factor Nrf2. Antidepressant treatment did not modify the changes detected in the group with MDD and actually increased (+ 25%) the expression of p11, a protein linked with the transport of neurotransmitters and depression. CONCLUSION Data indicate an altered TLR-4 immune response in the brain of subjects with MDD. Additional research focused on the mechanisms contributing to the antidepressant-induced TLR-4 pathway modulation is warranted and could help to develop new treatment strategies for MDD.
Collapse
Affiliation(s)
- David Martín-Hernández
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III (ISCIII), C/ Monforte de Lemos 3-5, 28029, Madrid, Spain.,Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, 28040, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Avda. de Córdoba, s/n, 28041, Madrid, Spain
| | - Javier R Caso
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III (ISCIII), C/ Monforte de Lemos 3-5, 28029, Madrid, Spain. .,Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, 28040, Madrid, Spain. .,Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Avda. de Córdoba, s/n, 28041, Madrid, Spain.
| | - J Javier Meana
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III (ISCIII), C/ Monforte de Lemos 3-5, 28029, Madrid, Spain.,Departamento de Farmacología, Universidad del País Vasco, UPV/EHU, B. Sarriena s/n, 48940, Leioa, Bizkaia, Spain.,Instituto de Investigación Sanitaria Biocruces, Plaza de Cruces s/n, 48903, Barakaldo, Bizkaia, Spain
| | - Luis F Callado
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III (ISCIII), C/ Monforte de Lemos 3-5, 28029, Madrid, Spain.,Departamento de Farmacología, Universidad del País Vasco, UPV/EHU, B. Sarriena s/n, 48940, Leioa, Bizkaia, Spain.,Instituto de Investigación Sanitaria Biocruces, Plaza de Cruces s/n, 48903, Barakaldo, Bizkaia, Spain
| | - José L M Madrigal
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III (ISCIII), C/ Monforte de Lemos 3-5, 28029, Madrid, Spain.,Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, 28040, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Avda. de Córdoba, s/n, 28041, Madrid, Spain
| | - Borja García-Bueno
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III (ISCIII), C/ Monforte de Lemos 3-5, 28029, Madrid, Spain.,Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, 28040, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Avda. de Córdoba, s/n, 28041, Madrid, Spain
| | - Juan C Leza
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III (ISCIII), C/ Monforte de Lemos 3-5, 28029, Madrid, Spain.,Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, 28040, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Avda. de Córdoba, s/n, 28041, Madrid, Spain
| |
Collapse
|
63
|
Zhu LJ, Ni HY, Chen R, Chang L, Shi HJ, Qiu D, Zhang Z, Wu DL, Jiang ZC, Xin HL, Zhou QG, Zhu DY. Hippocampal nuclear factor kappa B accounts for stress-induced anxiety behaviors via enhancing neuronal nitric oxide synthase (nNOS)-carboxy-terminal PDZ ligand of nNOS-Dexras1 coupling. J Neurochem 2018; 146:598-612. [PMID: 29858554 DOI: 10.1111/jnc.14478] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 04/26/2018] [Accepted: 05/29/2018] [Indexed: 02/03/2023]
Abstract
Anxiety disorders are associated with a high social burden worldwide. Recently, increasing evidence suggests that nuclear factor kappa B (NF-κB) has significant implications for psychiatric diseases, including anxiety and depressive disorders. However, the molecular mechanisms underlying the role of NF-κB in stress-induced anxiety behaviors are poorly understood. In this study, we show that chronic mild stress (CMS) and glucocorticoids dramatically increased the expression of NF-κB subunits p50 and p65, phosphorylation and acetylation of p65, and the level of nuclear p65 in vivo and in vitro, implicating activation of NF-κB signaling in chronic stress-induced pathological processes. Using the novelty-suppressed feeding (NSF) and elevated-plus maze (EPM) tests, we found that treatment with pyrrolidine dithiocarbamate (PDTC; intra-hippocampal infusion), an inhibitor of NF-κB, rescued the CMS- or glucocorticoid-induced anxiogenic behaviors in mice. Microinjection of PDTC into the hippocampus reversed CMS-induced up-regulation of neuronal nitric oxide synthase (nNOS), carboxy-terminal PDZ ligand of nNOS (CAPON), and dexamethasone-induced ras protein 1 (Dexras1) and dendritic spine loss of dentate gyrus (DG) granule cells. Moreover, over-expression of CAPON by infusing LV-CAPON-L-GFP into the hippocampus induced nNOS-Dexras1 interaction and anxiety-like behaviors, and inhibition of NF-κB by PDTC reduced the LV-CAPON-L-GFP-induced increases in nNOS-Dexras1 complex and anxiogenic-like effects in mice. These findings indicate that hippocampal NF-κB mediates anxiogenic behaviors, probably via regulating the association of nNOS-CAPON-Dexras1, and uncover a novel approach to the treatment of anxiety disorders.
Collapse
Affiliation(s)
- Li-Juan Zhu
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, Jiangsu, China.,Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Huan-Yu Ni
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rong Chen
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Lei Chang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hu-Jiang Shi
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Dan Qiu
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Zhan Zhang
- Department of Hygiene Analysis and Detection, school of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dan-Lian Wu
- Department of Pharmacy, The Affiliated Jiangyin Hospital, School of Medicine, Southeast University, Jiangyin, Jiangsu, China
| | - Zhao-Chun Jiang
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Hong-Liang Xin
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qi-Gang Zhou
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dong-Ya Zhu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
64
|
Pregnolato M, Damiani G, Pereira A. Patterns of calcium signaling: A link between chronic emotions and cancer. J Integr Neurosci 2018; 16:S43-S63. [PMID: 29154288 DOI: 10.3233/jin-170066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Intra and inter-cellular calcium signaling is present in all types of cells and body tissues. In the human brain, calcium currents and waves are related to mental activities, including emotions. We present a theoretical interpretation of these phenomena suggesting their involvement in chronic emotional patterns and in the pathology of cancer. Recent developments on biophysics, translational biology and psychoneuroendocrinoimmunology (PNEI) can support explanatory hypotheses about the link between emotional stresses and the origin and development of different types of tumor cells. Chronic stresses may cause perturbations of rhythms of the PNEI system, excessive activation of HPA axis and abnormal activation of calcium signals in somatic tissues, with deleterious effects on different parts of the body. The increasing of calcium signaling inside cells may lead to a deregulation of different pathways and epigenetic systems that promote the production of genomic mutations in a second phase. In particular, the hyperactivation of the transcription nuclear factor kappaB (NF-κB), if is not counterbalanced by the following activation of the nuclear factor (erythroid-derived 2)-like 2 (NFE2L2 or Nrf2), increases the production of oxidative catabolites, as the advanced glycation end products (AGE), which play a key role in the progression of different types of cancer and other degenerative diseases. Cortisol binding to glucocorticoid receptor (GR) reduces the activity of both NF-κB and Nrf2 inside the cells but inhibits the cellular immunity and the anabolic processes of tissue regeneration. The tissue atrophy and the defective anti-ageing mechanisms promotes the tumoral cells growth and their escape from the immune-surveillance.
Collapse
Affiliation(s)
| | | | - Alfredo Pereira
- Institute of Biosciences, São Paulo State University, Brasil. E-mail:
| |
Collapse
|
65
|
Meng QQ, Lei W, Chen H, Feng ZC, Hu LQ, Zhang XL, Li S. Combined Rosiglitazone and Forskolin Have Neuroprotective Effects in SD Rats after Spinal Cord Injury. PPAR Res 2018; 2018:3897478. [PMID: 30034460 PMCID: PMC6032969 DOI: 10.1155/2018/3897478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/22/2018] [Accepted: 05/08/2018] [Indexed: 02/05/2023] Open
Abstract
The peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist rosiglitazone inhibits NF-κB expression and endogenous neural stem cell differentiation into neurons and reduces the inflammatory cascade after spinal cord injury (SCI). The aim of this study was to explore the mechanisms underlying rosiglitazone-mediated neuroprotective effects and regulation of the balance between the inflammatory cascade and generation of endogenous spinal cord neurons by using a spinal cord-derived neural stem cell culture system as well as SD rat SCI model. Activation of PPAR-γ could promote neural stem cell proliferation and inhibit PKA expression and neuronal formation in vitro. In the SD rat SCI model, the rosiglitazone + forskolin group showed better locomotor recovery compared to the rosiglitazone and forskolin groups. MAP2 expression was higher in the rosiglitazone + forskolin group than in the rosiglitazone group, NF-κB expression was lower in the rosiglitazone + forskolin group than in the forskolin group, and NeuN expression was higher in the rosiglitazone + forskolin group than in the forskolin group. PPAR-γ activation likely inhibits NF-κB, thereby reducing the inflammatory cascade, and PKA activation likely promotes neuronal cell regeneration.
Collapse
Affiliation(s)
- Qing-qi Meng
- Department of Orthopedics, Guangzhou Red Cross Hospital, Jinan University, 396 Tongfu Road, Guangzhou 510120, China
- Laboratory Research Center, Guangdong Medical University, Zhanjiang 524001, China
| | - Wei Lei
- Laboratory Research Center, Guangdong Medical University, Zhanjiang 524001, China
| | - Hao Chen
- Department of Gastroenterology, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou 51000, China
| | - Zhen-cheng Feng
- Department of Orthopedics, Guangzhou Red Cross Hospital, Jinan University, 396 Tongfu Road, Guangzhou 510120, China
| | - Li-qiong Hu
- Department of Orthopedics, Guangzhou Red Cross Hospital, Jinan University, 396 Tongfu Road, Guangzhou 510120, China
| | - Xing-liang Zhang
- Laboratory Research Center, Guangdong Medical University, Zhanjiang 524001, China
| | - Siming Li
- Department of Orthopedics, Guangzhou Red Cross Hospital, Jinan University, 396 Tongfu Road, Guangzhou 510120, China
| |
Collapse
|
66
|
Bayraktar G, Kreutz MR. The Role of Activity-Dependent DNA Demethylation in the Adult Brain and in Neurological Disorders. Front Mol Neurosci 2018; 11:169. [PMID: 29875631 PMCID: PMC5975432 DOI: 10.3389/fnmol.2018.00169] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/04/2018] [Indexed: 01/11/2023] Open
Abstract
Over the last decade, an increasing number of reports underscored the importance of epigenetic regulations in brain plasticity. Epigenetic elements such as readers, writers and erasers recognize, establish, and remove the epigenetic tags in nucleosomes, respectively. One such regulation concerns DNA-methylation and demethylation, which are highly dynamic and activity-dependent processes even in the adult neurons. It is nowadays widely believed that external stimuli control the methylation marks on the DNA and that such processes serve transcriptional regulation in neurons. In this mini-review, we cover the current knowledge on the regulatory mechanisms controlling in particular DNA demethylation as well as the possible functional consequences in health and disease.
Collapse
Affiliation(s)
- Gonca Bayraktar
- RG Neuroplasticity, Leibniz Institute for Neurobiology Magdeburg, Germany
| | - Michael R Kreutz
- RG Neuroplasticity, Leibniz Institute for Neurobiology Magdeburg, Germany.,Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf Hamburg, Germany
| |
Collapse
|
67
|
Kaltschmidt B, Greiner JFW, Kadhim HM, Kaltschmidt C. Subunit-Specific Role of NF-κB in Cancer. Biomedicines 2018; 6:E44. [PMID: 29673141 PMCID: PMC6027219 DOI: 10.3390/biomedicines6020044] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 02/07/2023] Open
Abstract
The transcription factor NF-κB is a key player in inflammation, cancer development, and progression. NF-κB stimulates cell proliferation, prevents apoptosis, and could promote tumor angiogenesis as well as metastasis. Extending the commonly accepted role of NF-κB in cancer formation and progression, different NF-κB subunits have been shown to be active and of particular importance in distinct types of cancer. Here, we summarize overexpression data of the NF-κB subunits RELA, RELB, and c-REL (referring to the v-REL, which is the oncogene of Reticuloendotheliosis virus strain T) as well as of their upstream kinase inhibitor, namely inhibitor of κB kinases (IKK), in different human cancers, assessed by database mining. These data argue against a universal mechanism of cancer-mediated activation of NF-κB, and suggest a much more elaborated mode of NF-κB regulation, indicating a tumor type-specific upregulation of the NF-κB subunits. We further discuss recent findings showing the diverse roles of NF-κB signaling in cancer development and metastasis in a subunit-specific manner, emphasizing their specific transcriptional activity and the role of autoregulation. While non-canonical NF-κB RELB signaling is described to be mostly present in hematological cancers, solid cancers reveal constitutive canonical NF-κB RELA or c-REL activity. Providing a linkage to cancer therapy, we discuss the recently described pivotal role of NF-κB c-REL in regulating cancer-targeting immune responses. In addition, current strategies and ongoing clinical trials are summarized, which utilize genome editing or drugs to inhibit the NF-κB subunits for cancer treatment.
Collapse
Affiliation(s)
- Barbara Kaltschmidt
- AG Molecular Neurobiology, University of Bielefeld, 33615 Bielefeld, Germany.
| | | | - Hussamadin M Kadhim
- Department of Cell Biology, University of Bielefeld, 33615 Bielefeld, Germany.
| | | |
Collapse
|
68
|
De Bruyckere E, Simon R, Nestel S, Heimrich B, Kätzel D, Egorov AV, Liu P, Jenkins NA, Copeland NG, Schwegler H, Draguhn A, Britsch S. Stability and Function of Hippocampal Mossy Fiber Synapses Depend on Bcl11b/Ctip2. Front Mol Neurosci 2018; 11:103. [PMID: 29674952 PMCID: PMC5895709 DOI: 10.3389/fnmol.2018.00103] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/15/2018] [Indexed: 01/04/2023] Open
Abstract
Structural and functional plasticity of synapses are critical neuronal mechanisms underlying learning and memory. While activity-dependent regulation of synaptic strength has been extensively studied, much less is known about the transcriptional control of synapse maintenance and plasticity. Hippocampal mossy fiber (MF) synapses connect dentate granule cells to CA3 pyramidal neurons and are important for spatial memory formation and consolidation. The transcription factor Bcl11b/Ctip2 is expressed in dentate granule cells and required for postnatal hippocampal development. Ablation of Bcl11b/Ctip2 in the adult hippocampus results in impaired adult neurogenesis and spatial memory. The molecular mechanisms underlying the behavioral impairment remained unclear. Here we show that selective deletion of Bcl11b/Ctip2 in the adult mouse hippocampus leads to a rapid loss of excitatory synapses in CA3 as well as reduced ultrastructural complexity of remaining mossy fiber boutons (MFBs). Moreover, a dramatic decline of long-term potentiation (LTP) of the dentate gyrus-CA3 (DG-CA3) projection is caused by adult loss of Bcl11b/Ctip2. Differential transcriptomics revealed the deregulation of genes associated with synaptic transmission in mutants. Together, our data suggest Bcl11b/Ctip2 to regulate maintenance and function of MF synapses in the adult hippocampus.
Collapse
Affiliation(s)
| | - Ruth Simon
- Institute of Molecular and Cellular Anatomy, Ulm University, Ulm, Germany
| | - Sigrun Nestel
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
| | - Bernd Heimrich
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
| | - Dennis Kätzel
- Institute of Applied Physiology, Ulm University, Ulm, Germany
| | - Alexei V Egorov
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Pentao Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Nancy A Jenkins
- Genetics Department, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Neal G Copeland
- Genetics Department, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Herbert Schwegler
- Institute of Anatomy, Otto-von-Guericke-University, Magdeburg, Germany
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, Ulm, Germany
| |
Collapse
|
69
|
Riedlinger T, Haas J, Busch J, van de Sluis B, Kracht M, Schmitz ML. The Direct and Indirect Roles of NF-κB in Cancer: Lessons from Oncogenic Fusion Proteins and Knock-in Mice. Biomedicines 2018; 6:biomedicines6010036. [PMID: 29562713 PMCID: PMC5874693 DOI: 10.3390/biomedicines6010036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 12/24/2022] Open
Abstract
NF-κB signaling pathways play an important role in the regulation of cellular immune and stress responses. Aberrant NF-κB activity has been implicated in almost all the steps of cancer development and many of the direct and indirect contributions of this transcription factor system for oncogenesis were revealed in the recent years. The indirect contributions affect almost all hallmarks and enabling characteristics of cancer, but NF-κB can either promote or antagonize these tumor-supportive functions, thus prohibiting global NF-κB inhibition. The direct effects are due to mutations of members of the NF-κB system itself. These mutations typically occur in upstream components that lead to the activation of NF-κB together with further oncogenesis-promoting signaling pathways. In contrast, mutations of the downstream components, such as the DNA-binding subunits, contribute to oncogenic transformation by affecting NF-κB-driven transcriptional output programs. Here, we discuss the features of recently identified oncogenic RelA fusion proteins and the characterization of pathways that are regulating the transcriptional activity of NF-κB by regulatory phosphorylations. As NF-κB’s central role in human physiology prohibits its global inhibition, these auxiliary or cell type-specific NF-κB regulating pathways are potential therapeutic targets.
Collapse
Affiliation(s)
- Tabea Riedlinger
- Institute of Biochemistry, Justus-Liebig-University, D-35392 Giessen, Germany.
| | - Jana Haas
- Institute of Biochemistry, Justus-Liebig-University, D-35392 Giessen, Germany.
| | - Julia Busch
- Institute of Biochemistry, Justus-Liebig-University, D-35392 Giessen, Germany.
| | - Bart van de Sluis
- Department of Pediatrics, Molecular Genetics Section, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| | - Michael Kracht
- Rudolf-Buchheim-Institute of Pharmacology, Justus-Liebig-University, D-35392 Giessen, Germany.
| | - M Lienhard Schmitz
- Institute of Biochemistry, Justus-Liebig-University, D-35392 Giessen, Germany.
| |
Collapse
|
70
|
Kodali M, Hattiangady B, Shetty G, Bates A, Shuai B, Shetty A. Curcumin treatment leads to better cognitive and mood function in a model of Gulf War Illness with enhanced neurogenesis, and alleviation of inflammation and mitochondrial dysfunction in the hippocampus. Brain Behav Immun 2018; 69:499-514. [PMID: 29454881 PMCID: PMC7023905 DOI: 10.1016/j.bbi.2018.01.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 01/10/2023] Open
Abstract
Diminished cognitive and mood function are among the most conspicuous symptoms of Gulf War Illness (GWI). Our previous studies in a rat model of GWI have demonstrated that persistent cognitive and mood impairments are associated with substantially declined neurogenesis, chronic low-grade inflammation, increased oxidative stress and mitochondrial dysfunction in the hippocampus. We tested the efficacy of curcumin (CUR) to maintain better cognitive and mood function in a rat model of GWI because of its neurogenic, antiinflammatory, antioxidant, and memory and mood enhancing properties. Male rats were exposed daily to low doses of GWI-related chemicals, pyridostigmine bromide, N,N-diethyl-m-toluamide (DEET) and permethrin, and 5-minutes of restraint stress for 28 days. Animals were next randomly assigned to two groups, which received daily CUR or vehicle treatment for 30 days. Animals also received 5'-bromodeoxyuridine during the last seven days of treatment for analysis of neurogenesis. Behavioral studies through object location, novel object recognition and novelty suppressed feeding tests performed sixty days after treatment revealed better cognitive and mood function in CUR treated GWI rats. These rats also displayed enhanced neurogenesis and diminished inflammation typified by reduced astrocyte hypertrophy and activated microglia in the hippocampus. Additional studies showed that CUR treatment to GWI rats enhanced the expression of antioxidant genes and normalized the expression of multiple genes related to mitochondrial respiration. Thus, CUR therapy is efficacious for maintaining better memory and mood function in a model of GWI. Enhanced neurogenesis, restrained inflammation and oxidative stress with normalized mitochondrial respiration may underlie better memory and mood function mediated by CUR treatment.
Collapse
Affiliation(s)
- M. Kodali
- Olin E. Teague Veterans’ Medical Center, Central Texas Veterans Health Care System, Temple, TX, USA,Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine, Temple and College Station, TX, USA,Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA
| | - B. Hattiangady
- Olin E. Teague Veterans’ Medical Center, Central Texas Veterans Health Care System, Temple, TX, USA,Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine, Temple and College Station, TX, USA,Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA
| | - G.A. Shetty
- Olin E. Teague Veterans’ Medical Center, Central Texas Veterans Health Care System, Temple, TX, USA,Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine, Temple and College Station, TX, USA,Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA
| | - A. Bates
- Olin E. Teague Veterans’ Medical Center, Central Texas Veterans Health Care System, Temple, TX, USA,Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine, Temple and College Station, TX, USA,Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA
| | - B. Shuai
- Olin E. Teague Veterans’ Medical Center, Central Texas Veterans Health Care System, Temple, TX, USA,Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine, Temple and College Station, TX, USA,Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA
| | - A.K. Shetty
- Olin E. Teague Veterans’ Medical Center, Central Texas Veterans Health Care System, Temple, TX, USA,Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine, Temple and College Station, TX, USA,Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA,Corresponding author at: Institute for Regenerative Medicine, Texas A&M Health Science Center, College of Medicine, 1114 TAMU, 206 Olsen Boulevard, College Station, TX 77843, USA. (A.K. Shetty)
| |
Collapse
|
71
|
Kumar M, Bansal N. Caffeic acid phenethyl ester rescued streptozotocin-induced memory loss through PI3-kinase dependent pathway. Biomed Pharmacother 2018; 101:162-173. [PMID: 29486334 DOI: 10.1016/j.biopha.2018.02.089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/05/2018] [Accepted: 02/20/2018] [Indexed: 01/17/2023] Open
Abstract
The present study was undertaken to elucidate the role of PI3-kinase signaling in memory enhancing potential of caffeic acid phenethyl ester (CAPE) against cognitive defects in rats after centrally administered streptozotocin as a model of Alzheimer's disease. The Morris water maze and elevated plus maze paradigms showed profound loss of memory in adult Wistar rats (180-200 g) injected with streptozotocin (3 mg/kg) bilaterally (STZ-ICV) on day 1 and 3. Intraperitoneal administration of CAPE (6 mg/kg, i.p., 28 days) attenuated STZ-ICV triggered memory loss in rats. Treatment with PI3-kinase inhibitor (wortmannin, 5 μg/rat, ICV) or NOS blocker (L-NAME, 20 mg/kg, i.p., 28 days) interfered with memory restorative function of CAPE in STZ treated rats. In biochemical analysis markers of oxidative stress (TBARS, GSH, SOD, CAT), nitrite, AChE, TNF-α, eNOS and NFκB were measured in brain of rats on day 28. Interestingly, L-Arginine (100 mg/kg, i.p., 28 days) group exhibited moderate (p > 0.05) decline in memory functions. The brain oxidative stress, TNF-α, AChE activity and NFκB levels were elevated, and eNOS level was lowered by STZ-ICV treatment. Administration of CAPE lowered oxidative stress, AChE, nitrite and TNF-α levels in brain of rats. The eNOS level was enhanced and NFκB level was decreased by CAPE in STZ treated rats. Wortmannin injection elevated the brain oxidative stress, AChE activity and TNF-α levels, and decreased the nitrite, eNOS and NFκB level. Rise of brain oxidative stress parameters, AChE activity, TNF-α, eNOS and NFκB levels, and decline in brain nitrite content was observed in L-NAME treated group. L-Arginine administration showed modest effects (p > 0.05) on oxidative stress parameters. Brain nitrite content was enhanced although eNOS, NFκB levels, and AChE activity was decimated by L-Arginine treatment. It can be concluded that PI3-kinase mediated nitric oxide facilitation is an essential feature of CAPE action in STZ-ICV treated rats.
Collapse
Affiliation(s)
- Manish Kumar
- PhD Research Scholar, IKG Punjab Technical University, Kapurthala, Punjab, 144603, India; Department of Pharmacology, ASBASJSM College of Pharmacy, Bela, Ropar, 140111, India.
| | - Nitin Bansal
- Department of Pharmacology, ASBASJSM College of Pharmacy, Bela, Ropar, 140111, India.
| |
Collapse
|
72
|
Single-cell transcriptomics of the developing lateral geniculate nucleus reveals insights into circuit assembly and refinement. Proc Natl Acad Sci U S A 2018; 115:E1051-E1060. [PMID: 29343640 PMCID: PMC5798372 DOI: 10.1073/pnas.1717871115] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neurons and nonneuronal cells in the developing brain dynamically regulate gene expression as neural connectivity is established. However, the specific gene programs activated in distinct cell populations during the assembly and refinement of many intact neuronal circuits have not been thoroughly characterized. In this study, we take advantage of recent advances in transcriptomic profiling techniques to characterize gene expression in the postnatal developing lateral geniculate nucleus (LGN) at single-cell resolution. Our data reveal that genes involved in brain development are dynamically regulated in all major cell types of the LGN, suggesting that the establishment of neural connectivity depends upon functional collaboration between multiple neuronal and nonneuronal cell types in this brain region. Coordinated changes in gene expression underlie the early patterning and cell-type specification of the central nervous system. However, much less is known about how such changes contribute to later stages of circuit assembly and refinement. In this study, we employ single-cell RNA sequencing to develop a detailed, whole-transcriptome resource of gene expression across four time points in the developing dorsal lateral geniculate nucleus (LGN), a visual structure in the brain that undergoes a well-characterized program of postnatal circuit development. This approach identifies markers defining the major LGN cell types, including excitatory relay neurons, oligodendrocytes, astrocytes, microglia, and endothelial cells. Most cell types exhibit significant transcriptional changes across development, dynamically expressing genes involved in distinct processes including retinotopic mapping, synaptogenesis, myelination, and synaptic refinement. Our data suggest that genes associated with synapse and circuit development are expressed in a larger proportion of nonneuronal cell types than previously appreciated. Furthermore, we used this single-cell expression atlas to identify the Prkcd-Cre mouse line as a tool for selective manipulation of relay neurons during a late stage of sensory-driven synaptic refinement. This transcriptomic resource provides a cellular map of gene expression across several cell types of the LGN, and offers insight into the molecular mechanisms of circuit development in the postnatal brain.
Collapse
|
73
|
Huang SS, Chang NS. Phosphorylation/de-phosphorylation in specific sites of tumor suppressor WWOX and control of distinct biological events. Exp Biol Med (Maywood) 2018; 243:137-147. [PMID: 29310447 DOI: 10.1177/1535370217752350] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Abnormal differentiation and growth of hematopoietic stem cells cause the development of hematopoietic diseases and hematopoietic malignancies. However, the molecular events underlying leukemia development are not well understood. In our recent study, we have demonstrated that calcium ionophore and phorbol ester force the differentiation of T lymphoblastic leukemia. The event involves a newly identified IκBα/WWOX/ERK signaling, in which WWOX is Ser14 phosphorylated. Additional evidence also reveals that pS14-WWOX is involved in enhancing cancer progression and metastasis and facilitating neurodegeneration. In this mini-review, we update the current knowledge for the functional roles of WWOX under physiological and pathological settings, and provide new insights regarding pS14-WWOX in T leukemia cell maturation, and switching the anticancer pY33-WWOX to pS14-WWOX for cancer promotion and disease progression. Impact statement WWOX was originally designated as a tumor suppressor. However, human newborns deficient in WWOX do not spontaneously develop tumors. Activated WWOX with Tyr33 phosphorylation is present in normal tissues and organs. However, when pY33-WWOX is overly induced under stress conditions, it becomes apoptotic to eliminate damaged cells. Notably, WWOX with Ser14 phosphorylation is upregulated in the lesions of cancer, as well as in the brain hippocampus and cortex with Alzheimer's disease. Suppression of pS14-WWOX by Zfra reduces cancer growth and mitigates Alzheimer's disease progression, suggesting that pS14-WWOX facilitates disease progression. pS14-WWOX can be regarded as a marker of disease progression.
Collapse
Affiliation(s)
- Shenq-Shyang Huang
- 1 Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC.,2 Graduate Program of Biotechnology in Medicine, Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Nan-Shan Chang
- 1 Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC.,3 Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA.,4 Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan, ROC
| |
Collapse
|
74
|
Mettang M, Reichel SN, Lattke M, Palmer A, Abaei A, Rasche V, Huber-Lang M, Baumann B, Wirth T. IKK2/NF-κB signaling protects neurons after traumatic brain injury. FASEB J 2018; 32:1916-1932. [PMID: 29187362 PMCID: PMC5893169 DOI: 10.1096/fj.201700826r] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Traumatic brain injury (TBI) is the leading cause of death in young adults. After the initial injury, a poorly understood secondary phase, including a strong inflammatory response determines the final outcome of TBI. The inhibitor of NF-κB kinase (IKK)/NF-κB signaling system is the key regulator of inflammation and also critically involved in regulation of neuronal survival and synaptic plasticity. We addressed the neuron-specific function of IKK2/NF-κB signaling pathway in TBI using an experimental model of closed-head injury (CHI) in combination with mouse models allowing conditional regulation of IKK/NF-κB signaling in excitatory forebrain neurons. We found that repression of IKK2/NF-κB signaling in neurons increases the acute posttraumatic mortality rate, worsens the neurological outcome, and promotes neuronal cell death by apoptosis, thus resulting in enhanced proinflammatory gene expression. As a potential mechanism, we identified elevated levels of the proapoptotic mediators Bax and Bad and enhanced expression of stress response genes. This phenotype is also observed when neuronal IKK/NF-κB activity is inhibited just before CHI. In contrast, neuron-specific activation of IKK/NF-κB signaling does not alter the TBI outcome. Thus, this study demonstrates that physiological neuronal IKK/NF-κB signaling is necessary and sufficient to protect neurons from trauma consequences.-Mettang, M., Reichel, S. N., Lattke, M., Palmer, A., Abaei, A., Rasche, V., Huber-Lang, M., Baumann, B., Wirth, T. IKK2/NF-κB signaling protects neurons after traumatic brain injury.
Collapse
Affiliation(s)
- Melanie Mettang
- Institute of Physiological Chemistry, Ulm University, Ulm, Germany
| | | | - Michael Lattke
- Institute of Physiological Chemistry, Ulm University, Ulm, Germany.,Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Annette Palmer
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital Ulm, Ulm, Germany
| | - Alireza Abaei
- Core Facility Small Animal Magnetic Resonance Imaging, Ulm University, Ulm, Germany
| | - Volker Rasche
- Core Facility Small Animal Magnetic Resonance Imaging, Ulm University, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital Ulm, Ulm, Germany
| | - Bernd Baumann
- Institute of Physiological Chemistry, Ulm University, Ulm, Germany
| | - Thomas Wirth
- Institute of Physiological Chemistry, Ulm University, Ulm, Germany
| |
Collapse
|
75
|
l-Acetylcarnitine: A Mechanistically Distinctive and Potentially Rapid-Acting Antidepressant Drug. Int J Mol Sci 2017; 19:ijms19010011. [PMID: 29267192 PMCID: PMC5795963 DOI: 10.3390/ijms19010011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/09/2017] [Accepted: 12/18/2017] [Indexed: 01/06/2023] Open
Abstract
Current therapy of mood disorders has several limitations. Although a high number of drugs are clinically available, as of today, nearly two-thirds of individuals do not achieve full symptomatic remission after treatment with conventional antidepressants. Moreover, several weeks of drug treatment are usually required to obtain clinical effects, a limitation that has considerable clinical implications, ranging from high suicide risk to reduced compliance. The characteristic lag time in classical antidepressant effectiveness has given great impulse to the search for novel therapeutics with more rapid effects. l-acetylcarnitine (LAC), a small molecule of growing interest for its pharmacological properties, is currently marketed for treatment of neuropathic pain. Recent preclinical and clinical data suggested that LAC may exert antidepressant effects with a more rapid onset than conventional drugs. Herein, we review data supporting LAC antidepressant activity and its distinctive mechanisms of action compared with monoaminergic antidepressants. Furthermore, we discuss the unique pharmacological properties of LAC that allow us to look at this molecule as representative of next generation antidepressants with a safe profile.
Collapse
|
76
|
Assessing disease-modifying effects of norepinephrine in Down syndrome and Alzheimer's disease. Brain Res 2017; 1702:3-11. [PMID: 29102776 DOI: 10.1016/j.brainres.2017.09.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/18/2017] [Indexed: 11/23/2022]
Abstract
Building upon the knowledge that a number of important brain circuits undergo significant degeneration in Alzheimer's disease, numerous recent studies suggest that the norepinephrine-ergic system in the brainstem undergoes significant alterations early in the course of both Alzheimer's disease and Down syndrome. Massive projections from locus coeruleus neurons to almost the entire brain, extensive innervation of brain capillaries, and widespread distribution of noradrenergic receptors enable the norepinephrine-ergic system to play a crucial role in neural processes, including cognitive function. These anatomical and functional characteristics support the role of the norepinephrine-ergic system as an important target for developing new therapies for cognitive dysfunction. Careful neuropathological examinations using postmortem samples from individuals with Alzheimer's disease have implicated the role of the norepinephrine-ergic system in the etiopathogenesis of Alzheimer's disease. Furthermore, numerous studies have supported the existence of a strong interaction between norepinephrine-ergic and neuroimmune systems. We explore the interaction between the two systems that could play a role in the disease-modifying effects of norepinephrine in Alzheimer's disease and Down syndrome.
Collapse
|
77
|
MacDowell KS, Pinacho R, Leza JC, Costa J, Ramos B, García-Bueno B. Differential regulation of the TLR4 signalling pathway in post-mortem prefrontal cortex and cerebellum in chronic schizophrenia: Relationship with SP transcription factors. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:481-492. [PMID: 28803924 DOI: 10.1016/j.pnpbp.2017.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/28/2017] [Accepted: 08/06/2017] [Indexed: 12/21/2022]
Abstract
Alterations in innate immunity may underlie the pathophysiology of schizophrenia (SZ). Toll-like receptor-4 (TLR4) is a master element of innate immunity. The specificity proteins (SPs), transcription factors recently implicated in SZ, are putative regulatory agents of this. This work was aimed at describing alterations in the TLR4 signalling pathway in postmortem brain prefrontal cortex (PFC) and cerebellum (CB) of 16 chronic SZ patients and 14 controls. The possible association of TLR4 pathway with SP1 and SP4 and SZ negative symptomatology is explored. In PFC, TLR4/myeloid differentiation factor 88 (MyD88)/inhibitory subunit of nuclear factor kappa B alpha (IκBα) protein levels were lower in SZ patients, while nuclear transcription factor-κB (NFκB) activity, cyclooxygenase-2 (COX-2) expression and the lipid peroxidation index malondialdehyde (MDA) appeared increased. The pattern of changes in CB is opposite, except for COX-2 expression that remained augmented and MDA levels unaltered. Network interaction analysis showed that TLR4/MyD88/IκBα/NFκB/COX-2 pathway was coupled in PFC and uncoupled in CB. SP4 co-expressed with TLR4 and NFκB in PFC and both SP1 and SP4 co-expressed with NFκB in CB. In PFC, correlation analysis found an inverse relationship between NFκB and negative symptoms. In summary, we found brain region-specific alterations in the TLR4 signalling pathway in chronic SZ, in which SP transcription factors could participate at different levels. Further studies are required to elucidate the regulatory mechanisms of innate immunity in SZ and its relationship with symptoms.
Collapse
Affiliation(s)
- Karina S MacDowell
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain; Dept. of Pharmacology, Faculty of Medicine, Hospital 12 de Octubre Imas12, IUINQ, University Complutense, 28040 Madrid, Spain
| | - Raquel Pinacho
- Psiquiatria Molecular, Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | - Juan C Leza
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain; Dept. of Pharmacology, Faculty of Medicine, Hospital 12 de Octubre Imas12, IUINQ, University Complutense, 28040 Madrid, Spain
| | - Joan Costa
- Banc de Teixits Neurologics, Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, 08830 Barcelona, Spain; Parc Sanitari Sant Joan de Déu, Dr. Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Spain
| | - Belén Ramos
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain; Psiquiatria Molecular, Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain; Parc Sanitari Sant Joan de Déu, Dr. Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Spain; Dept. de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
| | - Borja García-Bueno
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain; Dept. of Pharmacology, Faculty of Medicine, Hospital 12 de Octubre Imas12, IUINQ, University Complutense, 28040 Madrid, Spain.
| |
Collapse
|
78
|
Martín-Montañez E, Millon C, Boraldi F, Garcia-Guirado F, Pedraza C, Lara E, Santin LJ, Pavia J, Garcia-Fernandez M. IGF-II promotes neuroprotection and neuroplasticity recovery in a long-lasting model of oxidative damage induced by glucocorticoids. Redox Biol 2017; 13:69-81. [PMID: 28575743 PMCID: PMC5454142 DOI: 10.1016/j.redox.2017.05.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 05/23/2017] [Indexed: 11/05/2022] Open
Abstract
Insulin-like growth factor-II (IGF-II) is a naturally occurring hormone that exerts neurotrophic and neuroprotective properties in a wide range of neurodegenerative diseases and ageing. Accumulating evidence suggests that the effects of IGF-II in the brain may be explained by its binding to the specific transmembrane receptor, IGFII/M6P receptor (IGF-IIR). However, relatively little is known regarding the role of IGF-II through IGF-IIR in neuroprotection. Here, using adult cortical neuronal cultures, we investigated whether IGF-II exhibits long-term antioxidant effects and neuroprotection at the synaptic level after oxidative damage induced by high and transient levels of corticosterone (CORT). Furthermore, the involvement of the IGF-IIR was also studied to elucidate its role in the neuroprotective actions of IGF-II. We found that neurons treated with IGF-II after CORT incubation showed reduced oxidative stress damage and recovered antioxidant status (normalized total antioxidant status, lipid hydroperoxides and NAD(P) H:quinone oxidoreductase activity). Similar results were obtained when mitochondria function was analysed (cytochrome c oxidase activity, mitochondrial membrane potential and subcellular mitochondrial distribution). Furthermore, neuronal impairment and degeneration were also assessed (synaptophysin and PSD-95 expression, presynaptic function and FluoroJade B® stain). IGF-II was also able to recover the long-lasting neuronal cell damage. Finally, the effects of IGF-II were not blocked by an IGF-IR antagonist, suggesting the involvement of IGF-IIR. Altogether these results suggest that, in or model, IGF-II through IGF-IIR is able to revert the oxidative damage induced by CORT. In accordance with the neuroprotective role of the IGF-II/IGF-IIR reported in our study, pharmacotherapy approaches targeting this pathway may be useful for the treatment of diseases associated with cognitive deficits (i.e., neurodegenerative disorders, depression, etc.).
Collapse
Affiliation(s)
- E Martín-Montañez
- Department of Pharmacology and Paediatrics, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - C Millon
- Department of Human Physiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - F Boraldi
- Department of Life Sciences, University of Modena e Reggio Emilia, Modena, Italy
| | - F Garcia-Guirado
- Department of Human Physiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - C Pedraza
- Department of Psychobiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - E Lara
- Department of Human Physiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - L J Santin
- Department of Psychobiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - J Pavia
- Department of Pharmacology and Paediatrics, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain.
| | - M Garcia-Fernandez
- Department of Human Physiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain.
| |
Collapse
|
79
|
Riedlinger T, Dommerholt MB, Wijshake T, Kruit JK, Huijkman N, Dekker D, Koster M, Kloosterhuis N, Koonen DP, de Bruin A, Baker D, Hofker MH, van Deursen J, Jonker JW, Schmitz ML, van de Sluis B. NF-κB p65 serine 467 phosphorylation sensitizes mice to weight gain and TNFα-or diet-induced inflammation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1785-1798. [DOI: 10.1016/j.bbamcr.2017.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/23/2017] [Accepted: 07/14/2017] [Indexed: 01/04/2023]
|
80
|
O'Keeffe SM, Beynon AL, Davies JS, Moynagh PN, Coogan AN. NF-κB signalling is involved in immune-modulation, but not basal functioning, of the mouse suprachiasmatic circadian clock. Eur J Neurosci 2017; 45:1111-1123. [PMID: 28245070 DOI: 10.1111/ejn.13553] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 12/20/2022]
Affiliation(s)
- S. M. O'Keeffe
- Department of Psychology; Maynooth University; National University of Ireland; John Hume Building Maynooth Ireland
| | - A. L. Beynon
- Institute of Life Science; School of Medicine; Swansea University; Wales UK
| | - J. S. Davies
- Institute of Life Science; School of Medicine; Swansea University; Wales UK
| | - P. N. Moynagh
- Department of Biology; Maynooth University; National University of Ireland; Maynooth Ireland
| | - A. N. Coogan
- Department of Psychology; Maynooth University; National University of Ireland; John Hume Building Maynooth Ireland
| |
Collapse
|
81
|
NF-κB regulates neuronal ankyrin-G via a negative feedback loop. Sci Rep 2017; 7:42006. [PMID: 28181483 PMCID: PMC5299403 DOI: 10.1038/srep42006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/05/2017] [Indexed: 12/13/2022] Open
Abstract
The axon initial segment (AIS) is a neuronal compartment defined by ankyrin-G expression. We here demonstrate that the IKK-complex co-localizes and interacts with the cytoskeletal anchor protein ankyrin-G in immunoprecipitation and proximity-ligation experiments in cortical neurons. Overexpression of the 270 kDa variant of ankyrin-G suppressed, while gene-silencing of ankyrin-G expression increased nuclear factor-κB (NF-κB) activity in primary neurons, suggesting that ankyrin-G sequesters the transcription factor in the AIS. We also found that p65 bound to the ank3 (ankyrin-G) promoter sequence in chromatin immunoprecipitation analyses thereby increasing ank3 expression and ankyrin-G levels at the AIS. Gene-silencing of p65 or ankyrin-G overexpression suppressed ank3 reporter activity. Collectively these data demonstrate that p65/NF-κB controls ankyrin-G levels via a negative feedback loop, thereby linking NF-κB signaling with neuronal polarity and axonal plasticity.
Collapse
|
82
|
The role of neuroimmune signaling in alcoholism. Neuropharmacology 2017; 122:56-73. [PMID: 28159648 DOI: 10.1016/j.neuropharm.2017.01.031] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/24/2017] [Accepted: 01/29/2017] [Indexed: 02/07/2023]
Abstract
Alcohol consumption and stress increase brain levels of known innate immune signaling molecules. Microglia, the innate immune cells of the brain, and neurons respond to alcohol, signaling through Toll-like receptors (TLRs), high-mobility group box 1 (HMGB1), miRNAs, pro-inflammatory cytokines and their associated receptors involved in signaling between microglia, other glia and neurons. Repeated cycles of alcohol and stress cause a progressive, persistent induction of HMGB1, miRNA and TLR receptors in brain that appear to underlie the progressive and persistent loss of behavioral control, increased impulsivity and anxiety, as well as craving, coupled with increasing ventral striatal responses that promote reward seeking behavior and increase risk of developing alcohol use disorders. Studies employing anti-oxidant, anti-inflammatory, anti-depressant, and innate immune antagonists further link innate immune gene expression to addiction-like behaviors. Innate immune molecules are novel targets for addiction and affective disorders therapies. This article is part of the Special Issue entitled "Alcoholism".
Collapse
|
83
|
Activity-dependent synapse to nucleus signaling. Neurobiol Learn Mem 2017; 138:78-84. [DOI: 10.1016/j.nlm.2016.07.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/20/2016] [Accepted: 07/23/2016] [Indexed: 11/15/2022]
|
84
|
Widera D, Klenke C, Nair D, Heidbreder M, Malkusch S, Sibarita JB, Choquet D, Kaltschmidt B, Heilemann M, Kaltschmidt C. Single-particle tracking uncovers dynamics of glutamate-induced retrograde transport of NF-κB p65 in living neurons. NEUROPHOTONICS 2016; 3:041804. [PMID: 27226975 PMCID: PMC4870386 DOI: 10.1117/1.nph.3.4.041804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/18/2016] [Indexed: 06/05/2023]
Abstract
Retrograde transport of NF-κB from the synapse to the nucleus in neurons is mediated by the dynein/dynactin motor complex and can be triggered by synaptic activation. The caliber of axons is highly variable ranging down to 100 nm, aggravating the investigation of transport processes in neurites of living neurons using conventional light microscopy. We quantified for the first time the transport of the NF-κB subunit p65 using high-density single-particle tracking in combination with photoactivatable fluorescent proteins in living mouse hippocampal neurons. We detected an increase of the mean diffusion coefficient ([Formula: see text]) in neurites from [Formula: see text] to [Formula: see text] after stimulation with glutamate. We further observed that the relative amount of retrogradely transported p65 molecules is increased after stimulation. Glutamate treatment resulted in an increase of the mean retrograde velocity from [Formula: see text] to [Formula: see text], whereas a velocity increase from [Formula: see text] to [Formula: see text] was observed for anterogradely transported p65. This study demonstrates for the first time that glutamate stimulation leads to an increased mobility of single NF-κB p65 molecules in neurites of living hippocampal neurons.
Collapse
Affiliation(s)
- Darius Widera
- University of Bielefeld, Cell Biology, Universitätsstr. 25, 33501 Bielefeld, Germany
- University of Reading, School of Pharmacy, Stem Cell Biology and Regenerative Medicine, Whiteknights, Reading RG6 6UB, United Kingdom
| | - Christin Klenke
- University of Bielefeld, Cell Biology, Universitätsstr. 25, 33501 Bielefeld, Germany
| | - Deepak Nair
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, 146 rue Léo-Saignat, Bordeaux 33077, France
- CNRS UMR 5297, 146 rue Léo-Saignat, Bordeaux 33077, France
| | - Meike Heidbreder
- Julius-Maximilians-Universität, Department of Biotechnology and Biophysics, Am Hubland, Würzburg 97074, Germany
| | - Sebastian Malkusch
- Johann Wolfgang Goethe-University, Institute for Physical and Theoretical Chemistry, Max-von-Laue-Street 7, Frankfurt 60438, Germany
| | - Jean-Baptiste Sibarita
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, 146 rue Léo-Saignat, Bordeaux 33077, France
- CNRS UMR 5297, 146 rue Léo-Saignat, Bordeaux 33077, France
- Bordeaux Imaging Center, UMS 3420 CNRS, US4 INSERM, France
| | - Daniel Choquet
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, 146 rue Léo-Saignat, Bordeaux 33077, France
- CNRS UMR 5297, 146 rue Léo-Saignat, Bordeaux 33077, France
| | - Barbara Kaltschmidt
- University of Bielefeld, Cell Biology, Universitätsstr. 25, 33501 Bielefeld, Germany
- University of Bielefeld, Molecular Neurobiology, Universitätsstr. 25, Bielefeld 33501, Germany
| | - Mike Heilemann
- Johann Wolfgang Goethe-University, Institute for Physical and Theoretical Chemistry, Max-von-Laue-Street 7, Frankfurt 60438, Germany
| | - Christian Kaltschmidt
- University of Bielefeld, Cell Biology, Universitätsstr. 25, 33501 Bielefeld, Germany
| |
Collapse
|
85
|
On the interplay between chronic pain and age with regard to neurocognitive integrity: Two interacting conditions? Neurosci Biobehav Rev 2016; 69:174-92. [DOI: 10.1016/j.neubiorev.2016.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 06/04/2016] [Accepted: 07/11/2016] [Indexed: 01/25/2023]
|
86
|
Xiao J, Vemula SR, Xue Y, Khan MM, Kuruvilla KP, Marquez-Lona EM, Cobb MR, LeDoux MS. Motor phenotypes and molecular networks associated with germline deficiency of Ciz1. Exp Neurol 2016; 283:110-20. [PMID: 27163549 DOI: 10.1016/j.expneurol.2016.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 04/20/2016] [Accepted: 05/03/2016] [Indexed: 12/26/2022]
Abstract
A missense mutation in CIZ1 (c.790A>G, p.S264G) was linked to autosomal dominant cervical dystonia in a large multiplex Caucasian pedigree (OMIM614860, DYT23). CIZ1 is a p21((Cip1/Waf1)) -interacting zinc finger protein, widely expressed in neural and extra-neural tissues, and plays a role in DNA synthesis at the G1/S cell-cycle checkpoint. The role of CIZ1 in the nervous system and relative contributions of gain- or loss- of function to the pathogenesis of CIZ1-associated dystonia remain indefinite. Using relative quantitative reverse transcriptase-PCR, cerebellum showed the highest expression levels of Ciz1 in adult mouse brain, over two fold higher than liver, and higher than striatum, midbrain and cerebral cortex. Overall, neural expression of Ciz1 increased with postnatal age. A Ciz1 gene-trap knock-out (KO) mouse model (Ciz1(-/-)) was generated to examine the functional role(s) of CIZ1 in the sensorimotor nervous system and contributions of CIZ1 to cell-cycle control in the mammalian brain. Ciz1 transcripts were absent in Ciz1(-/-) mice and reduced by approximately 50% in Ciz1(+/-) mice. Ciz1(-/-) mice were fertile but smaller than wild-type (WT) littermates. Ciz1(-/-) mice did not manifest dystonia, but exhibited mild motoric abnormalities on balance, open-field activity, and gait. To determine the effects of germline KO of Ciz1 on whole-genome gene expression in adult brain, total RNA from mouse cerebellum was harvested from 6 10-month old Ciz1(-/-) mice and 6 age- and gender- matched WT littermates for whole-genome gene expression analysis. Based on whole-genome gene-expression analyses, genes involved in cellular movement, cell development, cellular growth, cellular morphology and cell-to-cell signaling and interaction were up-regulated in Ciz1(-/-) mice. The top up-regulated pathways were metabolic and cytokine-cytokine receptor interactions. Down-regulated genes were involved in cell cycle, cellular development, cell death and survival, gene expression and cell morphology. Down-regulated networks included those related to metabolism, focal adhesion, neuroactive ligand-receptor interaction, and MAPK signaling. Based on pathway analyses, transcription factor 7-like 2 (TCF7L2), a member of the Wnt/β-catenin signaling pathway, was a major hub for down-regulated genes, whereas NF-κB was a major hub for up-regulated genes. In aggregate, these data suggest that CIZ1 may be involved in the post-mitotic differentiation of neurons in response to external signals and changes in gene expression may compensate, in part, for CIZ1 deficiency in our Ciz1(-/-) mouse model. Although CIZ1 deficiency was associated with mild motor abnormalities, germline loss of Ciz1 was not associated with dystonia on the C57BL/6J background.
Collapse
Affiliation(s)
- Jianfeng Xiao
- Departments of Neurology, and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Satya R Vemula
- Departments of Neurology, and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Yi Xue
- Departments of Neurology, and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Mohammad M Khan
- Departments of Neurology, and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Korah P Kuruvilla
- Departments of Neurology, and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Esther M Marquez-Lona
- Departments of Neurology, and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Madison R Cobb
- Departments of Neurology, and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Mark S LeDoux
- Departments of Neurology, and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|