51
|
Nees TA, Wang N, Adamek P, Zeitzschel N, Verkest C, La Porta C, Schaefer I, Virnich J, Balkaya S, Prato V, Morelli C, Begay V, Lee YJ, Tappe-Theodor A, Lewin GR, Heppenstall PA, Taberner FJ, Lechner SG. Role of TMEM100 in mechanically insensitive nociceptor un-silencing. Nat Commun 2023; 14:1899. [PMID: 37019973 PMCID: PMC10076432 DOI: 10.1038/s41467-023-37602-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Mechanically silent nociceptors are sensory afferents that are insensitive to noxious mechanical stimuli under normal conditions but become sensitized to such stimuli during inflammation. Using RNA-sequencing and quantitative RT-PCR we demonstrate that inflammation upregulates the expression of the transmembrane protein TMEM100 in silent nociceptors and electrophysiology revealed that over-expression of TMEM100 is required and sufficient to un-silence silent nociceptors in mice. Moreover, we show that mice lacking TMEM100 do not develop secondary mechanical hypersensitivity-i.e., pain hypersensitivity that spreads beyond the site of inflammation-during knee joint inflammation and that AAV-mediated overexpression of TMEM100 in articular afferents in the absence of inflammation is sufficient to induce mechanical hypersensitivity in remote skin regions without causing knee joint pain. Thus, our work identifies TMEM100 as a key regulator of silent nociceptor un-silencing and reveals a physiological role for this hitherto enigmatic afferent subclass in triggering spatially remote secondary mechanical hypersensitivity during inflammation.
Collapse
Affiliation(s)
- Timo A Nees
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Department for Orthopeadics, Heidelberg University Hospital, Heidelberg, Germany
| | - Na Wang
- Institute of Pathophysiology, Yan'an University, Yan'an, China
| | - Pavel Adamek
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nadja Zeitzschel
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clement Verkest
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carmen La Porta
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Irina Schaefer
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Julie Virnich
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Selin Balkaya
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vincenzo Prato
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Chiara Morelli
- SISSA: Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Valerie Begay
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Young Jae Lee
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, Republic of Korea
| | | | - Gary R Lewin
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Paul A Heppenstall
- SISSA: Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Francisco J Taberner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Instituto de Neurosciencias de Alicante, Universidad Miguel Hernández - CSIC, Alicante, Spain
| | - Stefan G Lechner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
52
|
Sergooris A, Verbrugghe J, Matheve T, Van Den Houte M, Bonnechère B, Corten K, Bogaerts K, Timmermans A. Clinical phenotypes and prognostic factors in persons with hip osteoarthritis undergoing total hip arthroplasty: protocol for a longitudinal prospective cohort study (HIPPROCLIPS). BMC Musculoskelet Disord 2023; 24:224. [PMID: 36964541 PMCID: PMC10039547 DOI: 10.1186/s12891-023-06326-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/15/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND Large heterogeneity exists in the clinical manifestation of hip osteoarthritis (OA). It is therefore not surprising that pain and disability in individuals with hip OA and after total hip arthroplasty (THA) cannot be explained by biomedical variables alone. Indeed, also maladaptive pain-related cognitions and emotions can contribute to pain and disability, and can lead to poor treatment outcomes. Traumatic experiences, mental disorders, self-efficacy and social support can influence stress appraisal and strategies to cope with pain, but their influence on pain and disability has not yet been established in individuals with hip OA undergoing THA. This study aims (1) to determine the influence of traumatic experiences and mental disorders on pain processing before and shortly after THA (2) to identify preoperative clinical phenotypes in individuals with hip OA eligible for THA, (3) to identify pre- and early postoperative prognostic factors for outcomes in pain and disability after THA, and (4) to identify postoperative clinical phenotypes in individuals after THA. METHODS This prospective longitudinal cohort study will investigate 200 individuals undergoing THA for hip OA. Phenotyping variables and candidate prognostic factors include pain-related fear-avoidance behaviour, perceived injustice, mental disorders, traumatic experiences, self-efficacy, and social support. Peripheral and central pain mechanisms will be assessed with thermal quantitative sensory testing. The primary outcome measure is the hip disability and osteoarthritis outcome score. Other outcome measures include performance-based measures, hip muscle strength, the patient-specific functional scale, pain intensity, global perceived effect, and outcome satisfaction. All these measurements will be performed before surgery, as well as 6 weeks, 3 months, and 12 months after surgery. Pain-related cognitions and emotions will additionally be assessed in the early postoperative phase, on the first, third, fifth, and seventh day after THA. Main statistical methods that will be used to answer the respective research questions include: LASSO regression, decision tree learning, gradient boosting algorithms, and recurrent neural networks. DISCUSSION The identification of clinical phenotypes and prognostic factors for outcomes in pain and disability will be a first step towards pre- and postoperative precision medicine for individuals with hip OA undergoing THA. TRIAL REGISTRATION ClinicalTrials.gov: NCT05265858. Registered on 04/03/2022.
Collapse
Affiliation(s)
- Abner Sergooris
- REVAL Rehabilitation Research, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan Building A - B-3590, Diepenbeek, Belgium.
| | - Jonas Verbrugghe
- REVAL Rehabilitation Research, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan Building A - B-3590, Diepenbeek, Belgium
| | - Thomas Matheve
- REVAL Rehabilitation Research, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan Building A - B-3590, Diepenbeek, Belgium
- Spine, Head and Pain Research Unit Ghent, Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| | - Maaike Van Den Houte
- REVAL Rehabilitation Research, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan Building A - B-3590, Diepenbeek, Belgium
- Laboratory for Brain-Gut Axis Studies (LABGAS), Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, University of Leuven, Leuven, Belgium
| | - Bruno Bonnechère
- REVAL Rehabilitation Research, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan Building A - B-3590, Diepenbeek, Belgium
| | - Kristoff Corten
- Department of Orthopaedics - Hip Unit, Ziekenhuis Oost-Limburg, Genk, Belgium
- Centre for Translational Psychological Research (TRACE), Ziekenhuis Oost-Limburg, Genk, Belgium
| | - Katleen Bogaerts
- REVAL Rehabilitation Research, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan Building A - B-3590, Diepenbeek, Belgium
- Health Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Annick Timmermans
- REVAL Rehabilitation Research, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan Building A - B-3590, Diepenbeek, Belgium
| |
Collapse
|
53
|
Ducza L, Gajtkó A, Hegedűs K, Bakk E, Kis G, Gaál B, Takács R, Szücs P, Matesz K, Holló K. Neuronal P2X4 receptor may contribute to peripheral inflammatory pain in rat spinal dorsal horn. Front Mol Neurosci 2023; 16:1115685. [PMID: 36969557 PMCID: PMC10033954 DOI: 10.3389/fnmol.2023.1115685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/14/2023] [Indexed: 03/11/2023] Open
Abstract
ObjectiveIntense inflammation may result in pain, which manifests as spinal central sensitization. There is growing evidence that purinergic signaling plays a pivotal role in the orchestration of pain processing. Over the last decade the ionotropic P2X purino receptor 4 (P2X4) got into spotlight in neuropathic disorders, however its precise spinal expression was scantily characterized during inflammatory pain. Thus, we intended to analyze the receptor distribution within spinal dorsal horn and lumbar dorsal root ganglia (DRG) of rats suffering in inflammatory pain induced by complete Freund adjuvant (CFA).MethodsCFA-induced peripheral inflammation was validated by mechanical and thermal behavioral tests. In order to ensure about the putative alteration of spinal P2X4 receptor gene expression qPCR reactions were designed, followed by immunoperoxidase and Western blot experiments to assess changes at a protein level. Colocalization of P2X4 with neuronal and glial markers was investigated by double immunofluorescent labelings, which were subsequently analyzed with IMARIS software. Transmission electronmicroscopy was applied to study the ultrastructural localization of the receptor. Concurrently, in lumbar DRG cells similar methodology has been carried out to complete our observations.ResultsThe figures of mechanical and thermal behavioral tests proved the establishment of CFA-induced inflammatory pain. We observed significant enhancement of P2X4 transcript level within the spinal dorsal horn 3 days upon CFA administration. Elevation of P2X4 immunoreactivity within Rexed lamina I-II of the spinal gray matter was synchronous with mRNA expression, and confirmed by protein blotting. According to IMARIS analysis the robust protein increase was mainly detected on primary afferent axonterminals and GFAP-labelled astrocyte membrane compartments, but not on postsynaptic dendrites was also validated ultrastructurally within the spinal dorsal horn. Furthermore, lumbar DRG analysis demonstrated that peptidergic and non-peptidergic nociceptive subsets of ganglia cells were also abundantly positive for P2X4 receptor in CFA model.ConclusionHere we provide novel evidence about involvement of neuronal and glial P2X4 receptor in the establishment of inflammatory pain.
Collapse
|
54
|
Liu Z, Wu J, Xiang W, Wu J, Huang S, Zhou Y, Xia H, Ni Z, Liu B. Correlation between the Signal Intensity Alteration of Infrapatellar Fat Pad and Knee Osteoarthritis: A Retrospective, Cross-Sectional Study. J Clin Med 2023; 12:jcm12041331. [PMID: 36835867 PMCID: PMC9965223 DOI: 10.3390/jcm12041331] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Infrapatellar fat pad (IPFP) inflammation is a common pathological manifestation in knee osteoarthritis (OA). However, the significance of IPFP signal intensity alteration for clinical diagnosis and treatment of knee OA needs further research. We assessed IPFP signal intensity alteration (0-3), IPFP maximum cross-sectional area (CSA) and IPFP depth, meniscus injury, bone marrow edema, and cartilage injury from magnetic-resonance imaging (MRI) in 41 non-KOA patients (K-L grade 0 and grade I) and 68 KOA patients (K-L grade 2,3 and 4). We found that IPFP signaling was altered in all patients with KOA whose alteration was closely related to the K-L grading. We found that the IPFP signal intensity was increased in most OA patients, especially the ones in the late stage. There were significant differences in IPFP maximum CSA and IPFP depth between groups in KOA and non-KOA patients. Moreover, Spearman correlation analysis showed that IPFP signal intensity was moderately positively correlated with age, meniscal injury, cartilage injury, and bone marrow edema, and negatively correlated with height, while not correlated with visual analogue scale (VAS) scoring and body mass index (BMI). In addition, women have higher IPFP inflammation scores on MRI than men. In conclusion, IPFP signal intensity alteration is associated with joint damage in knee OA, which may have clinical significance for diagnosing and treating KOA.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Joint Surgery and Sport Medicine, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, China
| | - Jiangyi Wu
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Wei Xiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jinhui Wu
- Department of Joint Surgery and Sport Medicine, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, China
| | - Shu Huang
- Department of Joint Surgery and Sport Medicine, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, China
| | - Yizhao Zhou
- Department of Joint Surgery and Sport Medicine, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, China
| | - Hui Xia
- Surgery Department I, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, China
| | - Zhenhong Ni
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing 400042, China
- Correspondence: (Z.N.); (B.L.)
| | - Baorong Liu
- Department of Joint Surgery and Sport Medicine, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, China
- Correspondence: (Z.N.); (B.L.)
| |
Collapse
|
55
|
Ackermann PW, Alim MA, Pejler G, Peterson M. Tendon pain - what are the mechanisms behind it? Scand J Pain 2023; 23:14-24. [PMID: 35850720 DOI: 10.1515/sjpain-2022-0018] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/16/2022] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Management of chronic tendon pain is difficult and controversial. This is due to poor knowledge of the underlying pathophysiology of chronic tendon pain, priorly known as tendinitis but now termed tendinopathy. The objective of this topical review was to synthesize evolving information of mechanisms in tendon pain, using a comprehensive search of the available literature on this topic. CONTENT This review found no correlations between tendon degeneration, collagen separation or neovascularization and chronic tendon pain. The synthesis demonstrated that chronic tendon pain, however, is characterized by excessive nerve sprouting with ingrowth in the tendon proper, which corresponds to alterations oberserved also in other connective tissues of chronic pain conditions. Healthy, painfree tendons are devoid of nerve fibers in the tendon proper, while innervation is confined to tendon surrounding structures, such as sheaths. Chronic painful tendons exhibit elevated amounts of pain neuromediators, such as glutamate and substance p as well as up-regulated expression and excitability of pain receptors, such as the glutamate receptor NMDAR1 and the SP receptor NK1, found on ingrown nerves and immune cells. Increasing evidence indicates that mast cells serve as an important link between the peripheral nervous system and the immune systems resulting in so called neurogenic inflammation. SUMMARY Chronic painful tendons exhibit (1) protracted ingrowth of sensory nerves (2) elevated pain mediator levels and (3) up-regulated expression and excitability of pain receptors, participating in (4) neuro-immune pathways involved in pain regulation. Current treatments that entail the highest scientific evidence to mitigate chronic tendon pain include eccentric exercises and extracorporeal shockwave, which both target peripheral neoinnervation aiming at nerve regeneration. OUTLOOK Potential mechanism-based pharmacological treatment approaches could be developed by blocking promotors of nerve ingrowth, such as NGF, and promoting inhibitors of nerve ingrowth, like semaphorins, as well as blocking glutamate-NMDA-receptor pathways, which are prominent in chronic tendon pain.
Collapse
Affiliation(s)
- Paul W Ackermann
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Trauma, Acute Surgery and Orthopaedics, Stockholm, Sweden
| | - Md Abdul Alim
- Department of Public Health and Caring Sciences, General Medicine, Uppsala University, Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Magnus Peterson
- Department of Public Health and Caring Sciences, General Medicine, Uppsala University, Uppsala, Sweden
- Academic Primary Health Care, Region Uppsala, Sweden
| |
Collapse
|
56
|
Sarvilina IV, Danilov AB, Tkacheva ON, Gromova OA, Solovieva EY, Dudinskaya EN, Rozanov AV, Kartashova EA. [Influence of chronic pain in osteoarthritis on the risk of cardiovascular diseases and modern methods of drug prevention]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:20-30. [PMID: 37315238 DOI: 10.17116/jnevro202312305120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The purpose of the review of scientific medical literature was to evaluate the data of the epidemiology of osteoarthritis (OA) and cardiovascular diseases (CVD) with the analysis of risk factors, pathophysiological and pathobiochemical mechanisms of the relationship between OA and the risk of developing CVD in the presence of chronic pain, modern strategies for screening and management of this cohort of patients, the mechanism of action and pharmacological effects of chondroitin sulfate (CS). Conclusions were drawn about the need for additional clinical and observational studies of the efficacy and safety of the parenteral form of CS (Chondroguard) in patients with chronic pain in OA and CVD, improvement of clinical recommendations for the treatment of chronic pain in patients with OA and cardiovascular risk, with special attention to interventions that eliminate mobility restrictions in patients and the inclusion of basic and adjuvant therapy with DMOADs to achieve the goals of multipurpose monotherapy in patients with contraindications to standard therapy drugs.
Collapse
Affiliation(s)
- I V Sarvilina
- Medical Center «Novomedicina» LLC, Rostov-on-Don, Russia
| | - Al B Danilov
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - O N Tkacheva
- Russian Clinical and Research Center of Gerontology - Pirogov Russian National Research Medical University, Moscow, Russia
| | - O A Gromova
- Federal Research Center «Computer Science and Control», Moscow, Russia
| | - E Yu Solovieva
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - E N Dudinskaya
- Russian Clinical and Research Center of Gerontology - Pirogov Russian National Research Medical University, Moscow, Russia
| | - A V Rozanov
- Russian Clinical and Research Center of Gerontology - Pirogov Russian National Research Medical University, Moscow, Russia
| | | |
Collapse
|
57
|
Fu Y, Sun L, Zhu F, Xia W, Wen T, Xia R, Yu X, Xu D, Peng C. Ectopic expression of Nav1.7 in spinal dorsal horn neurons induced by NGF contributes to neuropathic pain in a mouse spinal cord injury model. Front Mol Neurosci 2023; 16:1091096. [PMID: 36937049 PMCID: PMC10020601 DOI: 10.3389/fnmol.2023.1091096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/25/2023] [Indexed: 03/06/2023] Open
Abstract
Neuropathic pain (NP) induced by spinal cord injury (SCI) often causes long-term disturbance for patients, but the mechanisms behind remains unclear. Here, our study showed SCI-induced ectopic expression of Nav1.7 in abundant neurons located in deep and superficial laminae layers of the spinal dorsal horn (SDH) and upregulation of Nav1.7 expression in dorsal root ganglion (DRG) neurons in mice. Pharmacologic studies demonstrated that the efficacy of the blood-brain-barrier (BBB) permeable Nav1.7 inhibitor GNE-0439 for attenuation of NP in SCI mice was significantly better than that of the BBB non-permeable Nav1.7 inhibitor PF-05089771. Moreover, more than 20% of Nav1.7-expressing SDH neurons in SCI mice were activated to express FOS when there were no external stimuli, suggesting that the ectopic expression of Nav1.7 made SDH neurons hypersensitive and Nav1.7-expressing SDH neurons participated in central sensitization and in spontaneous pain and/or walking-evoked mechanical pain. Further investigation showed that NGF, a strong activator of Nav1.7 expression, and its downstream JUN were upregulated after SCI in SDH neurons with similar distribution patterns and in DRG neurons too. In conclusion, our findings showed that the upregulation of Nav1.7 was induced by SCI in both SDH and DRG neurons through increased expression of NGF/JUN, and the inhibition of Nav1.7 in both peripheral and spinal neurons alleviated mechanical pain in SCI mice. These data suggest that BBB permeable Nav1.7 blockers might relieve NP in patients with SCI and that blocking the upregulation of Nav1.7 in the early stage of SCI via selective inhibition of the downstream signaling pathways of NGF or Nav1.7-targeted RNA drugs could be a strategy for therapy of SCI-induced NP.
Collapse
Affiliation(s)
- Yan Fu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- The First Rehabilitation Hospital of Shanghai, Brain and Spinal Cord Innovation Research Center, School of Medicine, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Liting Sun
- The First Rehabilitation Hospital of Shanghai, Brain and Spinal Cord Innovation Research Center, School of Medicine, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Fengting Zhu
- The First Rehabilitation Hospital of Shanghai, Brain and Spinal Cord Innovation Research Center, School of Medicine, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
- Pre-clinical College, Dali University, Dali, Yunnan, China
| | - Wei Xia
- The First Rehabilitation Hospital of Shanghai, Brain and Spinal Cord Innovation Research Center, School of Medicine, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Ting Wen
- The First Rehabilitation Hospital of Shanghai, Brain and Spinal Cord Innovation Research Center, School of Medicine, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Ruilong Xia
- The First Rehabilitation Hospital of Shanghai, Brain and Spinal Cord Innovation Research Center, School of Medicine, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Xin Yu
- Pre-clinical College, Dali University, Dali, Yunnan, China
| | - Dan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- *Correspondence: Changgeng Peng, ; Dan Xu,
| | - Changgeng Peng
- The First Rehabilitation Hospital of Shanghai, Brain and Spinal Cord Innovation Research Center, School of Medicine, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
- *Correspondence: Changgeng Peng, ; Dan Xu,
| |
Collapse
|
58
|
Sinclair J, Huang G, Taylor PJ, Chockalingam N, Fan Y. Effects of Running in Minimal and Conventional Footwear on Medial Tibiofemoral Cartilage Failure Probability in Habitual and Non-Habitual Users. J Clin Med 2022; 11:jcm11247335. [PMID: 36555951 PMCID: PMC9788348 DOI: 10.3390/jcm11247335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
This study examined the effects of minimal and conventional running footwear on medial tibiofemoral cartilage mechanics and longitudinal failure probability. The current investigation examined twenty males who habitually ran in minimal footwear and 20 males who habitually ran in conventional footwear. Kinematic data during overground running were collected using a motion-capture system and ground reaction forces using a force plate. Medial tibiofemoral loading was examined using musculoskeletal simulation and cartilage failure probability via probabilistic modelling. In habitual minimal footwear users, peak medial tibiofemoral cartilage force, stress and strain were significantly greater in conventional (force = 7.43 BW, stress = 5.12 MPa and strain = 0.30), compared to minimal footwear (force = 7.11 BW, stress 4.65 MPa and strain = 0.28), though no significant differences in these parameters were evident in non-habitual minimal footwear users (conventional: force = 7.50 BW, stress = 5.05 MPa and strain = 0.30; minimal: force = 7.40 BW, stress = 4.77 MPa and strain = 0.29). However, in both habitual and non-habitual minimal footwear users, the probability of medial tibiofemoral cartilage failure was significantly greater in conventional (habitual = 47.19% and non-habitual = 50.00%) compared to minimal footwear (habitual = 33.18% and non-habitual = 32.81%) users. The observations from this investigation show that compared to minimal footwear, conventional footwear appears to have a negative influence on medial tibiofemoral cartilage health.
Collapse
Affiliation(s)
- Jonathan Sinclair
- Research Centre for Applied Sport, Physical Activity and Performance, School of Sport & Health Sciences, Faculty of Allied Health and Wellbeing, University of Central Lancashire, Preston PR1 2HE, Lancashire, UK
- Correspondence: (J.S.); (G.H.)
| | - Guohao Huang
- Foot Research Laboratory, Key Laboratory of Sport and Health Science of Fujian Province, School of Physical Education and Sport Science, Fujian Normal University, Fuzhou 350117, China
- Correspondence: (J.S.); (G.H.)
| | - Paul John Taylor
- School of Psychology & Computer Sciences, Faculty of Science and Technology, University of Central Lancashire, Preston PR1 2HE, Lancashire, UK
| | | | - Yifang Fan
- Foot Research Laboratory, Key Laboratory of Sport and Health Science of Fujian Province, School of Physical Education and Sport Science, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
59
|
Karateev AE, Nesterenko VA, Makarov MA, Lila AM. Chronic post-traumatic pain: rheumatological and orthopedic aspects. RHEUMATOLOGY SCIENCE AND PRACTICE 2022. [DOI: 10.47360/1995-4484-2022-526-537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Trauma causes a complex local and systemic reaction of the macroorganism, the consequences of which can be various functional, neurological and psychoemotional disorders. One of the most painful complications of injuries of the musculoskeletal system is chronic post-traumatic pain (CPTP), which occurs, depending on the severity of the damage, in 10–50% of cases. The pathogenesis of this syndrome is multifactorial and includes the development of chronic inflammation, degenerative changes (fibrosis, angiogenesis, heterotopic ossification), pathology of the muscular and nervous systems, neuroplastic changes leading to the development of central sensitization, as well as depression, anxiety and catastrophization. Risk factors for CPTP should be considered the severity of injury, comorbid diseases and conditions (in particular, obesity), stress and serious trauma-related experiences (within the framework of post-traumatic stress disorder), the development of post-traumatic osteoarthritis and chronic tendopathy, genetic predisposition, deficiencies in treatment and rehabilitation in the early period after injury. To date, there is no clear system of prevention and treatment of CPTP. Considering the pathogenesis of this suffering, adequate anesthesia after injury, active anti–inflammatory therapy (including local injections of glucocorticoids), the use of hyaluronic acid, slow-acting symptomatic agents and autologous cellular preparations – platelet-riched plasma, mesenchymal stem cells, etc. are of fundamental importance. However, therapeutic and surgical methods of CPTP control require further study
Collapse
Affiliation(s)
| | | | | | - A. M. Lila
- V.A. Nasonova Research Institute of Rheumatology; Russian Medical Academy of Continuous Professional Education of the Ministry of Healthcare of the Russian Federation
| |
Collapse
|
60
|
Proinflammatory cytokines and their receptors as druggable targets to alleviate pathological pain. Pain 2022; 163:S79-S98. [DOI: 10.1097/j.pain.0000000000002737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023]
|
61
|
Sensory Neuron-Specific Deletion of Tropomyosin Receptor Kinase A (TrkA) in Mice Abolishes Osteoarthritis (OA) Pain via NGF/TrkA Intervention of Peripheral Sensitization. Int J Mol Sci 2022; 23:ijms232012076. [PMID: 36292950 PMCID: PMC9602682 DOI: 10.3390/ijms232012076] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/21/2022] Open
Abstract
Tropomyosin receptor kinase A (TrkA/NTRK1) is a high-affinity receptor for nerve growth factor (NGF), a potent pain mediator. NGF/TrkA signaling elevates synovial sensory neuronal distributions in the joints and causes osteoarthritis (OA) pain. We investigated the mechanisms of pain transmission as to whether peripheral sensory neurons are linked to the cellular plasticity in the dorsal root ganglia (DRG) and are critical for OA hyperalgesia. Sensory neuron-specific deletion of TrkA was achieved by tamoxifen injection in 4-week-old TrkAfl/fl;NaV1.8CreERT2 (Ntrk1 fl/fl;Scn10aCreERT2) mice. OA was induced by partial medial meniscectomy (PMM) in 12-week-old mice, and OA-pain-related behavior was analyzed for 12 weeks followed by comprehensive histopathological examinations. OA-associated joint pain was markedly improved without cartilage protection in sensory-neuron-specific conditional TrkA knock-out (cKO) mice. Alleviated hyperalgesia was associated with suppression of the NGF/TrkA pathway and reduced angiogenesis in fibroblast-like synovial cells. Elevated pain transmitters in the DRG of OA-induced mice were significantly diminished in sensory-neuron-specific TrkA cKO and global TrkA cKO mice. Spinal glial activity and brain-derived neurotropic factor (BDNF) were significantly increased in OA-induced mice but were substantially eliminated by sensory-neuron-specific deletion. Our results suggest that augmentation of NGF/TrkA signaling in the joint synovium and the peripheral sensory neurons facilitate pro-nociception and centralized pain sensitization.
Collapse
|
62
|
Aso K, Walsh DA, Wada H, Izumi M, Tomitori H, Fujii K, Ikeuchi M. Time course and localization of nerve growth factor expression and sensory nerve growth during progression of knee osteoarthritis in rats. Osteoarthritis Cartilage 2022; 30:1344-1355. [PMID: 35843479 DOI: 10.1016/j.joca.2022.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Nerve growth factor (NGF) and sensory nerves are key factors in established osteoarthritis (OA) knee pain. We investigated the time course of NGF expression and sensory nerve growth across early and late stages of OA progression in rat knees. DESIGN Knee OA was induced by medial meniscectomy in rats. OA histopathology, NGF expression, and calcitonin gene-related peptide immunoreactive (CGRP-IR) nerves were quantified pre-surgery and post-surgery at weeks 1, 2, 4 and 6. Pain-related behavior was evaluated using dynamic weight distribution and mechanical sensitivity of the hind paw. RESULTS NGF expression in chondrocytes increased from week 1 and remained elevated until the advanced stage. In synovium, NGF expression increased only in early stages, whereas in osteochondral channels and bone marrow, NGF expression increased in the later stages of OA progression. CGRP-IR nerve density in suprapatellar pouch peaked at week 4 and decreased at week 6, whereas in osteochondral channels and bone marrow, CGRP-IR innervation increased through week 6. Percent ipsilateral weight-bearing decreased throughout the OA time course, whereas reduced paw withdrawal thresholds were observed only in later stages. CONCLUSION During progression of knee OA, time-dependent alterations of NGF expression and CGRP-IR sensory innervation are knee tissue specific. NGF expression increased in early stages and decreased in advanced stage in the synovium but continued to increase in osteochondral channels and bone marrow. Increases in CGRP- IR sensory innervation followed increases in NGF expression, implicating that NGF is a key driver of articular nerve growth associated with OA pain.
Collapse
Affiliation(s)
- K Aso
- Department of Orthopedic Surgery, Kochi Medical School, Kochi University, 185-1 Oko-cho Kohasu, Nankoku 783-8505, Japan.
| | - D A Walsh
- Pain Centre Versus Arthritis & NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, NG5 1PB, UK
| | - H Wada
- Department of Orthopedic Surgery, Kochi Medical School, Kochi University, 185-1 Oko-cho Kohasu, Nankoku 783-8505, Japan
| | - M Izumi
- Department of Orthopedic Surgery, Kochi Medical School, Kochi University, 185-1 Oko-cho Kohasu, Nankoku 783-8505, Japan
| | - H Tomitori
- Pfizer Japan Inc., 7-22-3 Yoyogi Shibuya-ku Tokyo, Japan
| | - K Fujii
- Pfizer Japan Inc., 7-22-3 Yoyogi Shibuya-ku Tokyo, Japan
| | - M Ikeuchi
- Department of Orthopedic Surgery, Kochi Medical School, Kochi University, 185-1 Oko-cho Kohasu, Nankoku 783-8505, Japan
| |
Collapse
|
63
|
Biological Targets of Multimolecular Therapies in Middle-Age Osteoarthritis. Sports Med Arthrosc Rev 2022; 30:141-146. [PMID: 35921596 DOI: 10.1097/jsa.0000000000000349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Knee osteoarthritis (OA) is a common condition, prevalent in middle-agedness, associated with chronic pain and impaired quality of life. Two interrelated biological processes fuel early OA progression: inflammation and structural tissues catabolism. Procatabolic and proinflammatory mediators are interconnected and form part of a self-perpetuating loop. They leverage OA research complexity because of the impossibility to discern certain spatiotemporal tissues' changes from others. Both are shared targets of versatile regenerative multimolecular therapies. In particular, platelet-rich plasma can interfere with inflammation and inflammatory pain. The therapeutic approach is to alter the vicious inflammatory loop by modifying the molecular composition of the synovial fluid, thereby paracrine cellular cross talk. Intra-articular injections of platelet-rich plasma can provide key factors balancing proinflammatory and anti-inflammatory factors, targeting macrophage dysfunction and modulating immune mechanisms within the knee.
Collapse
|
64
|
Osteoarthritis-Induced Metabolic Alterations of Human Hip Chondrocytes. Biomedicines 2022; 10:biomedicines10061349. [PMID: 35740371 PMCID: PMC9220245 DOI: 10.3390/biomedicines10061349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/19/2022] [Accepted: 06/02/2022] [Indexed: 11/24/2022] Open
Abstract
Osteoarthritis (OA) alters chondrocyte metabolism and mitochondrial biology. We explored whether OA and non-OA chondrocytes show persistent differences in metabolism and mitochondrial function and different responsiveness to cytokines and cAMP modulators. Hip chondrocytes from patients with OA or femoral neck fracture (non-OA) were stimulated with IL-1β, TNF, forskolin and opioid peptides. Mediators released from chondrocytes were measured, and mitochondrial functions and glycolysis were determined (Seahorse Analyzer). Unstimulated OA chondrocytes exhibited significantly higher release of IL-6, PGE2 and MMP1 and lower production of glycosaminoglycan than non-OA chondrocytes. Oxygen consumption rates (OCR) and mitochondrial ATP production were comparable in unstimulated non-OA and OA chondrocytes, although the non-mitochondrial OCR was higher in OA chondrocytes. Compared to OA chondrocytes, non-OA chondrocytes showed stronger responses to IL-1β/TNF stimulation, consisting of a larger decrease in mitochondrial ATP production and larger increases in non-mitochondrial OCR and NO production. Enhancement of cAMP by forskolin prevented IL-1β-induced mitochondrial dysfunction in OA chondrocytes but not in non-OA chondrocytes. Endogenous opioids, present in OA joints, influenced neither cytokine-induced mitochondrial dysfunction nor NO upregulation. Glycolysis was not different in non-OA and OA chondrocytes, independent of stimulation. OA induces persistent metabolic alterations, but the results suggest upregulation of cellular mechanisms protecting mitochondrial function in OA.
Collapse
|
65
|
Mechanisms of bone pain: Progress in research from bench to bedside. Bone Res 2022; 10:44. [PMID: 35668080 PMCID: PMC9170780 DOI: 10.1038/s41413-022-00217-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 12/27/2022] Open
Abstract
AbstractThe field of research on pain originating from various bone diseases is expanding rapidly, with new mechanisms and targets asserting both peripheral and central sites of action. The scope of research is broadening from bone biology to neuroscience, neuroendocrinology, and immunology. In particular, the roles of primary sensory neurons and non-neuronal cells in the peripheral tissues as important targets for bone pain treatment are under extensive investigation in both pre-clinical and clinical settings. An understanding of the peripheral mechanisms underlying pain conditions associated with various bone diseases will aid in the appropriate application and development of optimal strategies for not only managing bone pain symptoms but also improving bone repairing and remodeling, which potentially cures the underlying etiology for long-term functional recovery. In this review, we focus on advances in important preclinical studies of significant bone pain conditions in the past 5 years that indicated new peripheral neuronal and non-neuronal mechanisms, novel targets for potential clinical interventions, and future directions of research.
Collapse
|
66
|
Pain in Hemophilia: Unexplored Role of Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11061113. [PMID: 35740010 PMCID: PMC9220316 DOI: 10.3390/antiox11061113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/26/2022] [Accepted: 05/29/2022] [Indexed: 02/04/2023] Open
Abstract
Hemophilia is the most common X-linked bleeding diathesis caused by the genetic deficiency of coagulation factors VIII or IX. Despite treatment advances and improvements in clinical management to prevent bleeding, management of acute and chronic pain remains to be established. Repeated bleeding of the joints leads to arthropathy, causing pain in hemophilia. However, mechanisms underlying the pathogenesis of pain in hemophilia remain underexamined. Herein, we describe the novel perspectives on the role for oxidative stress in the periphery and the central nervous system that may contribute to pain in hemophilia. Specifically, we cross examine preclinical and clinical studies that address the contribution of oxidative stress in hemophilia and related diseases that affect synovial tissue to induce acute and potentially chronic pain. This understanding would help provide potential treatable targets using antioxidants to ameliorate pain in hemophilia.
Collapse
|
67
|
Alves-Simões M. Rodent models of knee osteoarthritis for pain research. Osteoarthritis Cartilage 2022; 30:802-814. [PMID: 35139423 DOI: 10.1016/j.joca.2022.01.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/06/2022] [Accepted: 01/18/2022] [Indexed: 02/02/2023]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease and a leading cause of disability worldwide. Pain is the main symptom, yet no current treatment can halt disease progression or effectively provide symptomatic relief. Numerous animal models have been described for studying OA and some for the associated OA pain. This review aims to update on current models used for studying OA pain, focusing on mice and rats. These models include surgical, chemical, mechanical, and spontaneous OA models. The impact of sex and age will also be addressed in the context of OA modelling. Although no single animal model has been shown ideal for studying OA pain, increased efforts to phenotype OA will likely impact the choice of models for pre-clinical and basic research studies.
Collapse
Affiliation(s)
- M Alves-Simões
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
68
|
Steen Pettersen P, Neogi T, Magnusson K, Mathiessen A, Hammer HB, Uhlig T, Kvien TK, Haugen IK. Associations between joint pathologies and central sensitization in persons with hand osteoarthritis: results from the Nor-Hand study. Rheumatology (Oxford) 2022; 61:2316-2324. [PMID: 34559196 PMCID: PMC9157061 DOI: 10.1093/rheumatology/keab708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/10/2021] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Pain sensitization is associated with pain severity in persons with hand OA. What contributes to pain sensitization is unclear. This study explores whether hand OA pathologies and symptom duration are related to central sensitization. METHOD Participants with hand OA in the Nor-Hand study underwent bilateral hand radiography and US examination. Central sensitization was assessed with pressure pain thresholds (PPT) at remote sites (wrist, trapezius and tibialis anterior muscles) and temporal summation. We examined whether hand OA pathologies, independent of each other, including structural severity (Kellgren-Lawrence sum score, presence of erosive hand OA), inflammatory severity (greyscale synovitis and power Doppler activity sum scores) and symptom duration, were related to central sensitization, adjusting for age, sex, BMI, comorbidities and OA-severity of knee/hip. RESULTS In 291 participants (88% women, median age 61 years, interquartile range 57-66 years) Kellgren-Lawrence, greyscale synovitis and power Doppler activity sum scores were not associated with lower PPTs at remote sites. Persons with erosive hand OA had lower PPTs at the wrist (adjusted beta -0.75, 95% CI -1.32, -0.19) and tibialis anterior (adjusted beta -0.82, 95% CI -1.54, -0.09) and had greater temporal summation (adjusted beta 0.56, 95% CI 0.12, 1.01) compared with persons with non-erosive disease. No associations were found for symptom duration. CONCLUSIONS A person's overall amount of structural or inflammatory hand OA pathologies was not associated with central sensitization. Although persons with erosive hand OA showed greater signs of central sensitization, the small differences suggest that central sensitization is mainly explained by factors other than joint pathologies.
Collapse
Affiliation(s)
- Pernille Steen Pettersen
- Division of Rheumatology and Research, Diakonhjemmet Hospital
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Tuhina Neogi
- Section of Rheumatology, Boston University School of Medicine, Boston, MA, USA
| | - Karin Magnusson
- Orthopaedics, Clinical Epidemiology Unit, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
- Norwegian Institute of Public Health, Cluster for Health Services Research
| | | | - Hilde Berner Hammer
- Division of Rheumatology and Research, Diakonhjemmet Hospital
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Till Uhlig
- Faculty of Medicine, University of Oslo, Oslo, Norway
- National Advisory Unit on Rehabilitation in Rheumatology, Diakonhjemmet Hospital, Oslo, Norway
| | - Tore K Kvien
- Division of Rheumatology and Research, Diakonhjemmet Hospital
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ida K Haugen
- Division of Rheumatology and Research, Diakonhjemmet Hospital
| |
Collapse
|
69
|
Salucci S, Falcieri E, Battistelli M. Chondrocyte death involvement in osteoarthritis. Cell Tissue Res 2022; 389:159-170. [PMID: 35614364 PMCID: PMC9287242 DOI: 10.1007/s00441-022-03639-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 05/09/2022] [Indexed: 12/22/2022]
Abstract
Chondrocyte apoptosis is known to contribute to articular cartilage damage in osteoarthritis and is correlated to a number of cartilage disorders. Micromass cultures represent a convenient means for studying chondrocyte biology, and, in particular, their death. In this review, we focused the different kinds of chondrocyte death through a comparison between data reported in the literature. Chondrocytes show necrotic features and, occasionally, also apoptotic features, but usually undergo a new form of cell death called Chondroptosis, which occurs in a non-classical manner. Chondroptosis has some features in common with classical apoptosis, such as cell shrinkage, chromatin condensation, and involvement, not always, of caspases. The most crucial peculiarity of chondroptosis relates to the ultimate elimination of cellular remnants. Independent of phagocytosis, chondroptosis may serve to eliminate cells without inflammation in situations in which phagocytosis would be difficult. This particular death mechanism is probably due to the unusual condition chondrocytes both in vivo and in micromass culture. This review highlights on the morpho-fuctional alterations of articular cartilage and focus attention on various types of chondrocyte death involved in this degeneration. The death features have been detailed and discussed through in vitro studies based on tridimensional chondrocyte culture (micromasses culture). The study of this particular mechanism of cartilage death and the characterization of different biological and biochemical underlying mechanisms can lead to the identification of new potentially therapeutic targets in various joint diseases.
Collapse
Affiliation(s)
- S Salucci
- Department of Biomolecular Sciences (DiSB), Urbino University Carlo Bo, Via Cà le Suore, 2, Campus Scientifico Enrico Mattei, 61029, Urbino (PU), Italy.,Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy
| | - E Falcieri
- Department of Biomolecular Sciences (DiSB), Urbino University Carlo Bo, Via Cà le Suore, 2, Campus Scientifico Enrico Mattei, 61029, Urbino (PU), Italy
| | - M Battistelli
- Department of Biomolecular Sciences (DiSB), Urbino University Carlo Bo, Via Cà le Suore, 2, Campus Scientifico Enrico Mattei, 61029, Urbino (PU), Italy.
| |
Collapse
|
70
|
Balkrishna A, Sinha S, Karumuri S, Srivastava J, Haldar S, Varshney A. Peedanil Gold, Herbo-Mineral Formulation, Moderates Cytokine Levels and Attenuates Pathophysiology in Monosodium Iodoacetate Induced Osteoarthritis in SD Rat Model. Front Pharmacol 2022; 13:883475. [PMID: 35600853 PMCID: PMC9114492 DOI: 10.3389/fphar.2022.883475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
The inflammatory cartilaginous degeneration of the articular joints, mostly those of knee, hips and hands, is osteoarthritis (OA). The available treatment strategies for osteoarthritis are designed for pain relief, molecular targeting, cartilage regeneration and surgical intervention. However, meta-analysis of clinical trials has shown these strategies to be sub-optimal, thereby, eliciting a need for investigating alternative options. The herbo-mineral formulation, Peedanil Gold (PN-G) has been used against joint pains and inflammation. In the current study, anti-osteoarthritic effects of PN-G were investigated in rat model of OA, induced by intra-articular injection of monosodium-iodoacetate. PN-G treatment improved the clinical and Kellgren & Lawrence scores; and rescued the osteoarthritic rats from hyperalgesia and allodynia. Besides, PN-G treatment ameliorated joint inflammation and abrogated in vivo osteoarthritic pathology through effective cartilage regeneration, measured radiologically and histopathologically. PN-G also reduced the levels of interleukin-6 (IL-6) and interleukin-1 beta (IL-1β), in a dose dependent manner, in inflamed human macrophagic THP-1 cells, thereby, reaffirming its anti-inflammatory property at cytosafe concentrations. Ultra High performance liquid chromatography (UHPLC) revealed the presence of several analgesic and anti-inflammatory phytocompounds, like ellagic acid, guggulsterone E, guggulsterone Z, 5-(hydroxymethyl) furfural, corilagin, cinnamic acid, ferulic acid, gallic acid and protocatechuic acid in PN-G. In conclusion, this study has succinctly demonstrated that PN-G is capable of relieving the clinical symptoms of osteoarthritis, which is measurable through the established osteoarthritic serum biomarker, Cartilage Oligomeric Matrix Protein (COMP).
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, India
| | - Sandeep Sinha
- Department of Biology, Patanjali Research Institute, Haridwar, India
| | - Shadrak Karumuri
- Department of Biology, Patanjali Research Institute, Haridwar, India
| | | | - Swati Haldar
- Department of Microbiology, Patanjali Research Institute, Haridwar, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
71
|
Gløersen M, Steen Pettersen P, Neogi T, Jafarzadeh SR, Vistnes M, Thudium CS, Bay-Jensen AC, Sexton J, Kvien TK, Hammer HB, Haugen IK. Associations of Body Mass Index With Pain and the Mediating Role of Inflammatory Biomarkers in People With Hand Osteoarthritis. Arthritis Rheumatol 2022; 74:810-817. [PMID: 35137553 PMCID: PMC9050744 DOI: 10.1002/art.42056] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 11/26/2021] [Accepted: 12/16/2021] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To examine the association of body mass index (BMI) with pain in people with hand osteoarthritis (OA), and explore whether this association, if causal, is mediated by systemic inflammatory biomarkers. METHODS In 281 Nor-Hand study participants, we estimated associations between BMI and hand pain, as measured by the Australian/Canadian Osteoarthritis Hand Index (AUSCAN; range 0-20) and Numerical Rating Scale (NRS; range 0-10); foot pain, as measured by NRS (range 0-10); knee/hip pain, as measured by the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC; range 0-20); painful total body joint count; and pain sensitization. We fit natural-effects models to estimate natural direct and natural indirect effects of BMI on pain through inflammatory biomarkers. RESULTS Each 5-unit increase in BMI was associated with more severe hand pain (on average increased AUSCAN by 0.64 [95% confidence interval (95% CI) 0.23, 1.08]), foot pain (on average increased NRS by 0.65 [95% CI 0.36, 0.92]), knee/hip pain (on average increased WOMAC by 1.31 [95% CI 0.87, 1.73]), generalized pain, and pain sensitization. Mediation analyses suggested that the effects of BMI on hand pain and painful total body joint count were partially mediated by leptin and high-sensitivity C-reactive protein (hsCRP), respectively. Effect sizes for mediation by leptin were larger for the hands than for the lower extremities, and were statistically significant for the hands only. CONCLUSION In people with hand OA, higher BMI is associated with greater pain severity in the hands, feet, and knees/hips. Systemic effects of obesity, measured by leptin, may play a larger mediating role for pain in the hands than in the lower extremities. Low-grade inflammation, measured by hsCRP, may contribute to generalized pain in overweight/obese individuals.
Collapse
Affiliation(s)
- Marthe Gløersen
- Division of Rheumatology and Research, Diakonhjemmet Hospital, Oslo, Norway,University of Oslo, Faculty of Medicine, Oslo, Norway
| | - Pernille Steen Pettersen
- Division of Rheumatology and Research, Diakonhjemmet Hospital, Oslo, Norway,University of Oslo, Faculty of Medicine, Oslo, Norway
| | - Tuhina Neogi
- Section of Rheumatology, Boston University School of Medicine, Boston, USA
| | - S. Reza Jafarzadeh
- Section of Rheumatology, Boston University School of Medicine, Boston, USA
| | - Maria Vistnes
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway,Division of Medicine, Diakonhjemmet Hospital, Oslo, Norway,Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | | | | | - Joe Sexton
- Division of Rheumatology and Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Tore K. Kvien
- Division of Rheumatology and Research, Diakonhjemmet Hospital, Oslo, Norway,University of Oslo, Faculty of Medicine, Oslo, Norway
| | - Hilde B. Hammer
- Division of Rheumatology and Research, Diakonhjemmet Hospital, Oslo, Norway,University of Oslo, Faculty of Medicine, Oslo, Norway
| | - Ida K. Haugen
- Division of Rheumatology and Research, Diakonhjemmet Hospital, Oslo, Norway
| |
Collapse
|
72
|
Abstract
Joint pain is the hallmark symptom of osteoarthritis (OA) and the main reason for patients to seek medical assistance. OA pain greatly contributes to functional limitations of joints and reduced quality of life. Although several pain-relieving medications are available for OA treatment, the current intervention strategy for OA pain cannot provide satisfactory pain relief, and the chronic use of the drugs for pain management is often associated with significant side effects and toxicities. These observations suggest that the mechanisms of OA-related pain remain undefined. The current review mainly focuses on the characteristics and mechanisms of OA pain. We evaluate pathways associated with OA pain, such as nerve growth factor (NGF)/tropomyosin receptor kinase A (TrkA), calcitonin gene-related peptide (CGRP), C–C motif chemokine ligands 2 (CCL2)/chemokine receptor 2 (CCR2) and tumor necrosis factor alpha (TNF-α), interleukin-1beta (IL-1β), the NOD-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3) inflammasome, and the Wnt/β-catenin signaling pathway. In addition, animal models currently used for OA pain studies and emerging preclinical studies are discussed. Understanding the multifactorial components contributing to OA pain could provide novel insights into the development of more specific and effective drugs for OA pain management.
Collapse
|
73
|
Vasconcelos DP, Jabangwe C, Lamghari M, Alves CJ. The Neuroimmune Interplay in Joint Pain: The Role of Macrophages. Front Immunol 2022; 13:812962. [PMID: 35355986 PMCID: PMC8959978 DOI: 10.3389/fimmu.2022.812962] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/15/2022] [Indexed: 12/29/2022] Open
Abstract
Chronic pain associated with joint disorders, such as rheumatoid arthritis (RA), osteoarthritis (OA) and implant aseptic loosening (AL), is a highly debilitating symptom that impacts mobility and quality of life in affected patients. The neuroimmune crosstalk has been demonstrated to play a critical role in the onset and establishment of chronic pain conditions. Immune cells release cytokines and immune mediators that can activate and sensitize nociceptors evoking pain, through interaction with receptors in the sensory nerve terminals. On the other hand, sensory and sympathetic nerve fibers release neurotransmitters that bind to their specific receptor expressed on surface of immune cells, initiating an immunomodulatory role. Macrophages have been shown to be key players in the neuroimmune crosstalk. Moreover, macrophages constitute the dominant immune cell population in RA, OA and AL. Importantly, the targeting of macrophages can result in anti-nociceptive effects in chronic pain conditions. Therefore, the aim of this review is to discuss the nature and impact of the interaction between the inflammatory response and nerve fibers in these joint disorders regarding the genesis and maintenance of pain. The role of macrophages is highlighted. The alteration in the joint innervation pattern and the inflammatory response are also described. Additionally, the immunomodulatory role of sensory and sympathetic neurotransmitters is revised.
Collapse
Affiliation(s)
- Daniela P Vasconcelos
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto- Associação, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Clive Jabangwe
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto- Associação, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Meriem Lamghari
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto- Associação, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Instituto Ciências Biomédicas Abel Salazar, Universidade de Porto, Porto, Portugal
| | - Cecília J Alves
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto- Associação, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| |
Collapse
|
74
|
Lange U, Dischereit G, Klemm PM. Schmerzreduktion durch physikalische Medizin. Z Rheumatol 2022; 81:376-385. [DOI: 10.1007/s00393-022-01182-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2021] [Indexed: 11/30/2022]
|
75
|
Chen HK, Li YZ, Ge AN, Zhu YB, Wu SJ, Bai X, Bai HH, Liu YN. Cbl-b modulated TrkA ubiquitination and function in the dorsal root ganglion of mice. Eur J Pharmacol 2022; 921:174876. [DOI: 10.1016/j.ejphar.2022.174876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 02/16/2022] [Accepted: 03/08/2022] [Indexed: 11/26/2022]
|
76
|
Chiba D, Ohyama T, Sasaki E, Daimon M, Nakaji S, Ishibashi Y. Higher fasting blood glucose worsens knee symptoms in patients with radiographic knee osteoarthritis and comorbid central sensitization: an Iwaki cohort study. Arthritis Res Ther 2022; 24:269. [PMID: 36510322 PMCID: PMC9745982 DOI: 10.1186/s13075-022-02951-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 11/04/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Although cross-sectional and cohort data suggest that higher serum blood glucose levels in patients with knee osteoarthritis (KOA) are associated with more severe knee symptoms, little is known about the longitudinal relationship between serum blood glucose and knee symptoms, particularly considering central sensitization (CS) comorbidity, which also worsens knee symptoms. METHODS We evaluated the longitudinal relationship between serum blood glucose and knee symptoms by dividing the cohort of patients with KOA into those with and without CS. We hypothesized that higher serum blood glucose levels would worsen knee symptoms. A total of 297 participants (mean age: 59.6 years; females: 211; average BMI: 23.7 kg/m2) were enrolled in this study. At baseline, plain radiographs of the bilateral knee joints were evaluated according to the Kellgren-Lawrence grade (KLG). All participants exhibited at least a KLG ≥ 2 in each knee. At baseline, fasting blood glucose (FBG) and Central Sensitization Inventory-9 (CSI-9) were evaluated; ≥ 10 points on the CSI-9 was defined as CS+. Knee injury and Osteoarthritis Outcome Score (KOOS) was evaluated at baseline and at 1-year follow-up; the change in KOOS (ΔKOOS) was calculated by subtracting the KOOS at baseline from that at the 1-year follow-up. Multiple linear regression analysis was conducted with ΔKOOS as the dependent variable and FBG at baseline as the independent variable, adjusted for age, sex, BMI, and CSI-9 at baseline. RESULTS Of the 297 subjects, 48 (16.2 %) were defined as CS+. In the CS - group, there was no association between FBG levels at baseline and ΔKOOS. In contrast, FBG at baseline was negatively associated with ΔKOOS pain (B = - 0.448; p = 0.003), ADL (B = - 0.438; p = 0.003), and sports (B = - 0.706; p = 0.007). CONCLUSIONS In patients with radiographic KOA and CS, higher blood glucose levels were associated with deteriorated knee symptoms during the 1-year follow-up. Healthcare providers should pay attention to controlling blood glucose, particularly in patients with KOA and concurrent CS, to mitigate their knee symptoms. STUDY DESIGN Retrospective cohort study (evidence level: III).
Collapse
Affiliation(s)
- Daisuke Chiba
- grid.257016.70000 0001 0673 6172Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562 Japan
| | - Tetsushi Ohyama
- grid.257016.70000 0001 0673 6172Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562 Japan
| | - Eiji Sasaki
- grid.257016.70000 0001 0673 6172Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562 Japan
| | - Makoto Daimon
- grid.257016.70000 0001 0673 6172Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562 Japan
| | - Shigeyuki Nakaji
- grid.257016.70000 0001 0673 6172Department of Social Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562 Japan
| | - Yasuyuki Ishibashi
- grid.257016.70000 0001 0673 6172Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562 Japan
| |
Collapse
|
77
|
Morgan M, Nazemian V, Harrington K, Ivanusic JJ. Mini review: The role of sensory innervation to subchondral bone in osteoarthritis pain. Front Endocrinol (Lausanne) 2022; 13:1047943. [PMID: 36605943 PMCID: PMC9808033 DOI: 10.3389/fendo.2022.1047943] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/30/2022] [Indexed: 01/07/2023] Open
Abstract
Osteoarthritis pain is often thought of as a pain driven by nerves that innervate the soft tissues of the joint, but there is emerging evidence for a role for nerves that innervate the underlying bone. In this mini review we cite evidence that subchondral bone lesions are associated with pain in osteoarthritis. We explore recent studies that provide evidence that sensory neurons that innervate bone are nociceptors that signal pain and can be sensitized in osteoarthritis. Finally, we describe neuronal remodeling of sensory and sympathetic nerves in bone and discuss how these processes can contribute to osteoarthritis pain.
Collapse
|
78
|
Applications of transcriptomics in support of drug development for osteoarthritis. OSTEOARTHRITIS AND CARTILAGE OPEN 2021; 3:100221. [DOI: 10.1016/j.ocarto.2021.100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/31/2021] [Accepted: 11/16/2021] [Indexed: 11/22/2022] Open
|
79
|
Vrouwe J, Burggraaf J, Kloppenburg M, Stuurman F. Challenges and opportunities of pharmacological interventions for osteoarthritis: A review of current clinical trials and developments. OSTEOARTHRITIS AND CARTILAGE OPEN 2021; 3:100212. [PMID: 36474768 PMCID: PMC9718290 DOI: 10.1016/j.ocarto.2021.100212] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 01/17/2023] Open
Abstract
Objective Osteoarthritis (OA) is the most common cause of disability in older adults, and leads to a huge unmet medical need, as no registered disease modifying OA drugs (DMOADs), but only symptomatic treatments, are available. New targets and compounds for these targets, are currently under investigation. The objective of this paper is to provide an overview of compounds under investigation for OA in phase II and III. Design We performed a review of OA trials for pharmacological interventions registered on the National Library of Medicine ClinicalTrials.gov website with a completion date in 2017 or later. Results The database search yielded 255 results, of which 184 studies were included in this review. These were structured in compounds targeting pain, immunomodulators, stem cell therapy, platelet rich plasma and DMOADs with cartilage and/or bone resorption modifying properties. Conclusions The results provide an overview of the fields in development and may include future treatment options for OA, by which a registered DMOADs may become more than a utopic vista. Further knowledge on pathophysiology and new approaches of value-based drug development could be an opportunity for the optimization of drug development in OA.
Collapse
Affiliation(s)
- J.P.M. Vrouwe
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL, Leiden, the Netherlands
| | - J. Burggraaf
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL, Leiden, the Netherlands
- Leiden Academic Center for Drug Research, Postbus 9502, 2300 RA, Leiden, the Netherlands
| | - M. Kloppenburg
- Leiden University Medical Center, Department of Rheumatology, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
- Leiden University Medical Center, Department of Epidemiology, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - F.E. Stuurman
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL, Leiden, the Netherlands
- Leiden University Medical Center, Department of Toxicology, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| |
Collapse
|
80
|
Osteoarthritis Affects Mammalian Oogenesis: Effects of Collagenase-Induced Osteoarthritis on Oocyte Cytoskeleton in a Mouse Model. Int J Inflam 2021; 2021:8428713. [PMID: 34795891 PMCID: PMC8595018 DOI: 10.1155/2021/8428713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 11/17/2022] Open
Abstract
Known as a degenerative joint disorder of advanced age affecting predominantly females, osteoarthritis can develop in younger and actively working people because of activities involving loading and injuries of joints. Collagenase-induced osteoarthritis (CIOA) in a mouse model allowed us to investigate for the first time its effects on key cytoskeletal structures (meiotic spindles and actin distribution) of ovulated mouse oocytes. Their meiotic spindles, actin caps, and chromatin were analyzed by immunofluorescence. A total of 193 oocytes from mice with CIOA and 209 from control animals were obtained, almost all in metaphase I (M I) or metaphase II (MII). The maturation rate was lower in CIOA (26.42% M II) than in controls (55.50% M II). CIOA oocytes had significantly larger spindles (average 37 μm versus 25 μm in controls, p < 0.001), with a proportion of large spindles more than 64% in CIOA versus up to 15% in controls (p < 0.001). Meiotic spindles were wider in 68.35% M I and 54.90% M II of CIOA oocytes (mean 18.04 μm M I and 17.34 μm M II versus controls: 11.64 μm M I and 12.64 μm M II), and their poles were approximately two times broader (mean 6.9 μm) in CIOA than in controls (3.6 μm). CIOA oocytes often contained disoriented microtubules. Actin cap was visible in over 91% of controls and less than 20% of CIOA oocytes. Many CIOA oocytes without an actin cap had a nonpolarized thick peripheral actin ring (61.87% of M I and 52.94% of M II). Chromosome alignment was normal in more than 82% in both groups. In conclusion, CIOA affects the cytoskeleton of ovulated mouse oocytes—meiotic spindles are longer and wider, their poles are broader and with disorganized fibers, and the actin cap is replaced by a broad nonpolarized ring. Nevertheless, meiotic spindles were successfully formed in CIOA oocytes and, even when abnormal, allowed correct alignment of chromosomes.
Collapse
|
81
|
Pharmaceutical therapeutics for articular regeneration and restoration: state-of-the-art technology for screening small molecular drugs. Cell Mol Life Sci 2021; 78:8127-8155. [PMID: 34783870 PMCID: PMC8593173 DOI: 10.1007/s00018-021-03983-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/20/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023]
Abstract
Articular cartilage damage caused by sports injury or osteoarthritis (OA) has gained increased attention as a worldwide health burden. Pharmaceutical treatments are considered cost-effective means of promoting cartilage regeneration, but are limited by their inability to generate sufficient functional chondrocytes and modify disease progression. Small molecular chemical compounds are an abundant source of new pharmaceutical therapeutics for cartilage regeneration, as they have advantages in design, fabrication, and application, and, when used in combination, act as powerful tools for manipulating cellular fate. In this review, we present current achievements in the development of small molecular drugs for cartilage regeneration, particularly in the fields of chondrocyte generation and reversion of chondrocyte degenerative phenotypes. Several clinically or preclinically available small molecules, which have been shown to facilitate chondrogenesis, chondrocyte dedifferentiation, and cellular reprogramming, and subsequently ameliorate cartilage degeneration by targeting inflammation, matrix degradation, metabolism, and epigenetics, are summarized. Notably, this review introduces essential parameters for high-throughput screening strategies, including models of different chondrogenic cell sources, phenotype readout methodologies, and transferable advanced systems from other fields. Overall, this review provides new insights into future pharmaceutical therapies for cartilage regeneration.
Collapse
|
82
|
Characterization and miRNA Profiling of Extracellular Vesicles from Human Osteoarthritic Subchondral Bone Multipotential Stromal Cells (MSCs). Stem Cells Int 2021; 2021:7232773. [PMID: 34667479 PMCID: PMC8520657 DOI: 10.1155/2021/7232773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/26/2021] [Accepted: 08/19/2021] [Indexed: 12/25/2022] Open
Abstract
Osteoarthritis (OA) is a heterogeneous disease in which the cross-talk between the cells from different tissues within the joint is affected as the disease progresses. Extracellular vesicles (EVs) are known to have a crucial role in cell-cell communication by means of cargo transfer. Subchondral bone (SB) resident cells and its microenvironment are increasingly recognised to have a major role in OA pathogenesis. The aim of this study was to investigate the EV production from OA SB mesenchymal stromal cells (MSCs) and their possible influence on OA chondrocytes. Small EVs were isolated from OA-MSCs, characterized and cocultured with chondrocytes for viability and gene expression analysis, and compared to small EVs from MSCs of healthy donors (H-EVs). OA-EVs enhanced viability of chondrocytes and the expression of chondrogenesis-related genes, although the effect was marginally lower compared to that of the H-EVs. miRNA profiling followed by unsupervised hierarchical clustering analysis revealed distinct microRNA sets in OA-EVs as compared to their parental MSCs or H-EVs. Pathway analysis of OA-EV miRNAs showed the enrichment of miRNAs implicated in chondrogenesis, stem cells, or other pathways related to cartilage and OA. In conclusion, OA SB MSCs were capable of producing EVs that could support chondrocyte viability and chondrogenic gene expression and contained microRNAs implicated in chondrogenesis support. These EVs could therefore mediate the cross-talk between the SB and cartilage in OA potentially modulating chondrocyte viability and endogenous cartilage regeneration.
Collapse
|
83
|
Reito A, Harris IA, Karjalainen T. Arthroscopic partial meniscectomy: did it ever work? Acta Orthop 2021; 93:1-10. [PMID: 34605736 PMCID: PMC8815409 DOI: 10.1080/17453674.2021.1979793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/17/2021] [Indexed: 02/08/2023] Open
Abstract
Arthroscopic partial meniscectomy (APM) is one the most common orthopedic surgical procedures. The most common indication for APM is a degenerative meniscal tear (DMT). High-quality evidence suggests that APM does not provide meaningful benefits in patients with DMTs and may even be harmful in the longer term. This narrative review focuses on a fundamental question: considering the history and large number of these surgeries, has APM ever actually worked in patients with DMT? A truly effective treatment needs a valid disease model that would biologically and plausibly explain the perceived treatment benefits. In the case of DMT, effectiveness requires a credible framework for the pain-generating process, which should be influenced by APM. Basic research, pathoanatomy, and clinical evidence gives no support to these frameworks. Moreover, treatment of DMT with an APM does not align with the traditional practice of medicine since DMT is not a reliable diagnosis for knee pain and no evidence-based indication exists that would influence patient prognosis from APM. A plausible and robust explanation supported by both basic research and clinical evidence is that DMTs are part of an osteoarthritic disease process and do not contribute to the symptoms independently or in isolation and that symptoms are not treatable with APM. This is further supported by the fact that APM as an intervention is paradoxical because the extent of procedure and severity of disease are both inversely associated with outcome. We argue that arthroscopic treatment of DMT is largely based on a logical fallacy: post hoc ergo propter hoc.
Collapse
Affiliation(s)
- Aleksi Reito
- Department of Orthopaedics and Traumatology, Tampere University Hospital, and Faculty of Medicine and Health Technology, Tampere University, Finland
| | - Ian A Harris
- Ingham Institute for Applied Medical Research, South Western Sydney Clinical School, UNSW Sydney, Australia
| | | |
Collapse
|
84
|
Zaki S, Smith MM, Little CB. Pathology-pain relationships in different osteoarthritis animal model phenotypes: it matters what you measure, when you measure, and how you got there. Osteoarthritis Cartilage 2021; 29:1448-1461. [PMID: 34332049 DOI: 10.1016/j.joca.2021.03.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/17/2021] [Accepted: 03/31/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine whether osteoarthritis (OA) pain characteristics and mechanistic pathways in pre-clinical models are phenotype-specific. DESIGN Male 11-week-old C57BL6 mice had unilateral medial-meniscal-destabilization (DMM) or antigen-induced-arthritis (AIA), vs sham-surgery/immunised-controls (Sham/Im-CT). Pain behaviour (allodynia, mechanical- and thermal-hyperalgesia, hindlimb static weight-bearing, stride-length) and lumbar dorsal root ganglia (DRG) gene-expression were measured at baseline, day-3, week-1/-2/-4/-8/-16, and pain-behaviour:gene-expression:joint-pathology associations investigated. RESULTS DMM and AIA induced structural OA defined by progressively increasing cartilage erosion, subchondral bone sclerosis and osteophyte size and maturation. All pain-behaviours were modified, with model-specific differences in severity and temporal pattern. Tactile allodynia developed acutely in both models and persisted to week-16. During early-OA (wk4-8) there was; reduced right hindlimb weight-bearing in AIA; thermal-hyperalgesia and reduced stride-length in DMM. During chronic-OA (wk12-16); mechanical-hyperalgesia and reduced right hindlimb weight-bearing were observed in DMM only. There were no associations in either model between different pain-behaviour outcomes. A coordinated DRG-expression profile was observed in sham and Im-CT for all 11 genes tested, but not in AIA and DMM. At wk-16 despite equivalent joint pathology, changes in DRG-expression (Calca, Trpa1, Trpv1, Trpv4) were observed only in DMM. In AIA mechanical-hyperalgesia was associated with Trpv1 (r = -0.79) and Il1b (r = 0.53). In DMM stride-length was associated with Calca, Tac1, Trpv1, Trpv2, Trpv4 and Adamts5 (r = 0.4-0.57). DRG gene-expression change was correlated with subchondral-bone sclerosis in DMM, and cartilage damage in AIA. Positive pain-behaviour:joint-pathology associations were only present in AIA - for synovitis, subchondral-bone resorption, chondrocyte-hypertrophy and cartilage damage. CONCLUSION Pain and peripheral sensory neuronal responses are OA-phenotype-specific with distinct pathology:pain-outcome:molecular-mechanism relationships.
Collapse
Affiliation(s)
- S Zaki
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Australia; Raymond Purves Bone and Joint Research Laboratory, Kolling Institute of Medical Research, Faculty of Medicine and Health, The University of Sydney, at Royal North Shore Hospital, Australia.
| | - M M Smith
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute of Medical Research, Faculty of Medicine and Health, The University of Sydney, at Royal North Shore Hospital, Australia.
| | - C B Little
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute of Medical Research, Faculty of Medicine and Health, The University of Sydney, at Royal North Shore Hospital, Australia.
| |
Collapse
|
85
|
Oo WM, Little C, Duong V, Hunter DJ. The Development of Disease-Modifying Therapies for Osteoarthritis (DMOADs): The Evidence to Date. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:2921-2945. [PMID: 34262259 PMCID: PMC8273751 DOI: 10.2147/dddt.s295224] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/16/2021] [Indexed: 12/16/2022]
Abstract
Osteoarthritis (OA) is a complex heterogeneous articular disease with multiple joint tissue involvement of varying severity and no regulatory-agency-approved disease-modifying drugs (DMOADs). In this review, we discuss the reasons necessitating the development of DMOADs for OA management, the classifications of clinical phenotypes or molecular/mechanistic endotypes from the viewpoint of targeted drug discovery, and then summarize the efficacy and safety profile of a range of targeted drugs in Phase 2 and 3 clinical trials directed to cartilage-driven, bone-driven, and inflammation-driven endotypes. Finally, we briefly put forward the reasons for failures in OA clinical trials and possible steps to overcome these barriers.
Collapse
Affiliation(s)
- Win Min Oo
- Rheumatology Department, Royal North Shore Hospital, and Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,Department of Physical Medicine and Rehabilitation, Mandalay General Hospital, University of Medicine, Mandalay, Mandalay, Myanmar
| | - Christopher Little
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Vicky Duong
- Rheumatology Department, Royal North Shore Hospital, and Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - David J Hunter
- Rheumatology Department, Royal North Shore Hospital, and Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| |
Collapse
|
86
|
Li P, Li H, Shu X, Wu M, Liu J, Hao T, Cui H, Zheng L. Intra-articular delivery of flurbiprofen sustained release thermogel: improved therapeutic outcome of collagenase II-induced rat knee osteoarthritis. Drug Deliv 2021; 27:1034-1043. [PMID: 32627602 PMCID: PMC8216450 DOI: 10.1080/10717544.2020.1787555] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Knee osteoarthritis (OA) is a common degenerative disease. Intra-articular administration of flurbiprofen is frequently employed in clinic to treat OA, while repeated injections are required because of the limited effective duration. To improve therapeutic outcome and prolong the treatment interval, a poly(ε-caprolactone-co-lactide)-b-poly(ethylene glycol)-b-poly(ε-caprolactone-co-lactide) (PCLA-PEG-PCLA) triblock copolymer based flurbiprofen thermosensitive gel for the sustained intra-articular drug delivery was designed in this study. The anti-OA effects of this flurbiprofen thermogel were investigated on collagenase II-induced rat knee OA model by multiple approaches and compared with that of conventional sodium hyaluronate and flurbiprofen injecta. In vitro drug release studies indicated that flurbiprofen was sustained released from the thermosensitive gel for more than three weeks. This sustained drug release system exerted comparable short-term analgesic effects and distinctly improved long-term analgesic efficacy in terms of the increased percentage of the total ipsilateral paw print intensity and the reduced Knee-Bend scores of OA rats. The inflammatory response was attenuated in the samples of flurbiprofen gel treated group by showing decreased IL-1, IL-6, and IL-11 levels in the joint fluid and down-regulated IL-1, IL-6, IL-11, COX-2, TNF-α, and NF-κB/p65 expression in the articular cartilages. The results suggest the suitability of thermosensitive copolymer PCLA-PEG-PCLA for sustained intra-articular effects of flurbiprofen and provide in vivo experimental evidence for potential clinical application of this flurbiprofen delivery system to better management of OA cases.
Collapse
Affiliation(s)
- Peinan Li
- Department of Orthopedic Surgery, Second Clinical College, Dalian Medical University, Dalian, China
| | - Haokun Li
- Department of Orthopedic Surgery, Second Clinical College, Dalian Medical University, Dalian, China
| | - Xiaohong Shu
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Moli Wu
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jia Liu
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Tangna Hao
- Department of Pharmacy, Second Clinical College, Dalian Medical University, Dalian, China
| | - Hongxia Cui
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Lianjie Zheng
- Department of Orthopedic Surgery, Second Clinical College, Dalian Medical University, Dalian, China
| |
Collapse
|
87
|
Muscle function, quality, and relative mass are associated with knee pain trajectory over 10.7 years. Pain 2021; 163:518-525. [PMID: 34490853 DOI: 10.1097/j.pain.0000000000002383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/01/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Periarticular muscle plays an important role in the pathogenesis of musculoskeletal pain. We recently reported that pain population consists of distinct subgroups of which the causes and mechanisms may differ. This study aimed to examine the association of lean mass, muscle strength, and quality with 10.7-year pain trajectory. Nine hundred forty-seven participants from a population-based cohort study were analysed. Dual-energy X-ray absorptiometry was used to assess lean and fat mass. Leg strength, knee extensor strength, and lower-limb muscle quality were measured/calculated. Knee pain was assessed by the Western Ontario and McMaster Universities Osteoarthritis Index pain questionnaire. Radiographic knee osteoarthritis was assessed by X-ray. Three distinct pain trajectories were identified: "Minimal pain" (53%), "Mild pain" (34%), and "Moderate pain" (13%). Higher total and lower-limb lean mass were associated with an increased risk of "Mild pain" and "Moderate pain" trajectories relative to the "Minimal pain" trajectory group, but these associations became nonsignificant after further adjustment for fat mass. Total lean mass percentage was associated with a lower risk of "Mild pain" (relative risk ratio [RRR]: 0.95, 95% confidence interval 0.92-0.98) and "Moderate pain" trajectory (RRR: 0.92, 95% confidence interval 0.87-0.96). Greater leg and knee extensor strength and muscle quality were associated with "Mild pain" and "Moderate pain" trajectories (RRR: 0.52-0.65, all P < 0.05). Similar results were found in those with radiographic knee osteoarthritis. Higher lower-limb muscle strength and quality, and relative lean mass, are associated with a reduced risk of severe knee pain trajectories, suggesting that improving muscle function and composition may protect against persistent unfavourable knee pain courses.
Collapse
|
88
|
Cell-cell interactions in joint pain: rheumatoid arthritis and osteoarthritis. Pain 2021; 162:714-717. [PMID: 33591110 DOI: 10.1097/j.pain.0000000000002174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/15/2020] [Indexed: 01/10/2023]
|
89
|
Alves JC, Dos Santos AMMP, Jorge P, Lavrador CFTVB, Carreira LM. Effect of a single intra-articular high molecular weight hyaluronan in a naturally occurring canine osteoarthritis model: a randomized controlled trial. J Orthop Surg Res 2021; 16:290. [PMID: 33941219 PMCID: PMC8091761 DOI: 10.1186/s13018-021-02423-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a complex joint disease and chronic pain source, affecting a patient's quality of life and posing a financial burden. As the dog is considered a nearly ideal species for translation research of human OA and the most used model for research, exploring spontaneous dog OA under the One Health/One Medicine concept can improve both humans and dogs' health and well-being. METHODS In a clinical treatment experiment, forty (N=40) joints were selected and randomly assigned to a control group (CG), which received 0.9% NaCl or a treatment (HG), which received Hylan G-F 20. Evaluations were performed on treatment day (T0), 8, 15, 30, 90, and 180 days post-treatment. They consisted of four different Clinical Metrology Instruments (CMI), evaluation of weight distribution, joint range of motion, thigh girth, radiographic and digital thermography imaging, synovial fluid interleukin-1 (IL-1), and C-reactive protein concentrations. Results were compared with repeated measures ANOVA, with a Huynh-Feldt correction, Paired samples T-test, or Wilcoxon signed-ranks test, with p<0.05. RESULTS Patients had a mean age of 6.5±2.4 years and a bodyweight of 26.6±5.2kg, and joints graded as mild (n=28, 70%), moderate (n=6, 15%), and severe OA (n=6, 15%). No differences were found between groups at T0. Symmetry index and deviation showed significant improvements in HG from 30 days (p<0.01) up to 180 days (p=0.01). Several CMI scores, particularly pain scores, improved from 90 to 180 days. Radiographic signs progressed in both groups. In both groups, increasing body weight and age corresponded to worse clinical presentation. IA hyaluronan administration produced increased lameness in six cases, which resolved spontaneously. CONCLUSIONS This study characterizes the response to treatment with Hylan G-F 20, which can produce significant functional and pain level improvements in patients with OA, even those with factors related to worse response to treatment.
Collapse
Affiliation(s)
- J C Alves
- Divisão de Medicina Veterinária, Guarda Nacional Republicana (GNR), Rua Presidente Arriaga, 9, 1200-771, Lisbon, Portugal.
- MED - Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, p. 94, 7006-554, Évora, Portugal.
| | | | - Patrícia Jorge
- Divisão de Medicina Veterinária, Guarda Nacional Republicana (GNR), Rua Presidente Arriaga, 9, 1200-771, Lisbon, Portugal
| | - Catarina Falcão Trigoso Vieira Branco Lavrador
- MED - Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, p. 94, 7006-554, Évora, Portugal
| | - L Miguel Carreira
- Faculty of Veterinary Medicine, University of Lisbon (FMV/ULisboa), Lisbon, Portugal
- Interdisciplinary Centre for Research in Animal Health (CIISA), University of Lisbon (FMV/ULisboa), Lisbon, Portugal
- Anjos of Assis Veterinary Medicine Centre (CMVAA), Barreiro, Portugal
| |
Collapse
|
90
|
Affiliation(s)
- Annett Eitner
- Experimental Trauma Surgery, Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Britt Wildemann
- Experimental Trauma Surgery, Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
91
|
Palada V, Siddiqah Ahmed A, Hugo A, Radojčić MR, Svensson CI, Kosek E. Expression of mitochondrial TSPO and FAM173B is associated with inflammation and symptoms in patients with painful knee osteoarthritis. Rheumatology (Oxford) 2021; 60:1724-1733. [PMID: 33067627 PMCID: PMC8023995 DOI: 10.1093/rheumatology/keaa565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
Objectives To characterize the expression profiles of two nuclear-encoded mitochondrial genes previously associated with chronic pain, the translocator protein (TSPO) and family with sequence similarity 173B (FAM173B), in different knee compartments from patients with painful knee OA. Also, to examine their association with the joint expression of inflammatory cytokines/chemokines and clinical symptoms. Methods The study was performed on 40 knee OA patients and 19 postmortem (PM) controls from which we collected the knee tissues: articular cartilage (AC), synovial membrane (SM) and subchondral bone (SB). Quantitative real-time polymerase chain reaction was used to determine the relative mRNA levels of TSPO, FAM173B, and inflammatory mediators IL6, IL8, IL10, IL12, MCP1, CCL11 and CCL17. OA patients rated their pain intensity (visual analogue scale), severity of knee-related outcomes (KOOS) and pain sensitivity assessed by pressure algometry. Results The gene expression of TSPO in SM was elevated in OA patients compared with control subjects while there were no group differences in AC and SB. Expression of FAM173B was reduced in SM but elevated in SB in OA patients compared with controls. The expression of TSPO and FAM173B in SM and SB was associated with the expression of inflammatory substances, but not in AC. Synovial expression of TSPO correlated with lower pain intensity and FAM173B with increased pressure pain sensitivity in OA. Conclusion Our results suggest that altered expression of TSPO and FAM173B is associated with joint expression of inflammatory mediators and with clinical symptoms indicating the relevance for the pathophysiology of knee OA.
Collapse
Affiliation(s)
- Vinko Palada
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Anders Hugo
- Ortho Center Stockholm, Upplands Väsby, Sweden
| | - Maja R Radojčić
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Camilla I Svensson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eva Kosek
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
92
|
Wan Q, Qin W, Ma Y, Shen M, Li J, Zhang Z, Chen J, Tay FR, Niu L, Jiao K. Crosstalk between Bone and Nerves within Bone. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003390. [PMID: 33854888 PMCID: PMC8025013 DOI: 10.1002/advs.202003390] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/29/2020] [Indexed: 05/11/2023]
Abstract
For the past two decades, the function of intrabony nerves on bone has been a subject of intense research, while the function of bone on intrabony nerves is still hidden in the corner. In the present review, the possible crosstalk between bone and intrabony peripheral nerves will be comprehensively analyzed. Peripheral nerves participate in bone development and repair via a host of signals generated through the secretion of neurotransmitters, neuropeptides, axon guidance factors and neurotrophins, with additional contribution from nerve-resident cells. In return, bone contributes to this microenvironmental rendezvous by housing the nerves within its internal milieu to provide mechanical support and a protective shelf. A large ensemble of chemical, mechanical, and electrical cues works in harmony with bone marrow stromal cells in the regulation of intrabony nerves. The crosstalk between bone and nerves is not limited to the physiological state, but also involved in various bone diseases including osteoporosis, osteoarthritis, heterotopic ossification, psychological stress-related bone abnormalities, and bone related tumors. This crosstalk may be harnessed in the design of tissue engineering scaffolds for repair of bone defects or be targeted for treatment of diseases related to bone and peripheral nerves.
Collapse
Affiliation(s)
- Qian‐Qian Wan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Wen‐Pin Qin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Yu‐Xuan Ma
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Min‐Juan Shen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Jing Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Zi‐Bin Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Ji‐Hua Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Franklin R. Tay
- College of Graduate StudiesAugusta UniversityAugustaGA30912USA
| | - Li‐Na Niu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Kai Jiao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| |
Collapse
|
93
|
Santana-Pineda MM, Vanlinthout LE, Santana-Ramírez S, Vanneste T, Van Zundert J, Novalbos-Ruiz JP. A Randomized Controlled Trial to Compare Analgesia and Functional Improvement After Continuous Neuroablative and Pulsed Neuromodulative Radiofrequency Treatment of the Genicular Nerves in Patients with Knee Osteoarthritis up to One Year After the Intervention. PAIN MEDICINE 2021; 22:637-652. [PMID: 33179073 DOI: 10.1093/pm/pnaa309] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVES To compare the analgesic and functional outcomes of continuous neuroablative radiofrequency (CNARF) and pulsed neuromodulative radiofrequency (PNMRF) treatment of genicular nerves up to 1 year after the intervention and to identify predictors associated with a successful outcome (defined as an at least 50% reduction in the pre-interventional visual analog scale [VAS] rating) after genicular radiofrequency treatment. DESIGN A prospective randomized controlled trial. SETTING The Pain Department of the Jerez de la Frontera University Hospital, Cadíz, Spain, from January 2018 until May 2019. SUBJECTS Patients with grade 3-4 gonarthritis suffering from knee pain, with a VAS score ≥5 for >6 months. METHODS Eligible participants were randomly assigned to receive either CNARF or PNMRF of the superior medial, superior lateral, and inferior medial genicular nerves. The VAS and Western Ontario and McMaster Universities Osteoarthritis (WOMAC) scores were assessed before and at 1, 6, and 12 months after treatment. Medication use was quantified before and at 6 months after the intervention. Potential characteristics associated with the efficacy of radiofrequency intervention were explored by using multivariable statistical models. RESULTS A total of 188 participants were included. The magnitude and duration of beneficial effect and reduction in analgesic use were significantly greater in the CNARF group. Success at 6 months after radiofrequency treatment decreased with grade 4 gonarthritis; higher pre-interventional VAS score; and concomitant depression, anxiety disorder, and diabetes mellitus. CONCLUSIONS Therapeutic efficacy and reduction in analgesic consumption were superior after CNARF. Treatment success at 6 months after radiofrequency intervention decreased with more severe gonarthritis; higher pre-interventional pain intensity; and concomitant depression, anxiety disorder, and diabetes mellitus.
Collapse
Affiliation(s)
- María M Santana-Pineda
- Department of Anesthesiology and Pain Medicine, University Hospital Campus Jerez de la Frontera, University of Cadíz, Cadíz, Spain
| | - Luc E Vanlinthout
- Department of Anesthesiology and Pain Medicine, University Hospital Gasthuisberg, University of Leuven, Leuven, Belgium.,Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-BIOSTAT), Universities of Leuven and Hasselt, Leuven and Diepenbeek, Belgium
| | - Samuel Santana-Ramírez
- Department of Orthopedics and Traumatology, University Hospital Campus Jerez de la Frontera, University of Cadíz, Cadíz, Spain
| | - Thibaut Vanneste
- Multidisciplinary Pain Centre at the Ziekenhuis Oost-Limburg, Genk, Belgium
| | - Jan Van Zundert
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre, Maastricht, The Netherlands.,Multidisciplinary Pain Centre at the Ziekenhuis Oost-Limburg , Genk, Belgium
| | | |
Collapse
|
94
|
Eitner A, Culvenor AG, Wirth W, Schaible HG, Eckstein F. Impact of Diabetes Mellitus on Knee Osteoarthritis Pain and Physical and Mental Status: Data From the Osteoarthritis Initiative. Arthritis Care Res (Hoboken) 2021; 73:540-548. [PMID: 32105401 DOI: 10.1002/acr.24173] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 02/18/2020] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Diabetes mellitus (DM) appears to increase osteoarthritic knee pain, which may be related to greater adiposity and more advanced disease status often observed in individuals with osteoarthritis (OA) and DM. We aimed to assess whether OA knee pain and health status are worse in individuals with OA and DM, independent of these potential confounders. METHODS We included 202 OA participants with DM and 2,279 without DM from the Osteoarthritis Initiative. Knee pain was evaluated using the Knee Injury and Osteoarthritis Outcome Score (KOOS) and a numeric rating scale (NRS). Physical and mental status were assessed by the Medical Outcomes Study Short Form 12 (SF-12) questionnaire, physical component summary (PCS) score and mental component summary (MCS) score, and by the Center for Epidemiologic Studies Depression Scale (CES-D). Linear regression models assessed the influence of DM, adjusted for age, sex, body mass index (BMI), and radiographic severity. RESULTS OA participants with DM reported worse knee pain and greater physical and mental issues compared with participants without DM. Individuals with DM had worse KOOS pain (β = -4.72 [95% confidence interval (95% CI) -7.22, -2.23]) and worse NRS pain (β = 0.42 [95% CI 0.04, 0.80]) independent of BMI, OA severity, age, and sex. The negative influence of DM was also apparent for SF-12 PCS (β = -3.49 [95% CI -4.73, -2.25]), SF-12 MCS (β = -1.42 [95% CI -2.57, -0.26]), and CES-D (β = 1.08 [95% CI 0.08, 2.08]). CONCLUSION Individuals with knee OA experience on average higher pain intensity and a worse physical and mental health status if they have DM. Linear regression models show that DM is a risk factor for higher pain, in addition to and independent of greater BMI and radiographic OA severity.
Collapse
Affiliation(s)
- Annett Eitner
- University Hospital Jena and Friedrich Schiller University, Jena, Germany
| | - Adam G Culvenor
- Paracelsus Medical University Salzburg and Nuremberg, Salzburg, Austria, and La Trobe University, Bundoora, Victoria, Australia
| | - Wolfgang Wirth
- Chondrometrics GmbH, Ainring, Germany, and Paracelsus Medical University, Salzburg, Austria
| | | | - Felix Eckstein
- Chondrometrics GmbH, Ainring, Germany, and Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
95
|
Rat dorsal horn neurons primed by stress develop a long-lasting manifest sensitization after a short-lasting nociceptive low back input. Pain Rep 2021; 6:e904. [PMID: 33688602 PMCID: PMC7935483 DOI: 10.1097/pr9.0000000000000904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/29/2020] [Accepted: 01/15/2021] [Indexed: 11/26/2022] Open
Abstract
Background A single injection of nerve growth factor (NGF) into a low back muscle induces a latent sensitization of rat dorsal horn neurons (DHNs) that primes for a manifest sensitization by a subsequent second NGF injection. Repeated restraint stress also causes a latent DHN sensitization. Objective In this study, we investigated whether repeated restraint stress followed by a single NGF injection causes a manifest sensitization of DHNs. Methods Rats were stressed repeatedly in a narrow plastic restrainer (1 hour on 12 consecutive days). Control animals were handled but not restrained. Two days after stress paradigm, behavioral tests and electrophysiological in vivo recordings from single DHNs were performed. Mild nociceptive low back input was induced by a single NGF injection into the lumbar multifidus muscle just before the recording started. Results Restraint stress slightly lowered the low back pressure pain threshold (Cohen d = 0.83). Subsequent NGF injection increased the proportion of neurons responsive to deep low back input (control + NGF: 14%, stress + NGF: 39%; P = 0.041), mostly for neurons with input from outside the low back (7% vs 26%; P = 0.081). There was an increased proportion of neurons with resting activity (28% vs 55%; P = 0.039), especially in neurons having deep input (0% vs 26%; P = 0.004). Conclusions The results indicate that stress followed by a short-lasting nociceptive input causes manifest sensitization of DHNs to deep input, mainly from tissue outside the low back associated with an increased resting activity. These findings on neuronal mechanisms in our rodent model suggest how stress might predispose to radiating pain in patients.
Collapse
|
96
|
Richette P, Latourte A, Sellam J, Wendling D, Piperno M, Goupille P, Pers YM, Eymard F, Ottaviani S, Ornetti P, Flipo RM, Fautrel B, Peyr O, Bertola JP, Vicaut E, Chevalier X. Efficacy of tocilizumab in patients with hand osteoarthritis: double blind, randomised, placebo-controlled, multicentre trial. Ann Rheum Dis 2021; 80:349-355. [PMID: 33055078 DOI: 10.1136/annrheumdis-2020-218547] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/15/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To evaluate the efficacy of tocilizumab, an antibody against IL-6 receptor, in patients with hand osteoarthritis. METHODS This was a multicentre, 12-week, randomised, double-blind, placebo-controlled study from November 2015 to October 2018. Patients with symptomatic hand osteoarthritis (pain ≥40 on a 0-100 mm visual analogue scale (VAS) despite analgesics and non-steroidal anti-inflammatory drugs; at least three painful joints, Kellgren-Lawrence grade ≥2) were randomised to receive two infusions 4 weeks apart (weeks 0 and 4) of tocilizumab (8 mg/kg intravenous) or placebo. The primary endpoint was changed in VAS pain at week 6. Secondary outcomes included the number of painful and swollen joints, duration of morning stiffness, patients' and physicians' global assessment and function scores. RESULTS Of 104 patients screened, 91 (45 to tocilizumab and 46 to placebo; 82% women; mean age 64.4 (SD 8.7) years) were randomly assigned and 79 completed the 12-week study visit. The mean change between baseline and week 6 on the VAS for pain (primary outcome) was -7.9 (SD 19.4) and -9.9 (SD 20.1) in the tocilizumab and placebo groups (p=0.7). The groups did not differ for any secondary outcomes at weeks 4, 6, 8 or 12. Overall, adverse events were slightly more frequent in the tocilizumab than placebo group. CONCLUSION Tocilizumab was no more effective than placebo for pain relief in patients with hand osteoarthritis.
Collapse
Affiliation(s)
- Pascal Richette
- APHP, Hôpital Lariboisière, Service de Rhumatologie, Paris, France
- Université de Paris, Inserm, UMR-S 1132, Bioscar, Paris, France
| | - Augustin Latourte
- APHP, Hôpital Lariboisière, Service de Rhumatologie, Paris, France
- Université de Paris, Inserm, UMR-S 1132, Bioscar, Paris, France
| | - Jérémie Sellam
- Rheumatology, INSERM UMRS_938, Sorbonnes Université UPMC Univ Paris 06, St-Antoine Hospital, DHU i2B, Paris, France
| | | | | | | | - Yves-Marie Pers
- Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, CHRU Lapeyronie, Montpellier, France
| | - Florent Eymard
- Department of Rheumatology, APHP Henri Mondor Hospital, Créteil, France
- Universite Paris-Est Creteil Val de Marne, Creteil, Île-de-France, France
| | | | - Paul Ornetti
- Rheumatology, Burgundy Franche-Comté University, Dijon, France
- Dijon University Hospital, Dijon, France
| | - René-Marc Flipo
- Service de Rhumatologie, CHU Roger Salengro, Université de Lille, Lille, France
| | - Bruno Fautrel
- Rheumatology, Assistance Publique - Hopitaux de Paris, Paris, France
- GRC08 - IPLESP, UPMC Faculte de Medecine, Paris, France
| | - Olivier Peyr
- Service de Rhumatologie, Hopital Lariboisiere Centre Viggo Petersen, Paris, Île-de-France, France
| | | | - Eric Vicaut
- Unité de recherche clinique, Groupe hospitalier Lariboisiere Fernand-Widal, Paris, Île-de-France, France
| | - Xavier Chevalier
- Department of Rheumatology, APHP Henri Mondor Hospital, Créteil, France
- Universite Paris-Est Creteil Val de Marne, Creteil, Île-de-France, France
| |
Collapse
|
97
|
Li Y, Yang Y, Guo J, Guo X, Feng Z, Zhao X. Spinal NF-kB upregulation contributes to hyperalgesia in a rat model of advanced osteoarthritis. Mol Pain 2021; 16:1744806920905691. [PMID: 31971058 PMCID: PMC7040927 DOI: 10.1177/1744806920905691] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Knee osteoarthritis (OA) pain is the most common joint pain. Currently, dysfunction in the central nervous system rather than knee joint degeneration is considered to be the major cause of chronic knee OA pain; however, the underlying mechanism remains unknown. The aim of this study was to explore whether spinal NF-κB plays a critical role in chronic knee OA pain. In this study, we used a model induced by the intra-articular injection of monosodium iodoacetate. Spinal NF-κB and the phosphorylation and activation status of NF-κB p65/RelA (p-p65) were inhibited by the intrathecal injection of the inhibitor pyrrolidine dithiocarbamate in this model. After behavioral assessment, the knee was dissected for histopathology, and the spinal cord was dissected and examined for NF-κB, p-p65, and cytokine expression. Furthermore, the quantity and activity of neurons, astrocytes, and microglial cells and their colocalization with p-p65 in the spinal dorsal horn were investigated. Our findings included the following: (1) histology, the pathological changes in the joints of the knee OA model were basically consistent with knee OA patients; (2) the protein and transcription levels of NF-κB/p65 and p-p65 increased before day 14, appeared to decrease on day 21 and increased again on day 28, and the tendency of weight bearing was similar; (3) on days 21 and 28, the intrathecal injection of pyrrolidine dithiocarbamate markedly prevented the monosodium iodoacetate-induced reduction in the paw withdrawal threshold; (4) real-time polymerase chain reaction demonstrated that the expression of TNF-α and IL-33 was suppressed in the knee OA model by the intrathecal injection of pyrrolidine dithiocarbamate; and (5) immunofluorescence revealed that astrocytes were activated and that p-p65 was mainly increased in astrocytes. Our findings indicate that the spinal NF-κB/p65 pathway in astrocytes modulates neuroimmunity in rat model of intra-articular monosodium iodoacetate-induced advanced OA.
Collapse
Affiliation(s)
- Yunze Li
- Department of Pain Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yixin Yang
- Department of Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinwan Guo
- Department of Anesthesiology, Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xuejiao Guo
- Department of Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiying Feng
- Department of Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuli Zhao
- Department of Pain Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
98
|
Fozzato S, Baranzini N, Bossi E, Cinquetti R, Grimaldi A, Campomenosi P, Surace MF. TRPV4 and TRPM8 as putative targets for chronic low back pain alleviation. Pflugers Arch 2021; 473:151-165. [PMID: 32955611 PMCID: PMC7835199 DOI: 10.1007/s00424-020-02460-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 08/25/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
Abstract
The purpose of this study is to investigate the presence of nervous fibers and expression of TRP channels in samples harvested during decompressive/fusion spine surgeries from patients affected by chronic low back pain (CLBP). The aim was to understand if members of this family of receptors played a role in detection and processing of painful stimuli, to eventually define them as potential targets for CLBP alleviation. Expression of transient receptor potential (TRP) channels (A1, V1, V2, V4, and M8) was evaluated in samples from different periarticular sites of 6 patients affected by CLBP, at both protein and transcript levels. The capsular connective pathological tissue appeared infiltrated by sensitive unmyelinated nervous fibers. An increase in TRP channel mRNAs and proteins was observed in the pathological capsule compared with tissues collected from the non-symptomatic area in five of the six analyzed patients, independently by the location and number of affected sites. In particular, TRPV4 and TRPM8 were consistently upregulated in pathological tissues. Interestingly, the only patient showing a different pattern of expression also had a different clinical history. TRPV4 and TRPM8 channels may play a role in CLBP and warrant further investigations as possible therapeutic targets.
Collapse
Affiliation(s)
- Stefania Fozzato
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Nicolò Baranzini
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100 Varese, VA Italy
| | - Elena Bossi
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100 Varese, VA Italy
- Center for Neuroscience Research, University of Insubria, Via Dunant 3, 21100 Varese, VA Italy
| | - Raffaella Cinquetti
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100 Varese, VA Italy
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100 Varese, VA Italy
| | - Paola Campomenosi
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100 Varese, VA Italy
| | - Michele Francesco Surace
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100 Varese, VA Italy
- Interdisciplinary Research Centre for Pathology and Surgery of the Musculoskeletal System, University of Insubria, Varese, Italy
| |
Collapse
|
99
|
Fayet M, Hagen M. Pain characteristics and biomarkers in treatment approaches for osteoarthritis pain. Pain Manag 2021; 11:59-73. [DOI: 10.2217/pmt-2020-0055] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Osteoarthritis (OA) is a progressive disease and OA pain intensity is related to ongoing pathophysiological changes. However, OA pain is complex and multimodal; its characteristics, including severity, localization and the stimuli that elicit it, can change as the disease progresses and differ greatly among patients. Understanding mechanisms underlying specific pain characteristics may help guide clinicians in choosing appropriate treatments, targeting treatments to those patients most likely to benefit. Associations have been demonstrated between biomarkers and some characteristics of OA pain, and to processes linked to the shift in pain characteristics over the course of OA. This article examines how understanding OA pain characteristics and their relation to the disease process could inform treatment choice when applying well-established treatment guidelines.
Collapse
Affiliation(s)
- Marina Fayet
- GSK Consumer Healthcare S.A., Route de l'Etraz 2, 1260, Nyon, Switzerland
| | - Martina Hagen
- GSK Consumer Healthcare S.A., Route de l'Etraz 2, 1260, Nyon, Switzerland
| |
Collapse
|
100
|
Palada V, Ahmed AS, Freyhult E, Hugo A, Kultima K, Svensson CI, Kosek E. Elevated inflammatory proteins in cerebrospinal fluid from patients with painful knee osteoarthritis are associated with reduced symptom severity. J Neuroimmunol 2020; 349:577391. [PMID: 32987275 DOI: 10.1016/j.jneuroim.2020.577391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022]
Abstract
Neuroinflammation and periphery-to-CNS neuroimmune cross-talk in patients with painful knee osteoarthritis (OA) are poorly understood. We utilized proximity extension assay to measure the level of 91 inflammatory proteins in CSF and serum from OA patients and controls. The patients had elevated levels of 48 proteins in CSF indicating neuroinflammation. Ten proteins were correlated between CSF and serum and potentially involved in periphery-to-CNS neuroimmune cross-talk. Seven CSF proteins, all with previously reported neuroprotective effects, were associated with lower pain intensity and milder knee-related symptoms. Our findings indicate that neuroinflammation in OA could be protective and associated with less severe symptoms.
Collapse
Affiliation(s)
- Vinko Palada
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Aisha Siddiqah Ahmed
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Eva Freyhult
- Department of Medical Sciences, Uppsala University, Uppsala 75185, Sweden
| | - Anders Hugo
- Ortho Center Stockholm, 194 89 Upplands Väsby, Sweden
| | - Kim Kultima
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 171 77, Sweden; Department of Medical Sciences, Uppsala University, Uppsala 75185, Sweden
| | - Camilla I Svensson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 171 77, Sweden.
| | - Eva Kosek
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 171 77, Sweden.
| |
Collapse
|