51
|
Cuenoud B, Hartweg M, Godin JP, Croteau E, Maltais M, Castellano CA, Carpentier AC, Cunnane SC. Metabolism of Exogenous D-Beta-Hydroxybutyrate, an Energy Substrate Avidly Consumed by the Heart and Kidney. Front Nutr 2020; 7:13. [PMID: 32140471 PMCID: PMC7042179 DOI: 10.3389/fnut.2020.00013] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/31/2020] [Indexed: 12/14/2022] Open
Abstract
There is growing interest in the metabolism of ketones owing to their reported benefits in neurological and more recently in cardiovascular and renal diseases. As an alternative to a very high fat ketogenic diet, ketones precursors for oral intake are being developed to achieve ketosis without the need for dietary carbohydrate restriction. Here we report that an oral D-beta-hydroxybutyrate (D-BHB) supplement is rapidly absorbed and metabolized in humans and increases blood ketones to millimolar levels. At the same dose, D-BHB is significantly more ketogenic and provides fewer calories than a racemic mixture of BHB or medium chain triglyceride. In a whole body ketone positron emission tomography pilot study, we observed that after D-BHB consumption, the ketone tracer 11C-acetoacetate is rapidly metabolized, mostly by the heart and the kidneys. Beyond brain energy rescue, this opens additional opportunities for therapeutic exploration of D-BHB supplements as a "super fuel" in cardiac and chronic kidney diseases.
Collapse
Affiliation(s)
- Bernard Cuenoud
- Nestlé Health Science, Translation Research, Epalinges, Switzerland
| | - Mickaël Hartweg
- Nestlé Research, Clinical Development Unit, Lausanne, Switzerland
| | - Jean-Philippe Godin
- Nestlé Research, Institute of Food Safety and Analytical Sciences, Lausanne, Switzerland
| | | | - Mathieu Maltais
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada.,Research Center on Aging, Sherbrooke, QC, Canada
| | | | - André C Carpentier
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada.,CHUS Research Center, Sherbrooke, QC, Canada.,Department of Pharmacology and Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Stephen C Cunnane
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada.,Research Center on Aging, Sherbrooke, QC, Canada.,Department of Pharmacology and Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
52
|
Morris G, Puri BK, Carvalho A, Maes M, Berk M, Ruusunen A, Olive L. Induced Ketosis as a Treatment for Neuroprogressive Disorders: Food for Thought? Int J Neuropsychopharmacol 2020; 23:366-384. [PMID: 32034911 PMCID: PMC7311648 DOI: 10.1093/ijnp/pyaa008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/05/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Induced ketosis (or ketone body ingestion) can ameliorate several changes associated with neuroprogressive disorders, including schizophrenia, bipolar disorder, and major depressive disorder. Thus, the effects of glucose hypometabolism can be bypassed through the entry of beta-hydroxybutyrate, providing an alternative source of energy to glucose. The weight of evidence suggests that induced ketosis reduces levels of oxidative stress, mitochondrial dysfunction, and inflammation-core features of the above disorders. There are also data to suggest that induced ketosis may be able to target other molecules and signaling pathways whose levels and/or activity are also known to be abnormal in at least some patients suffering from these illnesses such as peroxisome proliferator-activated receptors, increased activity of the Kelch-like ECH-associated protein/nuclear factor erythroid 2-related factor 2, Sirtuin-1 nuclear factor-κB p65, and nicotinamide adenine dinucleotide (NAD). This review explains the mechanisms by which induced ketosis might reduce mitochondrial dysfunction, inflammation, and oxidative stress in neuropsychiatric disorders and ameliorate abnormal levels of molecules and signaling pathways that also appear to contribute to the pathophysiology of these illnesses. This review also examines safety data relating to induced ketosis over the long term and discusses the design of future studies.
Collapse
Affiliation(s)
- Gerwyn Morris
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Australia
| | - Basant K Puri
- C.A.R., Cambridge, United Kingdom,Hammersmith Hospital, London, United Kingdom
| | - Andre Carvalho
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Michael Maes
- Department of Psychiatry and Medical Psychology, Medical Faculty, Medical University of Plovdiv, Plovdiv, Bulgaria,Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Michael Berk
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Australia,Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry, and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Australia,Correspondence: Michael Berk, PO Box 281 Geelong, Victoria 3220 Australia ()
| | - Anu Ruusunen
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Australia
| | - Lisa Olive
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Australia
| |
Collapse
|
53
|
Morris G, Maes M, Berk M, Carvalho AF, Puri BK. Nutritional ketosis as an intervention to relieve astrogliosis: Possible therapeutic applications in the treatment of neurodegenerative and neuroprogressive disorders. Eur Psychiatry 2020; 63:e8. [PMID: 32093791 PMCID: PMC8057392 DOI: 10.1192/j.eurpsy.2019.13] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Nutritional ketosis, induced via either the classical ketogenic diet or the use of emulsified medium-chain triglycerides, is an established treatment for pharmaceutical resistant epilepsy in children and more recently in adults. In addition, the use of oral ketogenic compounds, fractionated coconut oil, very low carbohydrate intake, or ketone monoester supplementation has been reported to be potentially helpful in mild cognitive impairment, Parkinson’s disease, schizophrenia, bipolar disorder, and autistic spectrum disorder. In these and other neurodegenerative and neuroprogressive disorders, there are detrimental effects of oxidative stress, mitochondrial dysfunction, and neuroinflammation on neuronal function. However, they also adversely impact on neurone–glia interactions, disrupting the role of microglia and astrocytes in central nervous system (CNS) homeostasis. Astrocytes are the main site of CNS fatty acid oxidation; the resulting ketone bodies constitute an important source of oxidative fuel for neurones in an environment of glucose restriction. Importantly, the lactate shuttle between astrocytes and neurones is dependent on glycogenolysis and glycolysis, resulting from the fact that the astrocytic filopodia responsible for lactate release are too narrow to accommodate mitochondria. The entry into the CNS of ketone bodies and fatty acids, as a result of nutritional ketosis, has effects on the astrocytic glutamate–glutamine cycle, glutamate synthase activity, and on the function of vesicular glutamate transporters, EAAT, Na+, K+-ATPase, Kir4.1, aquaporin-4, Cx34 and KATP channels, as well as on astrogliosis. These mechanisms are detailed and it is suggested that they would tend to mitigate the changes seen in many neurodegenerative and neuroprogressive disorders. Hence, it is hypothesized that nutritional ketosis may have therapeutic applications in such disorders.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Michael Maes
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia.,Department of Psychiatry, Chulalongkorn University, Faculty of Medicine, Bangkok, Thailand
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia.,Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - André F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | | |
Collapse
|
54
|
Braidy N, Liu Y. NAD+ therapy in age-related degenerative disorders: A benefit/risk analysis. Exp Gerontol 2020; 132:110831. [PMID: 31917996 DOI: 10.1016/j.exger.2020.110831] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/23/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential pyridine nucleotide that is present in all living cells. NAD+ acts as an important cofactor and substrate for a multitude of biological processes including energy production, DNA repair, gene expression, calcium-dependent secondary messenger signalling and immunoregulatory roles. The de novo synthesis of NAD+ is primarily dependent on the kynurenine pathway (KP), although NAD+ can also be recycled from nicotinic acid (NA), nicotinamide (NAM) and nicotinamide riboside (NR). NAD+ levels have been reported to decline during ageing and age-related diseases. Recent studies have shown that raising intracellular NAD+ levels represents a promising therapeutic strategy for age-associated degenerative diseases in general and to extend lifespan in small animal models. A systematic review of the literature available on Medline, Embase and Pubmed was undertaken to evaluate the potential health and/or longevity benefits due to increasing NAD+ levels. A total of 1545 articles were identified and 147 articles (113 preclinical and 34 clinical) met criteria for inclusion. Most studies indicated that the NAD+ precursors NAM, NR, nicotinamide mononucleotide (NMN), and to a lesser extent NAD+ and NADH had a favourable outcome on several age-related disorders associated with the accumulation of chronic oxidative stress, inflammation and impaired mitochondrial function. While these compounds presented with a limited acute toxicity profile, evidence is still quite limited and long-term human clinical trials are still nascent in the current literature. Potential risks in raising NAD+ levels in various clinical disorders using NAD+ precursors include the accumulation of putative toxic metabolites, tumorigenesis and promotion of cellular senescence. Therefore, NAD+ metabolism represents a promising target and further studies are needed to recapitulate the preclinical benefits in human clinical trials.
Collapse
Affiliation(s)
- Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia.
| | - Yue Liu
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| |
Collapse
|
55
|
Abstract
The sirtuin family of nicotinamide adenine dinucleotide-dependent deacylases (SIRT1-7) are thought to be responsible, in large part, for the cardiometabolic benefits of lean diets and exercise and when upregulated can delay key aspects of aging. SIRT1, for example, protects against a decline in vascular endothelial function, metabolic syndrome, ischemia-reperfusion injury, obesity, and cardiomyopathy, and SIRT3 is protective against dyslipidemia and ischemia-reperfusion injury. With increasing age, however, nicotinamide adenine dinucleotide levels and sirtuin activity steadily decrease, and the decline is further exacerbated by obesity and sedentary lifestyles. Activation of sirtuins or nicotinamide adenine dinucleotide repletion induces angiogenesis, insulin sensitivity, and other health benefits in a wide range of age-related cardiovascular and metabolic disease models. Human clinical trials testing agents that activate SIRT1 or boost nicotinamide adenine dinucleotide levels are in progress and show promise in their ability to improve the health of cardiovascular and metabolic disease patients.
Collapse
Affiliation(s)
- Alice E Kane
- From the Department of Genetics, Harvard Medical School, Boston, MA (A.E.K., D.A.S.)
| | - David A Sinclair
- From the Department of Genetics, Harvard Medical School, Boston, MA (A.E.K., D.A.S.).,Department of Pharmacology, The University of New South Wales, Sydney, Australia (D.A.S.)
| |
Collapse
|
56
|
Ketogenic Diet in Alzheimer's Disease. Int J Mol Sci 2019; 20:ijms20163892. [PMID: 31405021 PMCID: PMC6720297 DOI: 10.3390/ijms20163892] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 01/18/2023] Open
Abstract
At present, the prevalence of Alzheimer's disease, a devastating neurodegenerative disorder, is increasing. Although the mechanism of the underlying pathology is not fully uncovered, in the last years, there has been significant progress in its understanding. This includes: Progressive deposition of amyloid β-peptides in amyloid plaques and hyperphosphorylated tau protein in intracellular as neurofibrillary tangles; neuronal loss; and impaired glucose metabolism. Due to a lack of effective prevention and treatment strategy, emerging evidence suggests that dietary and metabolic interventions could potentially target these issues. The ketogenic diet is a very high-fat, low-carbohydrate diet, which has a fasting-like effect bringing the body into a state of ketosis. The presence of ketone bodies has a neuroprotective impact on aging brain cells. Moreover, their production may enhance mitochondrial function, reduce the expression of inflammatory and apoptotic mediators. Thus, it has gained interest as a potential therapy for neurodegenerative disorders like Alzheimer's disease. This review aims to examine the role of the ketogenic diet in Alzheimer's disease progression and to outline specific aspects of the nutritional profile providing a rationale for the implementation of dietary interventions as a therapeutic strategy for Alzheimer's disease.
Collapse
|
57
|
Krikorian R, Shidler MD, Summer SS, Sullivan PG, Duker AP, Isaacson RS, Espay AJ. Nutritional ketosis for mild cognitive impairment in Parkinson's disease: A controlled pilot trial. Clin Park Relat Disord 2019; 1:41-47. [PMID: 34316598 PMCID: PMC8288565 DOI: 10.1016/j.prdoa.2019.07.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/29/2019] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Glucose hypometabolism and insulin resistance increase risk for and accelerate progression in Parkinson's disease and neurocognitive disorders. We conducted a proof of concept trial to determine whether ketogenesis, a metabolic adaptation induced by dietary carbohydrate restriction, can improve cognitive performance in Parkinson's disease patients with mild cognitive impairment. METHODS We enrolled patients with mild cognitive impairment associated with Parkinson's disease in an eight-week nutritional intervention with random assignment to either high-carbohydrate consumption typical of the Western dietary pattern (n = 7) or to a low-carbohydrate, ketogenic regimen (n = 7). We assessed changes in cognitive performance as well as motor function, anthropometrics, and metabolic parameters. RESULTS Relative to the high-carbohydrate group, the low-carbohydrate group demonstrated improvements in lexical access (p = 0.02, Cohen's f effect size = 0.76) and memory (p = 0.01, f = 0.87) and as well as a trend for reduced interference in memory (p = 0.06, f = 0.60). The low-carbohydrate group also exhibited reduced body weight (p < 0.0001, f = 1.89) and increased circulation of beta-hydroxybutyrate (p = 0.01, f = 0.90). Change in body weight was strongly associated with memory performance (p = 0.001). Motor function was not affected by the intervention. CONCLUSION Nutritional ketosis enhanced cognitive performance in Parkinson's disease-associated mild cognitive impairment in this pilot study. This metabolic intervention and its mechanisms deserve further investigation in the context of neurodegeneration.
Collapse
Affiliation(s)
- Robert Krikorian
- Department of Psychiatry & Behavioral Neuroscience, University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| | - Marcelle D. Shidler
- Department of Psychiatry & Behavioral Neuroscience, University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| | - Suzanne S. Summer
- Clinical Translational Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Patrick G. Sullivan
- Department of Neuroscience and SCoBIRC, University of Kentucky Chandler Medical Center, Lexington, KY, USA
| | - Andrew P. Duker
- James J and Joan A Gardner Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| | - Richard S. Isaacson
- Department of Neurology, Weill Cornell Medicine and New York-Presbyterian, New York, NY, USA
| | - Alberto J. Espay
- James J and Joan A Gardner Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| |
Collapse
|
58
|
Discovery and validation of temporal patterns involved in human brain ketometabolism in cerebral microdialysis fluids of traumatic brain injury patients. EBioMedicine 2019; 44:607-617. [PMID: 31202815 PMCID: PMC6606955 DOI: 10.1016/j.ebiom.2019.05.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 12/24/2022] Open
Abstract
Background Traumatic brain injury (TBI) is recognized as a metabolic disease, characterized by acute cerebral glucose hypo-metabolism. Adaptive metabolic responses to TBI involve the utilization of alternative energy substrates, such as ketone bodies. Cerebral microdialysis (CMD) has evolved as an accurate technique allowing continuous sampling of brain extracellular fluid and assessment of regional cerebral metabolism. We present the successful application of a combined hypothesis- and data-driven metabolomics approach using repeated CMD sampling obtained routinely at patient bedside. Investigating two patient cohorts (n = 26 and n = 12), we identified clinically relevant metabolic patterns at the acute post-TBI critical care phase. Methods Clinical and CMD metabolomics data were integrated and analysed using in silico and data modelling approaches. We used both unsupervised and supervised multivariate analysis techniques to investigate structures within the time series and associations with patient outcome. Findings The multivariate metabolite time series exhibited two characteristic brain metabolic states that were attributed to changes in key metabolites: valine, 4-methyl-2-oxovaleric acid (4-MOV), isobeta-hydroxybutyrate (iso-bHB), tyrosyine, and 2-ketoisovaleric acid (2-KIV). These identified cerebral metabolic states differed significantly with respect to standard clinical values. We validated our findings in a second cohort using a classification model trained on the cerebral metabolic states. We demonstrated that short-term (therapeutic intensity level (TIL)) and mid-term patient outcome (6-month Glasgow Outcome Score (GOS)) can be predicted from the time series characteristics. Interpretation We identified two specific cerebral metabolic patterns that are closely linked to ketometabolism and were associated with both TIL and GOS. Our findings support the view that advanced metabolomics approaches combined with CMD may be applied in real-time to predict short-term treatment intensity and long-term patient outcome.
Collapse
|
59
|
Wood TR, Stubbs BJ, Juul SE. Exogenous Ketone Bodies as Promising Neuroprotective Agents for Developmental Brain Injury. Dev Neurosci 2019; 40:451-462. [PMID: 31085911 DOI: 10.1159/000499563] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/12/2019] [Indexed: 11/19/2022] Open
Abstract
Ketone bodies are a promising area of neuroprotection research that may be ideally suited to the injured newborn. During normal development, the human infant is in significant ketosis for at least the first week of life. Ketone uptake and metabolism is upregulated in the both the fetus and neonate, with ketone bodies providing at least 10% of cerebral metabolic energy requirements, as well as being the preferred precursors for the synthesis of fatty acids and cholesterol. At the same time, ketone bodies have been shown to have multiple neuroprotective effects, including being anticonvulsant, decreasing oxidative stress and inflammation, and epigenetically upregulating the production of neurotrophic factors. While ketogenic diets and exogenous ketosis are largely being investigated in the setting of adult brain injury, the adaptation of the neonate to ketosis suggests that developmental brain injury may be the area most suited to the use of ketones for neuroprotection. Here, we describe the mechanisms by which ketone bodies exert their neuroprotective effects, and how these may translate to benefits within each of the phases of neonatal asphyxial brain injury.
Collapse
Affiliation(s)
- Thomas R Wood
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, Washington, USA, .,Institute for Human and Machine Cognition, Pensacola, Florida, USA,
| | - Brianna J Stubbs
- HVMN Inc., San Francisco, California, USA.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Sandra E Juul
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
60
|
Veech RL, Todd King M, Pawlosky R, Kashiwaya Y, Bradshaw PC, Curtis W. The "great" controlling nucleotide coenzymes. IUBMB Life 2019; 71:565-579. [PMID: 30624851 PMCID: PMC6850382 DOI: 10.1002/iub.1997] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/11/2022]
Abstract
Nucleotide coenzymes dot the map of metabolic pathways providing energy to drive the reactions of the pathway and play an important role in regulating and controlling energy metabolism through their shared potential energy, which is widely unobserved due to the paradox that the energy in the coenzyme pools cannot be determined from the concentration of the coenzyme couples. The potential energy of the nucleotide couples in the mitochondria or the cytoplasm is expressed in the enzyme reactions in which they take part. The energy in these couples, [NAD+]/[NADH], [NADP+]/[NADPH], [acetyl CoA]/[CoA], and [ATP]/[ADP]x[Pi], regulates energy metabolism. The energy contained in the couples can be altered by suppling energy equivalents in the form of ketones, such as, D-β-hydroxybutyrate to overcome insulin resistance, to restore antioxidants capacity, to form potential treatments for Alzheimer's and Parkinson's diseases, to enhance life span, and to increase physiological performance. © 2019 IUBMB Life, 71(5):565-579, 2019.
Collapse
Affiliation(s)
- Richard L Veech
- Laboratory of Metabolic Control, NIAAA, NIH, Rockville, MD, 20852, USA
| | - Michael Todd King
- Laboratory of Metabolic Control, NIAAA, NIH, Rockville, MD, 20852, USA
| | - Robert Pawlosky
- Laboratory of Metabolic Control, NIAAA, NIH, Rockville, MD, 20852, USA
| | | | - Patrick C Bradshaw
- Department of Biomedical Sciences, East Tennessee State University College of Medicine, Johnson City, TN, USA
| | - William Curtis
- Department of Biomedical Sciences, East Tennessee State University College of Medicine, Johnson City, TN, USA
| |
Collapse
|
61
|
Kovács Z, D'Agostino DP, Diamond D, Kindy MS, Rogers C, Ari C. Therapeutic Potential of Exogenous Ketone Supplement Induced Ketosis in the Treatment of Psychiatric Disorders: Review of Current Literature. Front Psychiatry 2019; 10:363. [PMID: 31178772 PMCID: PMC6543248 DOI: 10.3389/fpsyt.2019.00363] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 05/10/2019] [Indexed: 12/16/2022] Open
Abstract
Globally, psychiatric disorders, such as anxiety disorder, bipolar disorder, schizophrenia, depression, autism spectrum disorder, and attention-deficit/hyperactivity disorder (ADHD) are becoming more prevalent. Although the exact pathological alterations are not yet clear, recent studies have demonstrated that widespread changes of very complex metabolic pathways may partially underlie the pathophysiology of many psychiatric diseases. Thus, more attention should be directed to metabolic-based therapeutic interventions in the treatment of psychiatric disorders. Emerging evidence from numerous studies suggests that administration of exogenous ketone supplements, such as ketone salts or ketone esters, generates rapid and sustained nutritional ketosis and metabolic changes, which may evoke potential therapeutic effects in cases of central nervous system (CNS) disorders, including psychiatric diseases. Therefore, the aim of this review is to summarize the current information on ketone supplementation as a potential therapeutic tool for psychiatric disorders. Ketone supplementation elevates blood levels of the ketone bodies: D-β-hydroxybutyrate (βHB), acetoacetate (AcAc), and acetone. These compounds, either directly or indirectly, beneficially affect the mitochondria, glycolysis, neurotransmitter levels, activity of free fatty acid receptor 3 (FFAR3), hydroxycarboxylic acid receptor 2 (HCAR2), and histone deacetylase, as well as functioning of NOD-like receptor pyrin domain 3 (NLRP3) inflammasome and mitochondrial uncoupling protein (UCP) expression. The result of downstream cellular and molecular changes is a reduction in the pathophysiology associated with various psychiatric disorders. We conclude that supplement-induced nutritional ketosis leads to metabolic changes and improvements, for example, in mitochondrial function and inflammatory processes, and suggest that development of specific adjunctive ketogenic protocols for psychiatric diseases should be actively pursued.
Collapse
Affiliation(s)
- Zsolt Kovács
- Savaria Department of Biology, ELTE Eötvös Loránd University, Savaria University Centre, Szombathely, Hungary
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Institute for Human and Machine Cognition, Ocala, FL, United States
| | - David Diamond
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Department of Psychology, Hyperbaric Neuroscience Research Laboratory, University of South Florida, Tampa, FL, United States
| | - Mark S Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States.,James A. Haley VA Medical Center, Tampa, FL, United States.,Shriners Hospital for Children, Tampa, FL, United States
| | - Christopher Rogers
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Csilla Ari
- Department of Psychology, Hyperbaric Neuroscience Research Laboratory, University of South Florida, Tampa, FL, United States
| |
Collapse
|
62
|
Cellular and Molecular Mechanisms of Recessive Hereditary Methaemoglobinaemia Type II. J Clin Med 2018; 7:jcm7100341. [PMID: 30309019 PMCID: PMC6210646 DOI: 10.3390/jcm7100341] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 12/27/2022] Open
Abstract
Cytochrome b5 reductase 3 (CYB5R3) is a membrane-bound NADH-dependent redox enzyme anchored to the mitochondrial outer membrane, endoplasmic reticulum, and plasma membrane. Recessive hereditary methaemoglobinaemia (RHM) type II is caused by CYB5R3 deficiency and is an incurable disease characterized by severe encephalopathy with mental retardation, microcephaly, generalized dystonia, and movement disorders. Currently, the etiology of type II RHM is poorly understood and there is no treatment for encephalopathy associated with this disease. Defective CYB5R3 leads to defects in the elongation and desaturation of fatty acids and cholesterol biosynthesis, which are conventionally linked with neurological disorders of type II RHM. Nevertheless, this abnormal lipid metabolism cannot explain all manifestations observed in patients. Current molecular and cellular studies indicate that CYB5R3 deficiency has pleiotropic tissue effects. Its localization in lipid rafts of neurons indicates its role in interneuronal contacts and its presence in caveolae of the vascular endothelial membrane suggests a role in the modulation of nitric oxide diffusion. Its role in aerobic metabolism and oxidative stress in fibroblasts, neurons, and cardiomyocytes has been reported to be due to its ability to modulate the intracellular ratio of NAD⁺/NADH. Based on the new molecular and cellular functions discovered for CYB5R3 linked to the plasma membrane and mitochondria, the conventional conception that the cause of type II RHM is a lipid metabolism disorder should be revised. We hypothesized that neurological symptoms of the disease could be caused by disorders in the synapse, aerobic metabolism, and/or vascular homeostasis rather than in disturbances of lipid metabolism.
Collapse
|
63
|
Elamin M, Ruskin DN, Masino SA, Sacchetti P. Ketogenic Diet Modulates NAD +-Dependent Enzymes and Reduces DNA Damage in Hippocampus. Front Cell Neurosci 2018; 12:263. [PMID: 30214397 PMCID: PMC6125375 DOI: 10.3389/fncel.2018.00263] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/31/2018] [Indexed: 12/15/2022] Open
Abstract
The ketogenic diet's (KD) anti-seizure effects have long been documented. Recently, its therapeutic potential in multiple neurodegenerative and neurodevelopmental disorders has emerged. Yet experimental evidence for a fundamental mechanism underlying beneficial effects across numerous diseases remains lacking. We previously showed that feeding rats a KD produced an early (within 2 days) and persistent elevation of hippocampal nicotinamide adenine dinucleotide+ (NAD+), an essential metabolic coenzyme and signaling molecule. NAD+ is a marker of cellular health and a substrate for enzymes implicated in longevity and DNA damage repair such as sirtuins and poly-ADP ribose polymerase-1 (PARP-1). As a result, activation of NAD+-dependent enzymes' downstream pathways could be the origin of KD's broad beneficial effects. Here rats were fed ad libitum regular chow or KD for 2 days or 3 weeks and the levels of hippocampal sirtuins, PARP-1, and the oxidative DNA damage marker 8-hydroxy-2'-deoxyguanosine were quantified. We found a significant immediate and persistent increase in the collective activity of nuclear sirtuin enzymes, and a significant augmentation of Sirt1 mRNA at 2 days. Levels of PARP-1 and 8-hydroxy-2'-deoxyguanosine decreased after 2 days of treatment and further declined at 3 weeks. Our data show that a KD can rapidly modulate energy metabolism by acting on NAD+-dependent enzymes and their downstream pathways. Thus, therapy with a KD can potentially enhance brain health and increase overall healthspan via NAD+-related mechanisms that render cells more resilient against DNA damage and a host of metabolic, epileptic, neurodegenerative, or neurodevelopmental insults.
Collapse
Affiliation(s)
- Marwa Elamin
- Graduate Program in Neuroscience, Department of Biology, University of Hartford, West Hartford, CT, United States
| | - David N Ruskin
- Neuroscience Program and Psychology Department, Trinity College, Hartford, CT, United States
| | - Susan A Masino
- Neuroscience Program and Psychology Department, Trinity College, Hartford, CT, United States
| | - Paola Sacchetti
- Graduate Program in Neuroscience, Department of Biology, University of Hartford, West Hartford, CT, United States
| |
Collapse
|
64
|
|
65
|
Hasan-Olive MM, Lauritzen KH, Ali M, Rasmussen LJ, Storm-Mathisen J, Bergersen LH. A Ketogenic Diet Improves Mitochondrial Biogenesis and Bioenergetics via the PGC1α-SIRT3-UCP2 Axis. Neurochem Res 2018; 44:22-37. [PMID: 30027365 DOI: 10.1007/s11064-018-2588-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 06/20/2018] [Accepted: 06/24/2018] [Indexed: 11/30/2022]
Abstract
A ketogenic diet (KD; high-fat, low-carbohydrate) can benefit refractory epilepsy, but underlying mechanisms are unknown. We used mice inducibly expressing a mutated form of the mitochondrial DNA repair enzyme UNG1 (mutUNG1) to cause progressive mitochondrial dysfunction selectively in forebrain neurons. We examined the levels of mRNAs and proteins crucial for mitochondrial biogenesis and dynamics. We show that hippocampal pyramidal neurons in mutUNG1 mice, as well as cultured rat hippocampal neurons and human fibroblasts with H2O2 induced oxidative stress, improve markers of mitochondrial biogenesis, dynamics and function when fed on a KD, and when exposed to the ketone body β-hydroxybutyrate, respectively, by upregulating PGC1α, SIRT3 and UCP2, and (in cultured cells) increasing the oxygen consumption rate (OCR) and the NAD+/NADH ratio. The mitochondrial level of UCP2 was significantly higher in the perikarya and axon terminals of hippocampus CA1 pyramidal neurons in KD treated mutUNG1 mice compared with mutUNG1 mice fed a standard diet. The β-hydroxybutyrate receptor GPR109a (HCAR2), but not the structurally closely related lactate receptor GPR81 (HCAR1), was upregulated in mutUNG1 mice on a KD, suggesting a selective influence of KD on ketone body receptor mechanisms. We conclude that progressive mitochondrial dysfunction in mutUNG1 expressing mice causes oxidative stress, and that exposure of animals to KD, or of cells to ketone body in vitro, elicits compensatory mechanisms acting to augment mitochondrial mass and bioenergetics via the PGC1α-SIRT3-UCP2 axis (The compensatory processes are overwhelmed in the mutUNG1 mice by all the newly formed mitochondria being dysfunctional).
Collapse
Affiliation(s)
- Md Mahdi Hasan-Olive
- Synaptic Neurochemistry and Amino Acid Transporter Laboratory, Division of Anatomy and CMBN/SERTA Healthy Brain Ageing Center, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway. .,Brain and Muscle Energy Group, Electron Microscopy Laboratory, Institute of Oral Biology, University of Oslo, Oslo, Norway. .,Center for Healthy Aging, Department of Neurosciences and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Knut H Lauritzen
- Synaptic Neurochemistry and Amino Acid Transporter Laboratory, Division of Anatomy and CMBN/SERTA Healthy Brain Ageing Center, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Mohammad Ali
- Department of Biochemistry, Sir Salimullah Medical College & Mitford Hospital, Dhaka, Bangladesh
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Neurosciences and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jon Storm-Mathisen
- Synaptic Neurochemistry and Amino Acid Transporter Laboratory, Division of Anatomy and CMBN/SERTA Healthy Brain Ageing Center, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Linda H Bergersen
- Synaptic Neurochemistry and Amino Acid Transporter Laboratory, Division of Anatomy and CMBN/SERTA Healthy Brain Ageing Center, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway. .,Brain and Muscle Energy Group, Electron Microscopy Laboratory, Institute of Oral Biology, University of Oslo, Oslo, Norway. .,Center for Healthy Aging, Department of Neurosciences and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
66
|
Xin L, Ipek Ö, Beaumont M, Shevlyakova M, Christinat N, Masoodi M, Greenberg N, Gruetter R, Cuenoud B. Nutritional Ketosis Increases NAD +/NADH Ratio in Healthy Human Brain: An in Vivo Study by 31P-MRS. Front Nutr 2018; 5:62. [PMID: 30050907 PMCID: PMC6052097 DOI: 10.3389/fnut.2018.00062] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/22/2018] [Indexed: 12/22/2022] Open
Abstract
Ketones represent an important alternative fuel for the brain under glucose hypo-metabolic conditions induced by neurological diseases or aging, however their metabolic consequences in healthy brain remain unclear. Here we report that ketones can increase the redox NAD+/NADH ratio in the resting brain of healthy young adults. As NAD is an important energetic and signaling metabolic modulator, these results provide mechanistic clues on how nutritional ketosis might contribute to the preservation of brain health.
Collapse
Affiliation(s)
- Lijing Xin
- Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Özlem Ipek
- Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Maurice Beaumont
- Clinical Development Unit, Nestlé Research Center, Lausanne, Switzerland
| | - Maya Shevlyakova
- Clinical Development Unit, Nestlé Research Center, Lausanne, Switzerland
| | | | - Mojgan Masoodi
- Nestlé Institute of Health Sciences SA, Lausanne, Switzerland
| | | | - Rolf Gruetter
- Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
67
|
Pinto A, Bonucci A, Maggi E, Corsi M, Businaro R. Anti-Oxidant and Anti-Inflammatory Activity of Ketogenic Diet: New Perspectives for Neuroprotection in Alzheimer's Disease. Antioxidants (Basel) 2018; 7:E63. [PMID: 29710809 PMCID: PMC5981249 DOI: 10.3390/antiox7050063] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 12/11/2022] Open
Abstract
The ketogenic diet, originally developed for the treatment of epilepsy in non-responder children, is spreading to be used in the treatment of many diseases, including Alzheimer’s disease. The main activity of the ketogenic diet has been related to improved mitochondrial function and decreased oxidative stress. B-Hydroxybutyrate, the most studied ketone body, has been shown to reduce the production of reactive oxygen species (ROS), improving mitochondrial respiration: it stimulates the cellular endogenous antioxidant system with the activation of nuclear factor erythroid-derived 2-related factor 2 (Nrf2), it modulates the ratio between the oxidized and reduced forms of nicotinamide adenine dinucleotide (NAD⁺/NADH) and it increases the efficiency of electron transport chain through the expression of uncoupling proteins. Furthermore, the ketogenic diet performs anti-inflammatory activity by inhibiting nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) activation and nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome as well as inhibiting histone deacetylases (HDACs), improving memory encoding. The underlying mechanisms and the perspectives for the treatment of Alzheimer’s disease are discussed.
Collapse
Affiliation(s)
- Alessandro Pinto
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Roma, Italy.
| | - Alessio Bonucci
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy.
| | - Elisa Maggi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy.
| | - Mariangela Corsi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy.
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy.
| |
Collapse
|
68
|
Miller VJ, Villamena FA, Volek JS. Nutritional Ketosis and Mitohormesis: Potential Implications for Mitochondrial Function and Human Health. J Nutr Metab 2018; 2018:5157645. [PMID: 29607218 PMCID: PMC5828461 DOI: 10.1155/2018/5157645] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023] Open
Abstract
Impaired mitochondrial function often results in excessive production of reactive oxygen species (ROS) and is involved in the etiology of many chronic diseases, including cardiovascular disease, diabetes, neurodegenerative disorders, and cancer. Moderate levels of mitochondrial ROS, however, can protect against chronic disease by inducing upregulation of mitochondrial capacity and endogenous antioxidant defense. This phenomenon, referred to as mitohormesis, is induced through increased reliance on mitochondrial respiration, which can occur through diet or exercise. Nutritional ketosis is a safe and physiological metabolic state induced through a ketogenic diet low in carbohydrate and moderate in protein. Such a diet increases reliance on mitochondrial respiration and may, therefore, induce mitohormesis. Furthermore, the ketone β-hydroxybutyrate (BHB), which is elevated during nutritional ketosis to levels no greater than those resulting from fasting, acts as a signaling molecule in addition to its traditionally known role as an energy substrate. BHB signaling induces adaptations similar to mitohormesis, thereby expanding the potential benefit of nutritional ketosis beyond carbohydrate restriction. This review describes the evidence supporting enhancement of mitochondrial function and endogenous antioxidant defense in response to nutritional ketosis, as well as the potential mechanisms leading to these adaptations.
Collapse
Affiliation(s)
- Vincent J. Miller
- Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, OH, USA
| | - Frederick A. Villamena
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Jeff S. Volek
- Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
69
|
Bosco G, Rizzato A, Quartesan S, Camporesi E, Mangar D, Paganini M, Cenci L, Malacrida S, Mrakic-Sposta S, Moretti S, Paoli A. Effects of the Ketogenic diet in overweight divers breathing Enriched Air Nitrox. Sci Rep 2018; 8:2655. [PMID: 29422679 PMCID: PMC5805750 DOI: 10.1038/s41598-018-20933-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 01/25/2018] [Indexed: 02/07/2023] Open
Abstract
Central Nervous System Oxygen Toxicity (CNS-OT) is one of the most harmful effects of Enriched Air Nitrox (EAN) diving. Protective factors of the Ketogenic Diet (KD) are antioxidant activity, the prevention of mitochondrial damage and anti-inflammatory mechanisms. We aimed to investigate if a short-term KD may reduce oxidative stress and inflammation during an hyperoxic dive. Samples from six overweight divers (mean ± SD, age: 55.2 ± 4.96 years; BMI: 26.7 ± 0.86 kg/m2) were obtained a) before and after a dive breathing Enriched Air Nitrox and performing 20-minute mild underwater exercise, b) after a dive (same conditions) performed after 7 days of KD. We measured urinary 8-isoprostane and 8-OH-2-deoxyguanosine and plasmatic IL-1β, IL-6 and TNF-α levels. The KD was successful in causing weight loss (3.20 ± 1.31 Kgs, p < 0.01) and in limiting lipid peroxidation (3.63 ± 1.16 vs. 1.11 ± 0.22; p < 0.01) and inflammatory response (IL-1β = 105.7 ± 25.52 vs. 57.03 ± 16.32, p < 0.05; IL-6 = 28.91 ± 4.351 vs. 14.08 ± 1.74, p < 0.001; TNF-α = 78.01 ± 7.69 vs. 64.68 ± 14.56, p < 0.05). A short-term KD seems to be effective in weight loss, in decreasing inflammation and protective towards lipid peroxidation during hyperoxic diving.
Collapse
Affiliation(s)
- Gerardo Bosco
- Environmental physiology & medicine Lab, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Alex Rizzato
- Environmental physiology & medicine Lab, Department of Biomedical Sciences, University of Padova, Padova, Italy.
| | - Silvia Quartesan
- Environmental physiology & medicine Lab, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | | | - Matteo Paganini
- Emergency Medicine Residency Program, University of Padova, Padova, Italy
| | - Lorenzo Cenci
- Environmental physiology & medicine Lab, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Sandro Malacrida
- Environmental physiology & medicine Lab, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Sara Moretti
- CNR Institute of Bioimaging and Molecular Physiology, Segrate (Milano), Italy
| | - Antonio Paoli
- Environmental physiology & medicine Lab, Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
70
|
Veyrat-Durebex C, Reynier P, Procaccio V, Hergesheimer R, Corcia P, Andres CR, Blasco H. How Can a Ketogenic Diet Improve Motor Function? Front Mol Neurosci 2018; 11:15. [PMID: 29434537 PMCID: PMC5790787 DOI: 10.3389/fnmol.2018.00015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/10/2018] [Indexed: 12/12/2022] Open
Abstract
A ketogenic diet (KD) is a normocaloric diet composed by high fat (80-90%), low carbohydrate, and low protein consumption that induces fasting-like effects. KD increases ketone body (KBs) production and its concentration in the blood, providing the brain an alternative energy supply that enhances oxidative mitochondrial metabolism. In addition to its profound impact on neuro-metabolism and bioenergetics, the neuroprotective effect of specific polyunsaturated fatty acids and KBs involves pleiotropic mechanisms, such as the modulation of neuronal membrane excitability, inflammation, or reactive oxygen species production. KD is a therapy that has been used for almost a century to treat medically intractable epilepsy and has been increasingly explored in a number of neurological diseases. Motor function has also been shown to be improved by KD and/or medium-chain triglyceride diets in rodent models of Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and spinal cord injury. These studies have proposed that KD may induce a modification in synaptic morphology and function, involving ionic channels, glutamatergic transmission, or synaptic vesicular cycling machinery. However, little is understood about the molecular mechanisms underlying the impact of KD on motor function and the perspectives of its use to acquire the neuromuscular effects. The aim of this review is to explore the conditions through which KD might improve motor function. First, we will describe the main consequences of KD exposure in tissues involved in motor function. Second, we will report and discuss the relevance of KD in pre-clinical and clinical trials in the major diseases presenting motor dysfunction.
Collapse
Affiliation(s)
- Charlotte Veyrat-Durebex
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France
- INSERM 1083, CNRS, Equipe Mitolab, Institut MITOVASC, UMR 6015, Université d’Angers, Angers, France
| | - Pascal Reynier
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France
- INSERM 1083, CNRS, Equipe Mitolab, Institut MITOVASC, UMR 6015, Université d’Angers, Angers, France
| | - Vincent Procaccio
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France
- INSERM 1083, CNRS, Equipe Mitolab, Institut MITOVASC, UMR 6015, Université d’Angers, Angers, France
| | | | - Philippe Corcia
- INSERM U930, Université François Rabelais de Tours, Tours, France
- Service de Neurologie, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Christian R. Andres
- INSERM U930, Université François Rabelais de Tours, Tours, France
- Laboratoire de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Hélène Blasco
- INSERM 1083, CNRS, Equipe Mitolab, Institut MITOVASC, UMR 6015, Université d’Angers, Angers, France
- INSERM U930, Université François Rabelais de Tours, Tours, France
- Laboratoire de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire de Tours, Tours, France
| |
Collapse
|