53
|
Luo Y, Sun W, Feng X, Ba X, Liu T, Guo J, Xiao L, Jiang J, Hao Y, Xiong D, Jiang C. (-)-menthol increases excitatory transmission by activating both TRPM8 and TRPA1 channels in mouse spinal lamina II layer. Biochem Biophys Res Commun 2019; 516:825-830. [PMID: 31262448 DOI: 10.1016/j.bbrc.2019.06.135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 06/23/2019] [Indexed: 11/15/2022]
Abstract
(-)-menthol, a major form of menthol, is one of the most commonly used chemicals. Many studies have demonstrated that (-)-menthol produces analgesic action through peripheral mechanisms which are mainly mediated by activation of TRPM8. Moreover, intrathecal injection of menthol induces analgesia as well. However, the central actions and mechanisms of (-)-menthol remain unclear. Here, we have investigated the action of (-)-menthol on excitatory synaptic transmission in spinal lamina II layer which plays a pivotal role in modulating nociceptive transmission from the periphery by using patch-clamp technique in mice spinal cord. We found that (-)-menthol increased miniature excitatory postsynaptic current frequency. The frequency increases which (-)-menthol induced were in a dose-dependent manner (EC50: 0.1079 mM). However, neither genetic knockout nor pharmacological inhibition of TRPM8 could block (-)-menthol-induced effects entirely. Furthermore, this increase was also impaired by TRPA1 antagonist HC030031, but abolished utterly by co-application of TRPM8 and TRPA1 antagonist. Our results indicate that (-)-menthol increases the excitatory synaptic transmission by activating either TRPA1 or TRPM8 channels in spinal lamina II layer.
Collapse
Affiliation(s)
- Yuhui Luo
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518060, China
| | - Wuping Sun
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518060, China
| | - Xiaojin Feng
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Xiyuan Ba
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518060, China
| | - Tao Liu
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Jing Guo
- Department of Endocrinology & Metabolism, Shenzhen University General Hospital and Shenzhen University Academy of Clinical Medical Sciences, Shenzhen University, Shenzhen, 518060, China
| | - Lizu Xiao
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518060, China
| | - Jin Jiang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518060, China
| | - Yue Hao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Donglin Xiong
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518060, China
| | - Changyu Jiang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518060, China.
| |
Collapse
|
54
|
Zhang S, Zhao J, Meng Q. AAV-mediated siRNA against TRPV1 reduces nociception in a rat model of bone cancer pain. Neurol Res 2019; 41:972-979. [PMID: 31296147 DOI: 10.1080/01616412.2019.1639317] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shuangli Zhang
- Department of Orthpedics, The First Hospital of Harbin, Harbin, Heilongjiang Province, China
| | - Jun Zhao
- Department of Neurosurgery, The First Hospital of Qiqihar, Qiqihar, Heilongjiang Province, China
| | - Qinggang Meng
- Department of Orthpedics, The First Hospital of Harbin, Harbin, Heilongjiang Province, China
| |
Collapse
|
55
|
Lovo EE, Campos FJ, Caceros VE, Minervini M, Cruz CB, Arias JC, Reyes WA. Automated Stereotactic Gamma Ray Radiosurgery to the Pituitary Gland in Terminally Ill Cancer Patients with Opioid Refractory Pain. Cureus 2019; 11:e4811. [PMID: 31403008 PMCID: PMC6682389 DOI: 10.7759/cureus.4811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Introduction We report our initial series of terminally ill cancer patients treated with radiosurgery to the pituitary gland to alleviate pain. Methods A fully automated rotating gamma ray unit was used to deliver a high dose of radiation (150Gy) using an 8 mm collimator to the neurohypophysis in 11 patients suffering from opioid-refractory pain deriving from cancer. Results From November 2016 to November 2018, 11 patients were treated, and 10 were eligible for follow-up evaluation. Pain from bone metastases was present in 70%; others suffered from neuropathic and visceral pain. The median survival was 119.7 days (range: 32 to 370). The visual analogue scale (VAS) was nine (7-10) and standardized to 10; eight patients (80%) responded. The average VAS at the time of response was three (range: 1-6), and the average time to response was 2.8 days (range: 2-5). In the first week, 40% of the patients categorized the result as 'excellent', 30% deemed the result 'good', and 20% reported the result as 'poor'. One patient (10%) referred to the result as 'regular'. Those who responded were able to reduce their medications by at least 25%. The one-month average VAS score was five (range: 1-6), 60% reported a 'good' effect, 20% reported 'excellent' results, and 20% had no response. Of the study participants, 60% maintained their level of medicine consumption at lower than baseline. At the end of life, five patients (50%) presented substantial pain, two (20%) never had a therapeutic effect, and three (30%) died without substantial pain. There were no clinical complications that could be attributed directly to the treatment. Conclusion Radiosurgery to the pituitary gland is effective and safe and warrants further investigation to understand its potential role in palliative care in cancer patients.
Collapse
Affiliation(s)
- Eduardo E Lovo
- Radiosurgery, International Cancer Center, Diagnostic Hospital, San Salvador, SLV
| | - Fidel J Campos
- Radiosurgery, International Cancer Center, Diagnostic Hospital, San Salvador, SLV
| | - Victor E Caceros
- Radiosurgery, International Cancer Center, Diagnostic Hospital, San Salvador, SLV
| | - Mario Minervini
- Neurosurgery, International Cancer Center, San Salvador, SLV
| | - Claudia B Cruz
- Pain Management, International Cancer Center, San Salvador, SLV
| | - Juan C Arias
- Pallative Care, International Cancer Center, San Salvador, SLV
| | - William A Reyes
- Radiosurgery, International Cancer Center, Diagnostic Hospital, San Salvador, SLV
| |
Collapse
|
56
|
Nishimura H, Kawasaki M, Suzuki H, Matsuura T, Motojima Y, Ohnishi H, Yamanaka Y, Yoshimura M, Maruyama T, Saito R, Ueno H, Sonoda S, Nishimura K, Onaka T, Ueta Y, Sakai A. Neuropathic Pain Up-Regulates Hypothalamo-Neurohypophysial and Hypothalamo-Spinal Oxytocinergic Pathways in Oxytocin-Monomeric Red Fluorescent Protein 1 Transgenic Rat. Neuroscience 2019; 406:50-61. [PMID: 30826522 DOI: 10.1016/j.neuroscience.2019.02.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/22/2022]
Abstract
Despite the high incidence of neuropathic pain, its mechanism remains unclear. Oxytocin (OXT) is an established endogenous polypeptide produced in the supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus. OXT, which is synthesized by OXT neurons in the SON and the magnocellular part of the PVN (mPVN), is delivered into the posterior pituitary (PP), then released into the systemic blood circulation. Meanwhile, OXT-containing neurosecretory cells in the parvocellular part of the PVN (pPVN) are directly projected to the spinal cord and are associated with sensory modulation. In this study, the OXT system in the hypothalamo-neurohypophysial and hypothalamo-spinal pathway was surveyed using a rat neuropathic pain model induced by partial sciatic nerve ligation (PSL). In the present study, we used transgenic rats expressing an OXT-monomeric red fluorescent protein 1 (mRFP1) fusion gene. In a neuropathic pain model, mechanical allodynia was observed, and glial cell activation was also confirmed via immunohistochemistry. In this neuropathic pain model, a significant increase in the OXT-mRFP1 expression was observed in the PP, the SON, mPVN, and pPVN. Furthermore, OXT-mRFP1 granules with positive fluorescent reaction were remarkably increased in laminae I and II of the ipsilateral dorsal horn. Although the plasma concentrations of OXT did not significantly change, a significant increase of the mRNA levels of OXT and mRFP1 in the SON, mPVN, and pPVN were observed. These results suggest that neuropathic pain induced by PSL upregulates hypothalamic OXT synthesis and transportation to the OXTergic axon terminals in the PP and spinal cord.
Collapse
Affiliation(s)
- Haruki Nishimura
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Makoto Kawasaki
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| | - Hitoshi Suzuki
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Takanori Matsuura
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Yasuhito Motojima
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan; Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Hideo Ohnishi
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Yoshiaki Yamanaka
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Reiko Saito
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Hiromichi Ueno
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Satomi Sonoda
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Kazuaki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimono, 329-0498, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Akinori Sakai
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| |
Collapse
|