51
|
Abstract
BACKGROUND Blood platelets, due to shared biochemical and functional properties with presynaptic serotonergic neurons, constituted, over the years, an attractive peripheral biomarker of neuronal activity. Therefore, the literature strongly focused on the investigation of eventual structural and functional platelet abnormalities in neuropsychiatric disorders, particularly in depressive disorder. Given their impact in biological psychiatry, the goal of the present paper was to review and critically analyze studies exploring platelet activity, functionality, and morpho-structure in subjects with depressive disorder. METHODS According to the PRISMA guidelines, we performed a systematic review through the PubMed database up to March 2020 with the search terms: (1) platelets in depression [Title/Abstract]"; (2) "(platelets[Title]) AND depressive disorder[Title/Abstract]"; (3) "(Platelet[Title]) AND major depressive disorder[Title]"; (4) (platelets[Title]) AND depressed[Title]"; (5) (platelets[Title]) AND depressive episode[Title]"; (6) (platelets[Title]) AND major depression[Title]"; (7) platelet activation in depression[All fields]"; and (8) platelet reactivity in depression[All fields]." RESULTS After a detailed screening analysis and the application of specific selection criteria, we included in our review a total of 106 for qualitative synthesis. The studies were classified into various subparagraphs according to platelet characteristics analyzed: serotonergic system (5-HT2A receptors, SERT activity, and 5-HT content), adrenergic system, MAO activity, biomarkers of activation, responsivity, morphological changes, and other molecular pathways. CONCLUSIONS Despite the large amount of the literature examined, nonunivocal and, occasionally, conflicting results emerged. However, the findings on structural and metabolic alterations, modifications in the expression of specific proteins, changes in the aggregability, or in the responsivity to different pro-activating stimuli, may be suggestive of potential platelet dysfunctions in depressed subjects, which would result in a kind of hyperreactive state. This condition could potentially lead to an increased cardiovascular risk. In line with this hypothesis, we speculated that antidepressant treatments would seem to reduce this hyperreactivity while representing a potential tool for reducing cardiovascular risk in depressed patients and, maybe, in other neuropsychiatric conditions. However, the problem of the specificity of platelet biomarkers is still at issue and would deserve to be deepened in future studies.
Collapse
|
52
|
Herrera-Arozamena C, Estrada-Valencia M, López-Caballero P, Pérez C, Morales-García JA, Pérez-Castillo A, Sastre ED, Fernández-Mendívil C, Duarte P, Michalska P, Lombardía J, Senar S, León R, López MG, Rodríguez-Franco MI. Resveratrol-Based MTDLs to Stimulate Defensive and Regenerative Pathways and Block Early Events in Neurodegenerative Cascades. J Med Chem 2022; 65:4727-4751. [PMID: 35245051 PMCID: PMC8958504 DOI: 10.1021/acs.jmedchem.1c01883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
By replacing a phenolic
ring of (E)-resveratrol
with an 1,3,4-oxadiazol-2(3H)-one heterocycle, new
resveratrol-based multitarget-directed ligands (MTDLs) were obtained.
They were evaluated in several assays related to oxidative stress
and inflammation (monoamine oxidases, nuclear erythroid 2-related
factor, quinone reductase-2, and oxygen radical trapping) and then
in experiments of increasing complexity (neurogenic properties and
neuroprotection vs okadaic acid). 5-[(E)-2-(4-Methoxyphenyl)ethenyl]-3-(prop-2-yn-1-yl)-1,3,4-oxadiazol-2(3H)-one (4e) showed a well-balanced MTDL profile:
cellular activation of the NRF2-ARE pathway (CD = 9.83 μM),
selective inhibition of both hMAO-B and QR2 (IC50s = 8.05
and 0.57 μM), and the best ability to promote hippocampal neurogenesis.
It showed a good drug-like profile (positive in vitro central nervous
system permeability, good physiological solubility, no glutathione
conjugation, and lack of PAINS or Lipinski alerts) and exerted neuroprotective
and antioxidant actions in both acute and chronic Alzheimer models
using hippocampal tissues. Thus, 4e is an interesting
MTDL that could stimulate defensive and regenerative pathways and
block early events in neurodegenerative cascades.
Collapse
Affiliation(s)
- Clara Herrera-Arozamena
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006 Madrid, Spain.,Programa de Doctorado en Química Orgánica, Facultad de Química, Universidad Complutense de Madrid, Avda. Complutense s/n, E-28040 Madrid, Spain
| | - Martín Estrada-Valencia
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Patricia López-Caballero
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Concepción Pérez
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006 Madrid, Spain
| | - José A Morales-García
- Instituto de Investigaciones Biomédicas (CSIC-UAM), C/Arturo Duperier, 4, E-28029 Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), C/Valderrebollo 5, E-28031 Madrid, Spain.,Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, Avda. Complutense s/n, E-28040 Madrid, Spain
| | - Ana Pérez-Castillo
- Instituto de Investigaciones Biomédicas (CSIC-UAM), C/Arturo Duperier, 4, E-28029 Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), C/Valderrebollo 5, E-28031 Madrid, Spain
| | - Eric Del Sastre
- Instituto Teófilo Hernando de I+D del Medicamento, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, E-28029 Madrid, Spain
| | - Cristina Fernández-Mendívil
- Instituto Teófilo Hernando de I+D del Medicamento, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, E-28029 Madrid, Spain
| | - Pablo Duarte
- Instituto Teófilo Hernando de I+D del Medicamento, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, E-28029 Madrid, Spain
| | - Patrycja Michalska
- Instituto Teófilo Hernando de I+D del Medicamento, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, E-28029 Madrid, Spain
| | - José Lombardía
- Instituto Teófilo Hernando de I+D del Medicamento, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, E-28029 Madrid, Spain
| | - Sergio Senar
- DrTarget Machine Learning, C/Alejo Carpentier 13, E-28806 Alcalá de Henares, Madrid, Spain
| | - Rafael León
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006 Madrid, Spain.,Instituto Teófilo Hernando de I+D del Medicamento, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, E-28029 Madrid, Spain
| | - Manuela G López
- Instituto Teófilo Hernando de I+D del Medicamento, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, E-28029 Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario de la Princesa (IIS-IP), C/Diego de León 62, E-28006 Madrid, Spain
| | - María Isabel Rodríguez-Franco
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006 Madrid, Spain
| |
Collapse
|
53
|
Roe K. An Alternative Explanation for Alzheimer's Disease and Parkinson's Disease Initiation from Specific Antibiotics, Gut Microbiota Dysbiosis and Neurotoxins. Neurochem Res 2022; 47:517-530. [PMID: 34669122 DOI: 10.1007/s11064-021-03467-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 01/03/2023]
Abstract
The late onset neuropathologies, including Alzheimer's disease and Parkinson's disease, have become increasingly prevalent. Their causation has been linked to genetics, gut microbiota dysbiosis (gut dysbiosis), autoimmune diseases, pathogens and exposures to neurotoxins. An alternative explanatory hypothesis is provided for their pathogenesis. Virtually everyone has pervasive daily exposures to neurotoxins, through inhalation, skin contact, direct blood transmission and through the gastrointestinal tract by ingestion. As a result, every individual has substantial and fluctuating neurotoxin blood levels. Two major barriers to neurotoxin entry into the central nervous system are the blood-brain barrier and the intestinal wall, in the absence of gut dysbiosis. Inflammation from gut dysbiosis, induced by antibiotic usage, can increase the intestinal wall permeability for neurotoxins to reach the bloodstream, and also increase the blood-brain barrier permeability to neurotoxins. Gut dysbiosis, including gut dysbiosis caused by antibiotic treatments, is an especially high risk for neurotoxin entry into the brain to cause late onset neuropathologies. Gut dysbiosis has far-reaching immune system and central nervous system effects, and even a transient gut dysbiosis can act in combination with neurotoxins, such as aluminum, mercury, lead, arsenic, cadmium, selenium, manganese, organophosphate pesticides and organochlorines, to reach neurotoxin blood levels that can initiate a late onset neuropathology, depending on an individual's age and genetic vulnerability.
Collapse
|
54
|
Hu Y, Chen Z, Lu L, Zhang L, Liu T, Luo X, Liao X. Determination of dietary copper requirement by the monoamine oxidase activity in kidney of broilers from 1 to 21 d of age. ANIMAL NUTRITION 2022; 8:227-234. [PMID: 34988304 PMCID: PMC8688862 DOI: 10.1016/j.aninu.2021.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/28/2021] [Accepted: 05/11/2021] [Indexed: 10/30/2022]
Abstract
The current dietary copper (Cu) requirement (8 mg/kg) of broilers is mainly based on growth, hemoglobin concentration, or hematocrit, which might not be the most sensitive indices to evaluate dietary Cu requirements of broilers. The present study was carried out to estimate dietary Cu requirements of broilers fed a conventional corn-soybean meal diet from 1 to 21 d of age using biochemical or molecular biomarkers. A total of 384 1-d-old Arbor Acres male broilers were randomly allocated to 1 of 6 treatments with 8 replicates and fed a Cu-unsupplemented corn-soybean meal basal diet containing 5.17 mg Cu/kg by analysis and the basal diet supplemented with 3, 6, 9, 12 or 15 mg Cu/kg as CuSO4⋅5H2O for 21 d. Regression analysis was performed to estimate the optimal dietary Cu level using the broken-line model. Dietary supplemental Cu level affected (P < 0.05) Cu contents in serum and liver and kidney monoamine oxidase (MAO) activity, but had no effects (P > 0.05) on the growth performance, Cu contents in heart, kidney, pancreas and spleen, Cu- and zinc-containing superoxide dismutase (CuZnSOD) activity and ceruloplasmin content in serum, CuZnSOD and cytochrome c oxidase (COX) activities and ceruloplasmin, CuZnSOD, MAO A, MAO B, COX4I1 and COX1 mRNA and protein expressions in the above tissues of broilers. As dietary supplemental Cu levels increased, Cu contents in serum and liver increased linearly (P < 0.05), but kidney MAO activity decreased linearly and quadratically (P < 0.05). The estimated dietary Cu requirement based on the fitted broken-line model (P = 0.035) of kidney MAO activity was 11.30 mg/kg. In conclusion, kidney MAO activity is a new and sensitive criterion to evaluate the dietary Cu requirement of broilers, and the dietary Cu requirement was 11.30 mg/kg for broilers fed the conventional corn-soybean meal diet from 1 to 21 d of age, which is higher than the current National Research Council (NRC) Cu requirement (8 mg/kg) of broilers.
Collapse
|
55
|
Segovia-Mendoza M, Palacios-Arreola MI, Pavón L, Becerril LE, Nava-Castro KE, Amador-Muñoz O, Morales-Montor J. Environmental Pollution to Blame for Depressive Disorder? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:1737. [PMID: 35162759 PMCID: PMC8835056 DOI: 10.3390/ijerph19031737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/04/2022] [Accepted: 01/18/2022] [Indexed: 11/20/2022]
Abstract
Public concern has emerged about the effects of endocrine-disrupting compounds (EDCs) on neuropsychiatric disorders. Preclinical evidence suggests that exposure to EDCs is associated with the development of major depressive disorder (MDD) and could result in neural degeneration. The interaction of EDCs with hormonal receptors is the best-described mechanism of their biological activity. However, the dysregulation of the hypothalamic-pituitary-gonadal adrenal axis has been reported and linked to neurological disorders. At a worldwide level and in Mexico, the incidence of MDD has recently been increasing. Of note, in Mexico, there are no clinical associations on blood levels of EDCs and the incidence of the MDD. Methodology: Thus, we quantified for the first time the serum levels of parent compounds of two bisphenols and four phthalates in patients with MDD. The levels of di-ethyl-hexyl-phthalate (DEHP), butyl-benzyl-phthalate (BBP), di-n-butyl phthalate (DBP), and di-ethyl-phthalate (DEP), bisphenol A (BPA), and bisphenol S (BPS) in men and women with or without MDD were determined with a gas chromatograph-mass spectrometer. Results/conclusion: We found significant differences between concentrations of BBP between controls and patients with MDD. Interestingly, the serum levels of this compound have a dysmorphic behavior, being much higher in women (~500 ng/mL) than in men (≤10 ng/mL). We did not observe significant changes in the serum concentrations of the other phthalates or bisphenols tested, neither when comparing healthy and sick subjects nor when they were compared by gender. The results point out that BBP has a critical impact on the etiology of MDD disorder in Mexican patients, specifically in women.
Collapse
Affiliation(s)
- Mariana Segovia-Mendoza
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Margarita Isabel Palacios-Arreola
- Grupo de Especiación Química de Aerosoles Orgánicos Atmosféricos, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (M.I.P.-A.); (O.A.-M.)
| | - Lenin Pavón
- Laboratory of Psychoimmunology, National Institute of Psychiatry Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, Ciudad de Mexico 14370, Mexico; (L.P.); (L.E.B.)
| | - Luis Enrique Becerril
- Laboratory of Psychoimmunology, National Institute of Psychiatry Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, Ciudad de Mexico 14370, Mexico; (L.P.); (L.E.B.)
| | - Karen Elizabeth Nava-Castro
- Grupo de Biología y Química Atmosférica, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Omar Amador-Muñoz
- Grupo de Especiación Química de Aerosoles Orgánicos Atmosféricos, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (M.I.P.-A.); (O.A.-M.)
| | - Jorge Morales-Montor
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
| |
Collapse
|
56
|
Oliveira AA, Róg T, da Silva ABF, Amaro RE, Johnson MS, Postila PA. Examining the Effect of Charged Lipids on Mitochondrial Outer Membrane Dynamics Using Atomistic Simulations. Biomolecules 2022; 12:183. [PMID: 35204684 PMCID: PMC8961577 DOI: 10.3390/biom12020183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/11/2022] Open
Abstract
The outer mitochondrial membrane (OMM) is involved in multiple cellular functions such as apoptosis, inflammation and signaling via its membrane-associated and -embedded proteins. Despite the central role of the OMM in these vital phenomena, the structure and dynamics of the membrane have regularly been investigated in silico using simple two-component models. Accordingly, the aim was to generate the realistic multi-component model of the OMM and inspect its properties using atomistic molecular dynamics (MD) simulations. All major lipid components, phosphatidylinositol (PI), phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS), were included in the probed OMM models. Because increased levels of anionic PS lipids have potential effects on schizophrenia and, more specifically, on monoamine oxidase B enzyme activity, the effect of varying the PS concentration was explored. The MD simulations indicate that the complex membrane lipid composition (MLC) behavior is notably different from the two-component PC-PE model. The MLC changes caused relatively minor effects on the membrane structural properties such as membrane thickness or area per lipid; however, notable effects could be seen with the dynamical parameters at the water-membrane interface. Increase of PS levels appears to slow down lateral diffusion of all lipids and, in general, the presence of anionic lipids reduced hydration and slowed down the PE headgroup rotation. In addition, sodium ions could neutralize the membrane surface, when PI was the main anionic component; however, a similar effect was not seen for high PS levels. Based on these results, it is advisable for future studies on the OMM and its protein or ligand partners, especially when wanting to replicate the correct properties on the water-membrane interface, to use models that are sufficiently complex, containing anionic lipid types, PI in particular.
Collapse
Affiliation(s)
- Aline A. Oliveira
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA 92093-0340, USA; (A.A.O.); (R.E.A.)
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, São Carlos 13560-970, Brazil;
| | - Tomasz Róg
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland;
| | - Albérico B. F. da Silva
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, São Carlos 13560-970, Brazil;
| | - Rommie E. Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA 92093-0340, USA; (A.A.O.); (R.E.A.)
| | - Mark S. Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland;
- InFLAMES Research Flagship Center, Åbo Akademi University, 20520 Turku, Finland
| | - Pekka A. Postila
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA 92093-0340, USA; (A.A.O.); (R.E.A.)
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland;
- InFLAMES Research Flagship Center, Åbo Akademi University, 20520 Turku, Finland
- Institute of Biomedicine, Kiinamyllynkatu 10, Integrative Physiology and Pharmacy, University of Turku, FI-20520 Turku, Finland
- Aurlide Ltd., FI-21420 Lieto, Finland
- InFLAMES Research Flagship Center, University of Turku, FI-20520 Turku, Finland
| |
Collapse
|
57
|
Evren AE, Nuha D, Dawbaa S, Sağlık BN, Yurttaş L. Synthesis of novel thiazolyl hydrazone derivatives as potent dual monoamine oxidase-aromatase inhibitors. Eur J Med Chem 2022; 229:114097. [PMID: 34998057 DOI: 10.1016/j.ejmech.2021.114097] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022]
Abstract
The inhibitory effects of 2-thiazolyl hydrazones on monoamine oxidase enzymes are known for a long time. In this study, a new series of 2-thiazolyl hydrazone derivatives were synthesized starting from 6-methoxy-2-naphthaldehyde. All of the synthesized compounds were investigated in terms of their monoamine oxidase (MAO) inhibitory effects and significant results were found. The results showed that compound 2j potently inhibited MAO-A and MAO-B, while compound 2t strongly and selectively inhibited MAO-B compared to standard drugs. Compounds 2k and 2q exhibited selective and satisfying inhibition on MAO-B. In the aromatase inhibition studies of the compounds, it was determined that compounds 2q and 2u had high inhibitory properties. Molecular docking studies on MAO-A, MAO-B, and aromatase enzymes were carried out for the aforementioned compounds. Additionally, molecular dynamics simulation was studied for compound 2q on MAO-B and aromatase complexes. Finally, the Field-based QSAR study was developed and the structure-activity relationship (SAR) was explained. For the first time, dual inhibitors on MAO and aromatase enzyme were investigated together. The aim of this approach is for finding the potential agents that do not cause the cognitive disorders and may even treat neurodegenerative symptoms, thus, the aim was reached successfully.
Collapse
Affiliation(s)
- Asaf Evrim Evren
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 26470, Eskişehir, Turkey; Bilecik Şeyh Edebali University, Vocational School of Health Services, Department of Pharmacy Services, 11000, Bilecik, Turkey.
| | - Demokrat Nuha
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 26470, Eskişehir, Turkey; Eskisehir Technical University, Faculty of Science, Department of Chemistry, 26555, Eskişehir, Turkey
| | - Sam Dawbaa
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 26470, Eskişehir, Turkey; Department of Pharmacy, Faculty of Medicine and Health Sciences, Thamar University, Dhamar, Yemen
| | - Begüm Nurpelin Sağlık
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 26470, Eskişehir, Turkey
| | - Leyla Yurttaş
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 26470, Eskişehir, Turkey
| |
Collapse
|
58
|
Dirir AM, Daou M, Yousef AF, Yousef LF. A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 21:1049-1079. [PMID: 34421444 PMCID: PMC8364835 DOI: 10.1007/s11101-021-09773-1] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 07/27/2021] [Indexed: 05/02/2023]
Abstract
UNLABELLED Diabetes mellitus is a multifactorial global health disorder that is rising at an alarming rate. Cardiovascular diseases, kidney damage and neuropathy are the main cause of high mortality rates among individuals with diabetes. One effective therapeutic approach for controlling hyperglycemia associated with type-2 diabetes is to target alpha-amylase and alpha-glucosidase, enzymes that catalyzes starch hydrolysis in the intestine. At present, approved inhibitors for these enzymes are restricted to acarbose, miglitol and voglibose. Although these inhibitors retard glucose absorption, undesirable gastrointestinal side effects impede their application. Therefore, research efforts continue to seek novel inhibitors with improved efficacy and minimal side effects. Natural products of plant origin have been a valuable source of therapeutic agents with lesser toxicity and side effects. The anti-diabetic potential through alpha-glucosidase inhibition of plant-derived molecules are summarized in this review. Eight molecules (Taxumariene F, Akebonoic acid, Morusin, Rhaponticin, Procyanidin A2, Alaternin, Mulberrofuran K and Psoralidin) were selected as promising drug candidates and their pharmacokinetic properties and toxicity were discussed where available. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11101-021-09773-1.
Collapse
Affiliation(s)
- Amina M. Dirir
- Department of Chemistry, Khalifa University, Abu Dhabi, UAE
| | - Marianne Daou
- Department of Chemistry, Khalifa University, Abu Dhabi, UAE
| | - Ahmed F. Yousef
- Department of Chemistry, Khalifa University, Abu Dhabi, UAE
- Center for Membranes and Advances Water Technology, Khalifa University, Abu Dhabi, UAE
| | - Lina F. Yousef
- Department of Chemistry, Khalifa University, Abu Dhabi, UAE
| |
Collapse
|
59
|
Tan YY, Jenner P, Chen SD. Monoamine Oxidase-B Inhibitors for the Treatment of Parkinson's Disease: Past, Present, and Future. JOURNAL OF PARKINSON'S DISEASE 2022; 12:477-493. [PMID: 34957948 PMCID: PMC8925102 DOI: 10.3233/jpd-212976] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 12/13/2022]
Abstract
Monoamine oxidase-B (MAO-B) inhibitors are commonly used for the symptomatic treatment of Parkinson's disease (PD). MAO-B inhibitor monotherapy has been shown to be effective and safe for the treatment of early-stage PD, while MAO-B inhibitors as adjuvant drugs have been widely applied for the treatment of the advanced stages of the illness. MAO-B inhibitors can effectively improve patients' motor and non-motor symptoms, reduce "OFF" time, and may potentially prevent/delay disease progression. In this review, we discuss the effects of MAO-B inhibitors on motor and non-motor symptoms in PD patients, their mechanism of action, and the future development of MAO-B inhibitor therapy.
Collapse
Affiliation(s)
- Yu-Yan Tan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peter Jenner
- Neurodegenerative Diseases Research Group, Institute of Pharmaceutical Sciences, Faculty of Health Sciences and Medicine, King’s College, London, UK
| | - Sheng-Di Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Lab for Translational Research of Neurodegenerative Diseases, Institute of Immunochemistry, Shanghai Tech University, Shanghai, China
| |
Collapse
|
60
|
Ying F, Lin S, Li J, Zhang X, Chen G. Identification of monoamine oxidases inhibitory peptides from soybean protein hydrolysate through ultrafiltration purification and in silico studies. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
61
|
Mani V, Sajid S, Rabbani SI, Alqasir AS, Alharbi HA, Alshumaym A. Anxiolytic-like and antidepressant-like effects of ethanol extract of Terminalia chebula in mice. J Tradit Complement Med 2021; 11:493-502. [PMID: 34765513 PMCID: PMC8572707 DOI: 10.1016/j.jtcme.2021.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 02/22/2021] [Accepted: 04/27/2021] [Indexed: 11/26/2022] Open
Abstract
Terminalia chebula (T.chebula) fruit is referred as "King of Medicines" in Tibet and is listed as a key plant in "Ayurvedic Materia Medica" due to its diverse pharmacological activity. The present study was aimed to investigate the comorbid antidepressant-like and anxiolytic-like effects of ethanol extract from T.chebula fruit using experimental behavioral tests in mice. In addition, the study explored the effects of extract on monoamine oxidase -A (MAO-A) levels in mouse brain. Two doses of the T.chebula extract (100 or 200 mg/kg, p.o.) were treated continuously for fifteen days to mice. Regarding antidepressant-like effects, the treatment of T.chebula extract at both dose (100 or 200 mg/kg, p.o.) levels resulted with significant (p < 0.001) reduction in duration of immobility time and increase in swimming time as compared to control group in forced swimming test. Moreover, both doses declined the duration of immobility time in the tail suspension test and increased the number of crossing in the center area using open-field test. Additionally, the dose 200 mg/kg treatment showed a significant reduction (p < 0.05) in MAO-A activity in mouse brain. For anxiolytic activity, both doses significantly (p < 0.001) improved the time spent in open arm and the number of head dips in elevated plus maze test. The higher duration of time spent in light chamber and higher number of crossing between the light and dark chambers by extract treatment in light-dark box test also supported the anxiolytic behavior. The obtained results supported the antidepressant-like and anxiolytic-like effects of ethanol extract of T.chebula in mice.
Collapse
Affiliation(s)
- Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Sultan Sajid
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Syed Imam Rabbani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Abdulrahman Saud Alqasir
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Hani Abdullah Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Abdullah Alshumaym
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
62
|
Mpekoulis G, Tsopela V, Panos G, Siozos V, Kalliampakou KI, Frakolaki E, Sideris CD, Vassiliou AG, Sideris DC, Vassilacopoulou D, Vassilaki N. Association of Hepatitis C Virus Replication with the Catecholamine Biosynthetic Pathway. Viruses 2021; 13:v13112139. [PMID: 34834946 PMCID: PMC8624100 DOI: 10.3390/v13112139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022] Open
Abstract
A bidirectional negative relationship between Hepatitis C virus (HCV) replication and gene expression of the catecholamine biosynthetic enzyme L-Dopa decarboxylase (DDC) was previously shown in the liver and attributed at least to an association of DDC with phosphatidylinositol 3-kinase (PI3K). Here, we report that the biosynthesis and uptake of catecholamines restrict HCV replication in hepatocytes, while HCV has developed ways to reduce catecholamine production. By employing gene silencing, chemical inhibition or induction of the catecholamine biosynthetic and metabolic enzymes and transporters, and by applying the substrates or the products of the respective enzymes, we unravel the role of the different steps of the pathway in viral infection. We also provide evidence that the effect of catecholamines on HCV is strongly related with oxidative stress that is generated by their autoxidation in the cytosol, while antioxidants or treatments that lower cytosolic catecholamine levels positively affect the virus. To counteract the effect of catecholamines, HCV, apart from the already reported effects on DDC, causes the down-regulation of tyrosine hydroxylase that encodes the rate-limiting enzyme of catecholamine biosynthesis and suppresses dopamine beta-hydroxylase mRNA and protein amounts, while increasing the catecholamine degradation enzyme monoamine oxidase. Moreover, the NS4B viral protein is implicated in the effect of HCV on the ratio of the ~50 kDa DDC monomer and a ~120 kDa DDC complex, while the NS5A protein has a negative effect on total DDC protein levels.
Collapse
Affiliation(s)
- George Mpekoulis
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (G.P.); (V.S.); (K.I.K.); (E.F.); (C.D.S.)
| | - Vassilina Tsopela
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (G.P.); (V.S.); (K.I.K.); (E.F.); (C.D.S.)
| | - Georgios Panos
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (G.P.); (V.S.); (K.I.K.); (E.F.); (C.D.S.)
| | - Vasileiοs Siozos
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (G.P.); (V.S.); (K.I.K.); (E.F.); (C.D.S.)
| | - Katerina I. Kalliampakou
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (G.P.); (V.S.); (K.I.K.); (E.F.); (C.D.S.)
| | - Efseveia Frakolaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (G.P.); (V.S.); (K.I.K.); (E.F.); (C.D.S.)
| | - Constantinos D. Sideris
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (G.P.); (V.S.); (K.I.K.); (E.F.); (C.D.S.)
| | - Alice G. Vassiliou
- GP Livanos and M Simou Laboratories, 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece;
| | - Diamantis C. Sideris
- Section of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (D.C.S.); (D.V.)
| | - Dido Vassilacopoulou
- Section of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (D.C.S.); (D.V.)
| | - Niki Vassilaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (G.P.); (V.S.); (K.I.K.); (E.F.); (C.D.S.)
- Correspondence: ; Tel.: +30-210-647-8875
| |
Collapse
|
63
|
Albillos SM, Montero O, Calvo S, Solano-Vila B, Trejo JM, Cubo E. Plasma acyl-carnitines, bilirubin, tyramine and tetrahydro-21-deoxycortisol in Parkinson's disease and essential tremor. A case control biomarker study. Parkinsonism Relat Disord 2021; 91:167-172. [PMID: 34649109 DOI: 10.1016/j.parkreldis.2021.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 09/12/2021] [Accepted: 09/18/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND PURPOSE Given the overlapping clinical manifestations and pathology, the differentiation between essential tremor (ET) and Parkinson's disease (PD) is difficult. Our aims were to examine the plasma metabolomics profiling and their association with motor and non-motor symptoms (NMS) in patients with PD, and to determine differences between de novo PD compared to moderate-advanced PD vs. controls and patients with ET. METHODS Plasma samples were collected from 137 subjects including 35 age matched controls, 29 NOVO-PD, 35 PD and 38 ET patients. PD severity, motor and NMS including cognitive function were assessed using the UPDRS, NMS and PD cognitive rating scales, respectively. Metabolomics analysis was performed by UPLC-ESI-QToF-MS followed by unsupervised multivariate statistics. The area under the curve of the biomarkers according to distribution of their concentrations and the diagnosis of PD (NOVO-PD, advanced PD) vs ET and healthy controls was used as a measurement of diagnostic ability. RESULTS Several acyl-carnitines, bilirubin, tyramine and tetrahydro-21-deoxycortisol (THS) presented good predictive accuracy (AUC higher than 0.8) for differentiating de novo PD and advanced PD from controls and ET, suggesting an alteration in the lipid oxidation pathway. In multivariate regression analysis, metabolite levels were not significantly associated with motor and NMS severity in PD. CONCLUSIONS Diverse acyl-carnitines, bilirubin, tyramine and some adrenal gland derived metabolites are suggested as potential biomarkers able to distinguish between PD from controls and ET.
Collapse
Affiliation(s)
- Silvia M Albillos
- University of Burgos, Area of Biochemistry and Molecular Biology, Spain
| | - Olimpio Montero
- Institute of Biology and Molecular Genetics (IBGM), Spanish National Research Council (CSIC), Valladolid, Spain
| | - Sara Calvo
- University Hospital of Burgos, Research Unit, Spain
| | | | - José M Trejo
- University Hospital of Burgos, Department of Neurology, Spain
| | - Esther Cubo
- University Hospital of Burgos, Department of Neurology, Spain.
| |
Collapse
|
64
|
Aljanabi R, Alsous L, Sabbah DA, Gul HI, Gul M, Bardaweel SK. Monoamine Oxidase (MAO) as a Potential Target for Anticancer Drug Design and Development. Molecules 2021; 26:molecules26196019. [PMID: 34641563 PMCID: PMC8513016 DOI: 10.3390/molecules26196019] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/12/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Monoamine oxidases (MAOs) are oxidative enzymes that catalyze the conversion of biogenic amines into their corresponding aldehydes and ketones through oxidative deamination. Owing to the crucial role of MAOs in maintaining functional levels of neurotransmitters, the implications of its distorted activity have been associated with numerous neurological diseases. Recently, an unanticipated role of MAOs in tumor progression and metastasis has been reported. The chemical inhibition of MAOs might be a valuable therapeutic approach for cancer treatment. In this review, we reported computational approaches exploited in the design and development of selective MAO inhibitors accompanied by their biological activities. Additionally, we generated a pharmacophore model for MAO-A active inhibitors to identify the structural motifs to invoke an activity.
Collapse
Affiliation(s)
- Reem Aljanabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan; (R.A.); (L.A.)
| | - Lina Alsous
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan; (R.A.); (L.A.)
| | - Dima A. Sabbah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan;
| | - Halise Inci Gul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Yakutiye 25030, Turkey;
| | - Mustafa Gul
- Department of Physiology, School of Medicine, Ataturk University, Yakutiye 25030, Turkey;
| | - Sanaa K. Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan; (R.A.); (L.A.)
- Correspondence: ; Tel.: +962-6535-5000 (ext. 23318)
| |
Collapse
|
65
|
Kumar S, Nair AS, Bhashkar V, Sudevan ST, Koyiparambath VP, Khames A, Abdelgawad MA, Mathew B. Navigating into the Chemical Space of Monoamine Oxidase Inhibitors by Artificial Intelligence and Cheminformatics Approach. ACS OMEGA 2021; 6:23399-23411. [PMID: 34549139 PMCID: PMC8444296 DOI: 10.1021/acsomega.1c03250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/06/2021] [Indexed: 05/20/2023]
Abstract
The monoamine oxidase (MAO) enzyme class is a prevalent target for many neurodegenerative and depressive disorders. Even though scrutinization of many promising drugs for the treatment of MAO inhibition has been carried out in recent times, a conclusive structural requirement for potent activity needs to be developed. Numerous approaches have been examined for the identification of structural features for potent MAO inhibitors (MAOIs) that mainly involve an array of computational studies, synthetic approaches, and biological evaluation. In this paper, we have analyzed ∼2200 well-known MAOIs to expand perceptions in the chemical space of MAOIs. The physicochemical properties of the MAOIs disclosed a discernible hydrophobic feature making a bunch discrete from the central nervous system (CNS) acting drugs, as exposed using the principal component analysis (PCA). The Murcko scaffold structure study revealed unfavorable and favorable scaffold structures, in both data sets, with the highest biological activity shown by the 3-phenyl-2H-chromen-2-one scaffold. This scaffold showed a polypharmacological effect. R-group disintegration and automatic structure-activity relationship (SAR) study resulted in identification of substructures responsible for the inhibitory bioactivity of the MAO-A and MAO-B enzymes. Moreover, with activity cliff analysis, significant biological activity was detected by simple molecular conversion in the chemical compound structure. In addition, we used the machine learning tool to generate a hypothesis wherein pyrazole, benzene ring, and amide containing structural functionalities can exhibit potential biological activities. This hypothesis revealed that CNS target drugs, C4155, C13390, C21265, C43862, C31524, C24810, C37100, C42075, and C43644, could be repurposed as valuable candidates for the MAO-B enzyme. For researchers, this study will bring new perceptions in the discovery and development of MAOIs and direct lead and hit optimization for the progress of small molecules beneficial for MAO-targeting associated diseases.
Collapse
Affiliation(s)
- Sunil Kumar
- Department
of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India
| | - Aathira Sujathan Nair
- Department
of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India
| | - Vaishnav Bhashkar
- Department
of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India
| | - Sachithra Thazhathuveedu Sudevan
- Department
of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India
| | - Vishal Payyalot Koyiparambath
- Department
of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India
| | - Ahmed Khames
- Department
of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohamed A. Abdelgawad
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
| | - Bijo Mathew
- Department
of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India
- ,
| |
Collapse
|
66
|
Cuperlovic-Culf M, Cunningham EL, Teimoorinia H, Surendra A, Pan X, Bennett SAL, Jung M, McGuiness B, Passmore AP, Beverland D, Green BD. Metabolomics and computational analysis of the role of monoamine oxidase activity in delirium and SARS-COV-2 infection. Sci Rep 2021; 11:10629. [PMID: 34017039 PMCID: PMC8138024 DOI: 10.1038/s41598-021-90243-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/05/2021] [Indexed: 02/03/2023] Open
Abstract
Delirium is an acute change in attention and cognition occurring in ~ 65% of severe SARS-CoV-2 cases. It is also common following surgery and an indicator of brain vulnerability and risk for the development of dementia. In this work we analyzed the underlying role of metabolism in delirium-susceptibility in the postoperative setting using metabolomic profiling of cerebrospinal fluid and blood taken from the same patients prior to planned orthopaedic surgery. Distance correlation analysis and Random Forest (RF) feature selection were used to determine changes in metabolic networks. We found significant concentration differences in several amino acids, acylcarnitines and polyamines linking delirium-prone patients to known factors in Alzheimer's disease such as monoamine oxidase B (MAOB) protein. Subsequent computational structural comparison between MAOB and angiotensin converting enzyme 2 as well as protein-protein docking analysis showed that there potentially is strong binding of SARS-CoV-2 spike protein to MAOB. The possibility that SARS-CoV-2 influences MAOB activity leading to the observed neurological and platelet-based complications of SARS-CoV-2 infection requires further investigation.
Collapse
Affiliation(s)
- Miroslava Cuperlovic-Culf
- Digital Technologies Research Centre, National Research Council of Canada, Ottawa, Canada.
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| | - Emma L Cunningham
- Centre for Public Health, Queen's University Belfast, Block B, Institute of Clinical Sciences, Royal Victoria Hospital Site, Grosvenor Road, Belfast, BT12 6BA, Northern Ireland
| | - Hossen Teimoorinia
- NRC Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, BC, V9E 2E7, Canada
| | - Anuradha Surendra
- Digital Technologies Research Centre, National Research Council of Canada, Ottawa, Canada
| | - Xiaobei Pan
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 8 Malone Road, Belfast, BT9 5BN, Northern Ireland
| | - Steffany A L Bennett
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, Brain and Mind Research Institute, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Mijin Jung
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 8 Malone Road, Belfast, BT9 5BN, Northern Ireland
| | - Bernadette McGuiness
- Centre for Public Health, Queen's University Belfast, Block B, Institute of Clinical Sciences, Royal Victoria Hospital Site, Grosvenor Road, Belfast, BT12 6BA, Northern Ireland
| | - Anthony Peter Passmore
- Centre for Public Health, Queen's University Belfast, Block B, Institute of Clinical Sciences, Royal Victoria Hospital Site, Grosvenor Road, Belfast, BT12 6BA, Northern Ireland
| | - David Beverland
- Outcomes Assessment Unit, Musgrave Park Hospital, Stockman's Lane, Belfast, BT9 7JB, Northern Ireland
| | - Brian D Green
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 8 Malone Road, Belfast, BT9 5BN, Northern Ireland.
| |
Collapse
|
67
|
Lee SW, Han HC. Methylene Blue Application to Lessen Pain: Its Analgesic Effect and Mechanism. Front Neurosci 2021; 15:663650. [PMID: 34079436 PMCID: PMC8165385 DOI: 10.3389/fnins.2021.663650] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Methylene blue (MB) is a cationic thiazine dye, widely used as a biological stain and chemical indicator. Growing evidence have revealed that MB functions to restore abnormal vasodilation and notably it is implicated even in pain relief. Physicians began to inject MB into degenerated disks to relieve pain in patients with chronic discogenic low back pain (CDLBP), and some of them achieved remarkable outcomes. For osteoarthritis and colitis, MB abates inflammation by suppressing nitric oxide production, and ultimately relieves pain. However, despite this clinical efficacy, MB has not attracted much public attention in terms of pain relief. Accordingly, this review focuses on how MB lessens pain, noting three major actions of this dye: anti-inflammation, sodium current reduction, and denervation. Moreover, we showed controversies over the efficacy of MB on CDLBP and raised also toxicity issues to look into the limitation of MB application. This analysis is the first attempt to illustrate its analgesic effects, which may offer a novel insight into MB as a pain-relief dye.
Collapse
Affiliation(s)
- Seung Won Lee
- Good Doctor Research Institute, College of Medicine, Korea University, Seoul, South Korea
| | - Hee Chul Han
- Department of Physiology, College of Medicine and Neuroscience Research Institute, Korea University, Seoul, South Korea
| |
Collapse
|
68
|
Shang J, Shi W, Li X, Ma H. Water-Soluble Near-Infrared Fluorescent Probes for Specific Detection of Monoamine Oxidase A in Living Biosystems. Anal Chem 2021; 93:4285-4290. [DOI: 10.1021/acs.analchem.0c05283] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jizhen Shang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaohua Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
69
|
Yeung AWK, Tzvetkov NT, Georgieva MG, Ognyanov IV, Kordos K, Jóźwik A, Kühl T, Perry G, Petralia MC, Mazzon E, Atanasov AG. Reactive Oxygen Species and Their Impact in Neurodegenerative Diseases: Literature Landscape Analysis. Antioxid Redox Signal 2021; 34:402-420. [PMID: 32030995 DOI: 10.1089/ars.2019.7952] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: The excessive production of reactive oxygen species (ROS) has been linked to neurodegenerative diseases (NDs), and, therefore, many scientific works were published on the impact of ROS on the development of prevalent NDs, such as Alzheimer's disease (AD) and Parkinson's disease (PD). Since quantitative and qualitative bibliometric analyses in this research area have not yet been done, the aim of this work is to explore the scientific literature implying ROS in NDs and to identify the major contributors, mainstream research themes, and topics on the rise. Recent Advances: Overall, 22,885 publications were identified and analyzed within the Web of Science (WoS) Core Collection electronic database (Clarivate Analytics, Philadelphia, PA). Most of the manuscripts were published in the 21st century. The publications were mainly related to the WoS categories Neurosciences and Biochemistry molecular biology. The United States is the major contributor, harboring the most productive authors and institutions. China, South Korea, and India have emerged as upcoming major contributors in the 2010s. Two most productive journals were Journal of Neurochemistry and Free Radical Biology and Medicine. Critical Issues: AD, PD, and amyotrophic lateral sclerosis were much more investigated than multiple sclerosis and Huntington's disease. Vitamin E and curcumin were frequently mentioned as potential antioxidant therapeutics, but their efficacy in treating NDs requires more clinical studies, since the existing evidence was mainly from in vitro experiments and in vivo animal studies. Future Directions: Mitochondrial dysfunction, autophagy, and nuclear factor erythroid 2-related factor 2 were among the author keywords with rising prevalence. Further research in these directions should advance our understanding of the mechanism and treatment of NDs. Antioxid. Redox Signal. 34, 402-420.
Collapse
Affiliation(s)
- Andy Wai Kan Yeung
- Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Nikolay T Tzvetkov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev," Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Maya G Georgieva
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev," Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Iliyan V Ognyanov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev," Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Karolina Kordos
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Magdalenka, Poland
| | - Artur Jóźwik
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Magdalenka, Poland
| | - Toni Kühl
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - George Perry
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, USA
| | | | | | - Atanas G Atanasov
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Magdalenka, Poland.,Department of Pharmacognosy, University of Vienna, Vienna, Austria.,Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria.,Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
70
|
Kubicskó K, Farkas Ö. Quantum chemical (QM:MM) investigation of the mechanism of enzymatic reaction of tryptamine and N,N-dimethyltryptamine with monoamine oxidase A. Org Biomol Chem 2020; 18:9660-9674. [PMID: 33215182 DOI: 10.1039/d0ob01118e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The endogenous psychedelic (mind-altering) N,N-dimethyltryptamine (DMT) molecule has an important role in tissue protection, regeneration, and immunity via sigma-1 receptor activation as its natural ligand. The immunologic properties of DMT suggest this biogenic compound should be investigated thoroughly in other aspects as well. In our in silico project, we examined the metabolism of DMT and its primary analogue, the tryptamine (T), by the monoamine oxidase (MAO) flavoenzyme. MAO has two isoforms, MAO-A and MAO-B. MAOs perform the oxidation of various monoamines by their flavin adenine dinucleotide (FAD) cofactor. Two-layer QM:MM calculations at the ONIOM(M06-2X/6-31++G(d,p):UFF=QEq) level were performed including the whole enzyme to explore the potential energy surface (PES) of the reactions. Our findings reinforced that a hybrid mechanism, a mixture of pure H+ and H- transfer pathways, describes precisely the rate-determining step of amine oxidation as suggested by earlier works. Additionally, our results show that the oxidation of tertiary amine DMT requires a lower activation barrier than the primary amine T. This may reflect a general rule, thus we recommend further investigations. Furthermore, we demonstrated that at pH 7.4 the protonated form of these substrates enter the enzyme. As the deprotonation of substrates is crucial, we presumed protonated cofactor, FADH+, may form. Surprisingly, the activation barriers are much lower compared to FAD with both substrates. Therefore, we suggest further investigations in this direction.
Collapse
Affiliation(s)
- Károly Kubicskó
- Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary.
| | | |
Collapse
|
71
|
Virtual screening and drug repurposing experiments to identify potential novel selective MAO-B inhibitors for Parkinson's disease treatment. Mol Divers 2020; 25:1775-1794. [PMID: 33237524 DOI: 10.1007/s11030-020-10155-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/30/2020] [Indexed: 01/28/2023]
Abstract
The main study's purpose is to detect novel natural products (NPs) that are potentially selective MAO-B inhibitors and, additionally, to computationally reposition the marketed drugs with a new therapeutic role for Parkinson's disease. To reach the goals, 3D similarity search, docking, ADMETox, and drug repurposing approaches were employed. Thus, an unbiased benchmarking dataset was built including selective and nonselective inhibitors for MAO-B compliant with both ligand- and structure-based virtual screening approaches. A retrospective and prospective mining scenario was applied to SPECS NP and DrugBank databases to detect novel scaffolds with potential benefits for Parkinson's disease patients. Out of the three best selected natural products, cardamomin showed excellently predicted drug-like properties, superior pharmacological profile, and specific interactions with MAO-B active site, indicating a potential selectivity over MAO-B. Two marketed drugs, fenamisal and monobenzone, were proposed as promising candidates repurposed for Parkinson's disease. The application of shape, physicochemical, and electrostatic similarity searches protocol emerged as a plausible solution to explore MAO-B inhibitors selectivity. This protocol might serve as a rewarding tool in early drug discovery and can be extended to other protein targets.
Collapse
|
72
|
Wu X, Li Y, Wang J, Zhou H, Tang X, Yang Y, Wang Z, Chen D, Zhou X, Guo J, Cai H, Zheng J, Sun P. Click-Reaction-Triggered SERS Signals for Specific Detection of Monoamine Oxidase B Activity. Anal Chem 2020; 92:15050-15058. [PMID: 33103897 DOI: 10.1021/acs.analchem.0c03017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human monoamine oxidases (MAOs) play important roles in maintaining the homeostasis of biogenic amines. One of its isoforms, monoamine oxidase B (MAOB), is thought to be involved in several neurodegenerative diseases, which make the selective detection of MAOB activity essential. In this work, a novel surface-enhanced Raman scattering (SERS) sensor was fabricated and the MAOB activity was specifically determined by detecting the SERS signals of an enzyme-catalyzed reaction product via an amine-aldehyde click reaction. This process was simply achieved by coating core-shell gold-silver nanoparticles (Au@Ag NPs) on 3-aminopropyl aminopropyl triethoxysilane (APTES)-modified glass, and then, a monolayer of cysteamine (CA) was attached to the nanoparticle surface as a linker through Ag-S bonds. Using phenethylamine (PA) as a specific substrate of MAOB, the enzyme product phenylacetaldehyde (PAA) will produce significant Raman signals via the amine-aldehyde click reaction with CA, while other molecules, such as MAOB and PA, have no signal output because they cannot form close interaction with nanoparticles due to the existence of a CA layer. This sensor was further used for the specific determination of MAOB activity in clinical blood samples and the MAOB inhibitor assessment successfully. Meanwhile, by changing the click reaction types and taking advantage of the SERS fingerprint peaks for the specific click reaction products, this strategy offers huge potential to detect multiple enzyme activities simultaneously and can be used for new click reaction screening, enzyme-related disease diagnosis, drug screening, and clinical diagnosis.
Collapse
Affiliation(s)
- Xueqiang Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Yifang Li
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Jinhua Wang
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Haibo Zhou
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Xiao Tang
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Ying Yang
- First Affiliated Hospital of Jinan University, Guangzhou 510632, P. R. China
| | - Zhigang Wang
- First Affiliated Hospital of Jinan University, Guangzhou 510632, P. R. China
| | - Dong Chen
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Xia Zhou
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China.,First Affiliated Hospital of Jinan University, Guangzhou 510632, P. R. China
| | - Jialiang Guo
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Huaihong Cai
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Junxia Zheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Pinghua Sun
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
73
|
Neurotensins and their therapeutic potential: research field study. Future Med Chem 2020; 12:1779-1803. [PMID: 33032465 DOI: 10.4155/fmc-2020-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The natural tridecapeptide neurotensin has been emerged as a promising therapeutic scaffold for the treatment of neurological diseases and cancer. In this work, we aimed to identify the top 100 most cited original research papers as well as recent key studies related to neurotensins. The Web of Science Core Collection database was searched and the retrieved research articles were analyzed by using the VOSviewer software. The most cited original articles were published between 1973 and 2013. The top-cited article was by Carraway and Leeman reporting the discovery of neurotensin in 1973. The highly cited terms were associated with hypotension and angiotensin-converting-enzyme. The conducted analysis reveals the therapeutic potentials of neurotensin, and further impactful research toward its clinical development is warrantied.
Collapse
|
74
|
Uppin V, Acharya P, Bettadaiah Bheemanakere K, Talahalli RR. Hyperlipidemia Downregulate Brain Antioxidant Defense Enzymes and Neurotrophins in Rats: Assessment of the Modulatory Potential of EPA+DHA and Zerumbone. Mol Nutr Food Res 2020; 64:e2000381. [PMID: 32918393 DOI: 10.1002/mnfr.202000381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/17/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND Oxidative stress (OS) plays a vital role in the pathogenesis of cognitive disorders. In this study, brain antioxidant defense dysregulation as a consequence of hyperlipidemia, and the efficacy of eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA), and zerumbone (Z) in their modulation are assessed. METHODS AND RESULTS Male Wistar rats are fed control, high-fat (HF), HF + fish oil (HF+F), HF + zerumbone (HF+Z), and HF + fish oil + zerumbone (HF+F+Z) diet for 60 days. Markers of OS, antioxidant enzymes, monoamine oxidase, nuclear factor (erythroid-derived 2)-like 2 (NRF-2), nitric oxide-2 (NOS-2), inter cellular adhesion molecule-1 (ICAM-1), and neurotrophins are measured. Hyperlipidemia increases OS, decreases antioxidant enzyme activity, increases monoamine oxidase activity, increases NOS-2 and ICAM-1 expression, decreases NRF-2 activation, decreases nerve growth factor (NGF), and brain-derived neurotrophic factor (BDNF) levels in the brain compared to control. While EPA+DHA and zerumbone significantly (p < 0.05) restores the perturbations induced by hyperlipidemia. CONCLUSION It is concluded that hyperlipidemia cause OS by decreasing the activity of brain antioxidant enzymes via the downregulation of NRF-2. The reduced brain neurotrophins in hyperlipidemia indicate its potential risk on cognitive attributes. EPA+DHA, together with zerumbone, positively modulates hyperlipidemia induced brain dysfunction thereby offering promising therapeutic strategy.
Collapse
Affiliation(s)
- Vinayak Uppin
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Pooja Acharya
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Kempaiah Bettadaiah Bheemanakere
- Department of Spices and Flavor Sciences, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Ramaprasad Ravichandra Talahalli
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
75
|
Yu L, Shi J, Cheng X, Wang K, Liu S, Liu W, Sang Z. Development of Phthalimide-Donepezil Hybrids as Potent Multitarget- Directed Ligands for the Treatment of Alzheimer’s Disease. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180817999200420120519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Due to the complex etiology of AD, multi-target-directed ligands
(MTDLs), combining two or more distinct pharmacological moieties, have been developed in both
symptomatic and disease-modifying efficiencies and are considered as an effective way for the
treatment of AD.
Methods:
To test their biological activities, including AChE/BChE inhibitory activity and MAOA/
MAO-B inhibitory activity. In addition, molecular modeling studies were performed to afford
insight into the binding mode.
Results:
The results displayed that compound 4c showed the best AChE inhibitory
activity with an IC50 value of 4.2 μM, which was supported by the kinetic study and docking study.
Compound 4c was also a selective MAO-B inhibitor (IC50 = 8.2 μM). Moreover, compound 4c
could cross the blood-brain barrier in vitro.
Conclusion:
Compound 4c deserved to further study as a potential multifunctional agent for the
treatment of Alzheimer’s disease.
Collapse
Affiliation(s)
- Lintao Yu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Jian Shi
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Xinfeng Cheng
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Keren Wang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Shuang Liu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Wenmin Liu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Zhipei Sang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| |
Collapse
|
76
|
Colucci-D'Amato L, Cimaglia G. Ruta graveolens as a potential source of neuroactive compounds to promote and restore neural functions. J Tradit Complement Med 2020; 10:309-314. [PMID: 32670826 PMCID: PMC7340976 DOI: 10.1016/j.jtcme.2020.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 11/21/2022] Open
Abstract
Nutraceuticals had always been known for their therapeutic effects in ancient medicine and had been the primary healing remedy until the introduction of modern chemistry and pharmacology. However, their use has not been dismissed but actually is acquiring a new acclamation among the scientific community especially for their efficacy on the Central Nervous System (CNS). Molecular mechanisms of the most common neurodegenerative diseases are now being uncovered and along with that the molecules that drive the neurodegenerative processes. It is not surprising that some natural compounds can interact with those molecules and interfere with the pathological pathways halting the cascades that ultimately lead to neuronal cell death. The plant Ruta graveolens has gained increased attention in medicinal chemistry due to its beneficial role to treat a variety of human diseases and also because of the presence of a huge number of compounds belonging to different classes of natural products, including neuroactive compounds potentially able to promote neuroprotection. Among all the components of the plant extract, rutin – which is highly, if not the most, abundant – positively interacts with the neurophysiology of the CNS too, being particularly efficient against neurotoxicity. Rutin, has proven to be protective in a variety of experimental settings of neurodegeneration. Finally, it has been shown that the water extract of Ruta graveolens (RGWE) induces death of glioblastoma cells but not of neuronal cells. Moreover, it also fosters cell cycle re-entry and differentiation of neuronal cells. This peculiarity represents a promising tool to promote neural plasticity in pathological conditions. Traditional therapeutic use of the plant Ruta graveolens in a large variety of illnesses. It has been used, together with its main component rutin to treat some neurodegenerative diseases. It might own compounds able to foster plasticity in neural cells. It is able to kill neural cancer cells but not neurons.
Collapse
Affiliation(s)
- Luca Colucci-D'Amato
- Department of Environmental, Biological and Pharmaceutical Science and Technology (DiSTABiF), University of Campania "L. Vanvitelli", Caserta, Italy.,InterUniversity Center for Research in Neuroscience (CIRN), Napoli, Italy
| | - Gloria Cimaglia
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK.,Department of Clinical Neuroscience, Karoliska Institutet, Stockholm, Sweden
| |
Collapse
|
77
|
Abstract
AbstractJudit Bar-Ilan (JB) was an influential researcher in information science and scientometrics. She published more than 100 papers about different topics. We used the CRExplorer (see www.crexplorer.net) to investigate the historical roots of JB’s research. In this program, the N_TOP10 indicator is available. We applied this indicator to identify those publications which have been very frequently cited by JB during several citing years. These might be the publications by which JB was mostly influenced in her research. Our results show that the identified publications are seminal works in information science and scientometrics as well as methodologically oriented publications dealing with text or content analyses as well as influence or distance measures.
Collapse
|
78
|
Jiang X, Guo J, Lv Y, Yao C, Zhang C, Mi Z, Shi Y, Gu J, Zhou T, Bai R, Xie Y. Rational design, synthesis and biological evaluation of novel multitargeting anti-AD iron chelators with potent MAO-B inhibitory and antioxidant activity. Bioorg Med Chem 2020; 28:115550. [PMID: 32503694 DOI: 10.1016/j.bmc.2020.115550] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 01/08/2023]
Abstract
A series of (3-hydroxypyridin-4-one)-coumarin hybrids were developed and investigated as potential multitargeting candidates for the treatment of Alzheimer's disease (AD) through the incorporation of iron-chelating and monoamine oxidase B (MAO-B) inhibition. This combination endowed the hybrids with good capacity to inhibit MAO-B as well as excellent iron-chelating effects. The pFe3+ values of the compounds were ranging from 16.91 to 20.16, comparable to more potent than the reference drug deferiprone (DFP). Among them, compound 18d exhibited the most promising activity against MAO-B, with an IC50 value of 87.9 nM. Moreover, compound 18d exerted favorable antioxidant activity, significantly reversed the amyloid-β1-42 (Aβ1-42) induced PC12 cell damage. More importantly, 18d remarkably ameliorated the cognitive dysfunction in a scopolamine-induced mice AD model. In brief, a series of hybrids with potential anti-AD effect were successfully obtained, indicating that the design of iron chelators with MAO-B inhibitory and antioxidant activities is an attractive strategy against AD progression.
Collapse
Affiliation(s)
- Xiaoying Jiang
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China
| | - Jianan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yangjing Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Chuansheng Yao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Changjun Zhang
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China
| | - Zhisheng Mi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yuan Shi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jinping Gu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
| | - Renren Bai
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Yuanyuan Xie
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China; College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
79
|
Pharmacological Mechanisms Underlying the Neuroprotective Effects of Alpinia oxyphylla Miq. on Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21062071. [PMID: 32197305 PMCID: PMC7139528 DOI: 10.3390/ijms21062071] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 12/13/2022] Open
Abstract
Alpinia oxyphylla Miq. (i.e., A. oxyphylla), a traditional Chinese medicine, can exert neuroprotective effects in ameliorating mild cognitive impairment and improving the pathological hallmarks of Alzheimer's disease (AD). Here, 50 active compounds and 164 putative targets were collected and identified with 251 clinically tested AD-associated target proteins using network pharmacology approaches. Based on the Gene Ontology/Kyoto Encyclopedia of Genes and Genomes pathway enrichments, the compound-target-pathway-disease/protein-protein interaction network constructions, and the network topological analysis, we concluded that A. oxyphylla may have neuroprotective effects by regulating neurotransmitter function, as well as brain plasticity in neuronal networks. Moreover, closely-related AD proteins, including the amyloid-beta precursor protein, the estrogen receptor 1, acetylcholinesterase, and nitric oxide synthase 2, were selected as the bottleneck nodes of network for further verification by molecular docking. Our analytical results demonstrated that terpene, as the main compound of A. oxyphylla extract, exerts neuroprotective effects, providing new insights into the development of a natural therapy for the prevention and treatment of AD.
Collapse
|
80
|
Tancheva LP, Lazarova MI, Alexandrova AV, Dragomanova ST, Nicoletti F, Tzvetanova ER, Hodzhev YK, Kalfin RE, Miteva SA, Mazzon E, Tzvetkov NT, Atanasov AG. Neuroprotective Mechanisms of Three Natural Antioxidants on a Rat Model of Parkinson's Disease: A Comparative Study. Antioxidants (Basel) 2020; 9:antiox9010049. [PMID: 31935828 PMCID: PMC7022962 DOI: 10.3390/antiox9010049] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/28/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023] Open
Abstract
We compared the neuroprotective action of three natural bio-antioxidants (AOs): ellagic acid (EA), α-lipoic acid (LA), and myrtenal (Myrt) in an experimental model of Parkinson’s disease (PD) that was induced in male Wistar rats through an intrastriatal injection of 6-hydroxydopamine (6-OHDA). The animals were divided into five groups: the sham-operated (SO) control group; striatal 6-OHDA-lesioned control group; and three groups of 6-OHDA-lesioned rats pre-treated for five days with EA, LA, and Myrt (50 mg/kg; intraperitoneally- i.p.), respectively. On the 2nd and the 3rd week post lesion, the animals were subjected to several behavioral tests: apomorphine-induced rotation; rotarod; and the passive avoidance test. Biochemical evaluation included assessment of main oxidative stress parameters as well as dopamine (DA) levels in brain homogenates. The results showed that all three test compounds improved learning and memory performance as well as neuromuscular coordination. Biochemical assays showed that all three compounds substantially decreased lipid peroxidation (LPO) levels, and restored catalase (CAT) activity and DA levels that were impaired by the challenge with 6-OHDA. Based on these results, we can conclude that the studied AOs demonstrate properties that are consistent with significant antiparkinsonian effects. The most powerful neuroprotective effect was observed with Myrt, and this work represents the first demonstration of its anti-Parkinsonian impact.
Collapse
Affiliation(s)
- Lyubka P. Tancheva
- Department of Behavior Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria; (S.T.D.); (S.A.M.)
- Correspondence: (L.P.T.); (A.G.A.); Tel.: +359-2979-2175 (L.P.T.); +48-227-367-022 (A.G.A.)
| | - Maria I. Lazarova
- Department of Synaptic Signaling and Communications, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria; (M.I.L.); (R.E.K.)
| | - Albena V. Alexandrova
- Department Biological Effects of Natural and Synthetic Substances, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria; (A.V.A.); (E.R.T.)
| | - Stela T. Dragomanova
- Department of Behavior Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria; (S.T.D.); (S.A.M.)
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University, Varna 9002, Bulgaria
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy;
| | - Elina R. Tzvetanova
- Department Biological Effects of Natural and Synthetic Substances, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria; (A.V.A.); (E.R.T.)
| | - Yordan K. Hodzhev
- Department of Sensory Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria;
| | - Reni E. Kalfin
- Department of Synaptic Signaling and Communications, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria; (M.I.L.); (R.E.K.)
| | - Simona A. Miteva
- Department of Behavior Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria; (S.T.D.); (S.A.M.)
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy;
| | - Nikolay T. Tzvetkov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria;
| | - Atanas G. Atanasov
- Department of Synaptic Signaling and Communications, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria; (M.I.L.); (R.E.K.)
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
- Correspondence: (L.P.T.); (A.G.A.); Tel.: +359-2979-2175 (L.P.T.); +48-227-367-022 (A.G.A.)
| |
Collapse
|