51
|
Suppression of Linear Ubiquitination Ameliorates Cytoplasmic Aggregation of Truncated TDP-43. Cells 2022; 11:cells11152398. [PMID: 35954242 PMCID: PMC9367985 DOI: 10.3390/cells11152398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 02/04/2023] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) is a predominant component of inclusions in the brains and spines of patients with amyotrophic lateral sclerosis (ALS). The progressive accumulation of inclusions leads to proteinopathy in neurons. We have previously shown that Met1(M1)-linked linear ubiquitin, which is specifically generated by the linear ubiquitin chain assembly complex (LUBAC), is colocalized with TDP-43 inclusions in neurons from optineurin-associated familial and sporadic ALS patients, and affects NF-κB activation and apoptosis. To examine the effects of LUBAC-mediated linear ubiquitination on TDP-43 proteinopathies, we performed cell biological analyses using full-length and truncated forms of the ALS-associated Ala315→Thr (A315T) mutant of TDP-43 in Neuro2a cells. The truncated A315T mutants of TDP-43, which lack a nuclear localization signal, efficiently generated cytoplasmic aggregates that were colocalized with multiple ubiquitin chains such as M1-, Lys(K)48-, and K63-chains. Genetic ablation of HOIP or treatment with a LUBAC inhibitor, HOIPIN-8, suppressed the cytoplasmic aggregation of A315T mutants of TDP-43. Moreover, the enhanced TNF-α-mediated NF-κB activity by truncated TDP-43 mutants was eliminated in the presence of HOIPIN-8. These results suggest that multiple ubiquitinations of TDP-43 including M1-ubiquitin affect protein aggregation and inflammatory responses in vitro, and therefore, LUBAC inhibition ameliorates TDP-43 proteinopathy.
Collapse
|
52
|
Duan L, Zaepfel BL, Aksenova V, Dasso M, Rothstein JD, Kalab P, Hayes LR. Nuclear RNA binding regulates TDP-43 nuclear localization and passive nuclear export. Cell Rep 2022; 40:111106. [PMID: 35858577 PMCID: PMC9345261 DOI: 10.1016/j.celrep.2022.111106] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/26/2022] [Accepted: 06/27/2022] [Indexed: 11/27/2022] Open
Abstract
Nuclear clearance of the RNA-binding protein TDP-43 is a hallmark of neurodegeneration and an important therapeutic target. Our current understanding of TDP-43 nucleocytoplasmic transport does not fully explain its predominantly nuclear localization or mislocalization in disease. Here, we show that TDP-43 exits nuclei by passive diffusion, independent of facilitated mRNA export. RNA polymerase II blockade and RNase treatment induce TDP-43 nuclear efflux, suggesting that nuclear RNAs sequester TDP-43 in nuclei and limit its availability for passive export. Induction of TDP-43 nuclear efflux by short, GU-rich oligomers (presumably by outcompeting TDP-43 binding to endogenous nuclear RNAs), and nuclear retention conferred by splicing inhibition, demonstrate that nuclear TDP-43 localization depends on binding to GU-rich nuclear RNAs. Indeed, RNA-binding domain mutations markedly reduce TDP-43 nuclear localization and abolish transcription blockade-induced nuclear efflux. Thus, the nuclear abundance of GU-RNAs, dictated by the balance of transcription, pre-mRNA processing, and RNA export, regulates TDP-43 nuclear localization.
Collapse
Affiliation(s)
- Lauren Duan
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Benjamin L Zaepfel
- Biochemistry, Cellular and Molecular Biology Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Vasilisa Aksenova
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mary Dasso
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey D Rothstein
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Petr Kalab
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Lindsey R Hayes
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
53
|
Cracco L, Doud EH, Hallinan GI, Garringer HJ, Jacobsen MH, Richardson R, Buratti E, Vidal R, Ghetti B, Newell KL. Distinguishing post-translational modifications in dominantly inherited FTD: FTLD-TDP Type A (GRN) versus Type B (C9orf72). Neuropathol Appl Neurobiol 2022; 48:e12836. [PMID: 35836354 PMCID: PMC9452479 DOI: 10.1111/nan.12836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 11/29/2022]
Abstract
AIMS Frontotemporal dementias are neuropathologically characterized by frontotemporal lobar degeneration (FTLD). Intraneuronal inclusions of transactive response DNA-binding protein 43 kDa (TDP-43) are the defining pathologic hallmark of approximately half of the FTLD cases, being referred to as FTLD-TDP. The classification of FTLD-TDP into five subtypes (Type A to Type E) is based on pathologic phenotypes; however, the molecular determinants underpinning the phenotypic heterogeneity of FTLD-TDP are not well known. It is currently undetermined whether TDP-43 post-translational modifications (PTMs) may be related to the phenotypic diversity of the FTLDs. Thus, the investigation of FTLD-TDP Type A and Type B, associated with GRN and C9orf72 mutations, becomes an essential step. METHODS Immunohistochemistry was used to identify and map the intraneuronal inclusions. Sarkosyl-insoluble TDP-43 was extracted from brains of GRN and C9orf72 carriers post-mortem and studied by western blot analysis, immunoelectron microscopy and mass spectrometry. RESULTS Filaments of TDP-43 were present in all FTLD-TDP preparations. PTM profiling identified multiple phosphorylated, N-terminal acetylated, or otherwise modified residues, several of which have been identified for the first time as related to sarkosyl-insoluble TDP-43. Several PTMs were specific for either Type A or Type B, while others were identified in both types. CONCLUSIONS The current results provide evidence that the intraneuronal inclusions in the two genetic diseases contain TDP-43 filaments. The discovery of novel, potentially Type-specific TDP-43 PTMs emphasizes the need to determine the mechanisms leading to filament formation and PTMs, and the necessity of exploring the validity and occupancy of PTMs in a prognostic/diagnostic setting.
Collapse
Affiliation(s)
- Laura Cracco
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Emma H Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Grace I Hallinan
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Holly J Garringer
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Max H Jacobsen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rose Richardson
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Emanuele Buratti
- Molecular Pathology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Ruben Vidal
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kathy L Newell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
54
|
Hayes LR, Kalab P. Emerging Therapies and Novel Targets for TDP-43 Proteinopathy in ALS/FTD. Neurotherapeutics 2022; 19:1061-1084. [PMID: 35790708 PMCID: PMC9587158 DOI: 10.1007/s13311-022-01260-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2022] [Indexed: 10/17/2022] Open
Abstract
Nuclear clearance and cytoplasmic mislocalization of the essential RNA binding protein, TDP-43, is a pathologic hallmark of amyotrophic lateral sclerosis, frontotemporal dementia, and related neurodegenerative disorders collectively termed "TDP-43 proteinopathies." TDP-43 mislocalization causes neurodegeneration through both loss and gain of function mechanisms. Loss of TDP-43 nuclear RNA processing function destabilizes the transcriptome by multiple mechanisms including disruption of pre-mRNA splicing, the failure of repression of cryptic exons, and retrotransposon activation. The accumulation of cytoplasmic TDP-43, which is prone to aberrant liquid-liquid phase separation and aggregation, traps TDP-43 in the cytoplasm and disrupts a host of downstream processes including the trafficking of RNA granules, local translation within axons, and mitochondrial function. In this review, we will discuss the TDP-43 therapy development pipeline, beginning with therapies in current and upcoming clinical trials, which are primarily focused on accelerating the clearance of TDP-43 aggregates. Then, we will look ahead to emerging strategies from preclinical studies, first from high-throughput genetic and pharmacologic screens, and finally from mechanistic studies focused on the upstream cause(s) of TDP-43 disruption in ALS/FTD. These include modulation of stress granule dynamics, TDP-43 nucleocytoplasmic shuttling, RNA metabolism, and correction of aberrant splicing events.
Collapse
Affiliation(s)
- Lindsey R Hayes
- Johns Hopkins School of Medicine, Dept. of Neurology, Baltimore, MD, USA.
| | - Petr Kalab
- Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
55
|
Chua JP, Bedi K, Paulsen MT, Ljungman M, Tank EMH, Kim ES, McBride JP, Colón-Mercado JM, Ward ME, Weisman LS, Barmada SJ. Myotubularin-related phosphatase 5 is a critical determinant of autophagy in neurons. Curr Biol 2022; 32:2581-2595.e6. [PMID: 35580604 PMCID: PMC9233098 DOI: 10.1016/j.cub.2022.04.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 02/18/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022]
Abstract
Autophagy is a conserved, multi-step process of capturing proteolytic cargo in autophagosomes for lysosome degradation. The capacity to remove toxic proteins that accumulate in neurodegenerative disorders attests to the disease-modifying potential of the autophagy pathway. However, neurons respond only marginally to conventional methods for inducing autophagy, limiting efforts to develop therapeutic autophagy modulators for neurodegenerative diseases. The determinants underlying poor autophagy induction in neurons and the degree to which neurons and other cell types are differentially sensitive to autophagy stimuli are incompletely defined. Accordingly, we sampled nascent transcript synthesis and stabilities in fibroblasts, induced pluripotent stem cells (iPSCs), and iPSC-derived neurons (iNeurons), thereby uncovering a neuron-specific stability of transcripts encoding myotubularin-related phosphatase 5 (MTMR5). MTMR5 is an autophagy suppressor that acts with its binding partner, MTMR2, to dephosphorylate phosphoinositides critical for autophagy initiation and autophagosome maturation. We found that MTMR5 is necessary and sufficient to suppress autophagy in iNeurons and undifferentiated iPSCs. Using optical pulse labeling to visualize the turnover of endogenously encoded proteins in live cells, we observed that knockdown of MTMR5 or MTMR2, but not the unrelated phosphatase MTMR9, significantly enhances neuronal degradation of TDP-43, an autophagy substrate implicated in several neurodegenerative diseases. Our findings thus establish a regulatory mechanism of autophagy intrinsic to neurons and targetable for clearing disease-related proteins in a cell-type-specific manner. In so doing, our results not only unravel novel aspects of neuronal biology and proteostasis but also elucidate a strategy for modulating neuronal autophagy that could be of high therapeutic potential for multiple neurodegenerative diseases.
Collapse
Affiliation(s)
- Jason P. Chua
- Department of Neurology, Johns Hopkins Medicine, Baltimore, MD, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lead contact
| | - Karan Bedi
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Michelle T. Paulsen
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, USA
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Erin S. Kim
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Jonathon P. McBride
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Michael E. Ward
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Lois S. Weisman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Sami J. Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
56
|
François-Moutal L, Scott DD, Ambrose AJ, Zerio CJ, Rodriguez-Sanchez M, Dissanayake K, May DG, Carlson JM, Barbieri E, Moutal A, Roux KJ, Shorter J, Khanna R, Barmada SJ, McGurk L, Khanna M. Heat shock protein Grp78/BiP/HspA5 binds directly to TDP-43 and mitigates toxicity associated with disease pathology. Sci Rep 2022; 12:8140. [PMID: 35581326 PMCID: PMC9114370 DOI: 10.1038/s41598-022-12191-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/04/2022] [Indexed: 11/09/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no cure or effective treatment in which TAR DNA Binding Protein of 43 kDa (TDP-43) abnormally accumulates into misfolded protein aggregates in affected neurons. It is widely accepted that protein misfolding and aggregation promotes proteotoxic stress. The molecular chaperones are a primary line of defense against proteotoxic stress, and there has been long-standing interest in understanding the relationship between chaperones and aggregated protein in ALS. Of particular interest are the heat shock protein of 70 kDa (Hsp70) family of chaperones. However, defining which of the 13 human Hsp70 isoforms is critical for ALS has presented many challenges. To gain insight into the specific Hsp70 that modulates TDP-43, we investigated the relationship between TDP-43 and the Hsp70s using proximity-dependent biotin identification (BioID) and discovered several Hsp70 isoforms associated with TDP-43 in the nucleus, raising the possibility of an interaction with native TDP-43. We further found that HspA5 bound specifically to the RNA-binding domain of TDP-43 using recombinantly expressed proteins. Moreover, in a Drosophila strain that mimics ALS upon TDP-43 expression, the mRNA levels of the HspA5 homologue (Hsc70.3) were significantly increased. Similarly we observed upregulation of HspA5 in prefrontal cortex neurons from human ALS patients. Finally, overexpression of HspA5 in Drosophila rescued TDP-43-induced toxicity, suggesting that upregulation of HspA5 may have a compensatory role in ALS pathobiology.
Collapse
Affiliation(s)
- Liberty François-Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA.,Center for Innovation in Brain Science, Tucson, AZ, 85721, USA
| | - David Donald Scott
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA.,Center for Innovation in Brain Science, Tucson, AZ, 85721, USA
| | - Andrew J Ambrose
- Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, AZ, 85724, USA
| | - Christopher J Zerio
- Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, AZ, 85724, USA
| | | | - Kumara Dissanayake
- Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Danielle G May
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD, USA
| | - Jacob M Carlson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA.,Center for Innovation in Brain Science, Tucson, AZ, 85721, USA
| | - Edward Barbieri
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA.,Center for Innovation in Brain Science, Tucson, AZ, 85721, USA
| | - Kyle J Roux
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD, USA.,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - James Shorter
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA.,Center for Innovation in Brain Science, Tucson, AZ, 85721, USA
| | - Sami J Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Leeanne McGurk
- Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - May Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA. .,Center for Innovation in Brain Science, Tucson, AZ, 85721, USA. .,Department of Molecular Pathobiology, NYU, New York, NY, USA. .,Department of Molecular Pathobiology, College of Dentistry, NYU, 433 1st Ave, New York, NY, 10010, USA.
| |
Collapse
|
57
|
Bhopatkar AA, Dhakal S, Abernathy HG, Morgan SE, Rangachari V. Charge and Redox States Modulate Granulin-TDP-43 Coacervation Toward Phase Separation or Aggregation. Biophys J 2022; 121:2107-2126. [PMID: 35490297 DOI: 10.1016/j.bpj.2022.04.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/05/2022] [Accepted: 04/27/2022] [Indexed: 11/26/2022] Open
Abstract
Cytoplasmic inclusions containing aberrant proteolytic fragments of TDP-43 are associated with frontotemporal lobar degeneration (FTLD) and other related pathologies. In FTLD, TDP-43 is translocated into the cytoplasm and proteolytically cleaved to generate a prion-like domain (PrLD) containing C-terminal fragments (C25 and C35) that form toxic inclusions. Under stress, TDP-43 partitions into membraneless organelles called stress granules (SGs) by coacervating with RNA and other proteins. To glean into the factors that influence the dynamics between these cytoplasmic foci, we investigated the effects of cysteine-rich granulins (GRNs 1-7), which are the proteolytic products of progranulin, a protein implicated in FTLD, on TDP-43. We show that extracellular GRNs, typically generated during inflammation, internalize and colocalize with PrLD as puncta in the cytoplasm of neuroblastoma cells but show less likelihood of their presence in SGs. In addition, we show GRNs and PrLD coacervate to undergo liquid-liquid phase separation (LLPS) or form gel- or solid-like aggregates. Using charge patterning and conserved cysteines among the wild-type GRNs as guides, along with specifically engineered mutants, we discover that the negative charges on GRNs drive LLPS while the positive charges and the redox state of cysteines modulate these phase transitions. Furthermore, RNA and GRNs compete and expel one another from PrLD condensates, providing a basis for GRN's absence in SGs. Together, the results help uncover potential modulatory mechanisms by which extracellular GRNs, formed during chronic inflammatory conditions, could internalize, and modulate cytoplasmic TDP-43 inclusions in proteinopathies.
Collapse
Affiliation(s)
- Anukool A Bhopatkar
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg MS 39406
| | - Shailendra Dhakal
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg MS 39406
| | - Hannah G Abernathy
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg MS 39406
| | - Sarah E Morgan
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg MS 39406
| | - Vijay Rangachari
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg MS 39406;; Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg MS 39406;.
| |
Collapse
|
58
|
Latimer CS, Stair JG, Hincks JC, Currey HN, Bird TD, Keene CD, Kraemer BC, Liachko NF. TDP-43 promotes tau accumulation and selective neurotoxicity in bigenic Caenorhabditis elegans. Dis Model Mech 2022; 15:275149. [PMID: 35178571 PMCID: PMC9066518 DOI: 10.1242/dmm.049323] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/11/2022] [Indexed: 11/20/2022] Open
Abstract
Although amyloid β (Aβ) and tau aggregates define the neuropathology of Alzheimer's disease (AD), TDP-43 has recently emerged as a co-morbid pathology in more than half of patients with AD. Individuals with concomitant Aβ, tau and TDP-43 pathology experience accelerated cognitive decline and worsened brain atrophy, but the molecular mechanisms of TDP-43 neurotoxicity in AD are unknown. Synergistic interactions among Aβ, tau and TDP-43 may be responsible for worsened disease outcomes. To study the biology underlying this process, we have developed new models of protein co-morbidity using the simple animal Caenorhabditis elegans. We demonstrate that TDP-43 specifically enhances tau but not Aβ neurotoxicity, resulting in neuronal dysfunction, pathological tau accumulation and selective neurodegeneration. Furthermore, we find that synergism between tau and TDP-43 is rescued by loss-of-function of the robust tau modifier sut-2. Our results implicate enhanced tau neurotoxicity as the primary driver underlying worsened clinical and neuropathological phenotypes in AD with TDP-43 pathology, and identify cell-type specific sensitivities to co-morbid tau and TDP-43. Determining the relationship between co-morbid TDP-43 and tau is crucial to understand, and ultimately treat, mixed pathology AD.
Collapse
Affiliation(s)
- Caitlin S. Latimer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Jade G. Stair
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Joshua C. Hincks
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Heather N. Currey
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Thomas D. Bird
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA,Department of Neurology, University of Washington, Seattle, WA 98104, USA,Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Brian C. Kraemer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA,Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - Nicole F. Liachko
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA,Author for correspondence ()
| |
Collapse
|
59
|
Rutledge BS, Choy WY, Duennwald ML. Folding or holding?-Hsp70 and Hsp90 chaperoning of misfolded proteins in neurodegenerative disease. J Biol Chem 2022; 298:101905. [PMID: 35398094 PMCID: PMC9079180 DOI: 10.1016/j.jbc.2022.101905] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/08/2023] Open
Abstract
The toxic accumulation of misfolded proteins as inclusions, fibrils, or aggregates is a hallmark of many neurodegenerative diseases. However, how molecular chaperones, such as heat shock protein 70 kDa (Hsp70) and heat shock protein 90 kDa (Hsp90), defend cells against the accumulation of misfolded proteins remains unclear. The ATP-dependent foldase function of both Hsp70 and Hsp90 actively transitions misfolded proteins back to their native conformation. By contrast, the ATP-independent holdase function of Hsp70 and Hsp90 prevents the accumulation of misfolded proteins. Foldase and holdase functions can protect against the toxicity associated with protein misfolding, yet we are only beginning to understand the mechanisms through which they modulate neurodegeneration. This review compares recent structural findings regarding the binding of Hsp90 to misfolded and intrinsically disordered proteins, such as tau, α-synuclein, and Tar DNA-binding protein 43. We propose that Hsp90 and Hsp70 interact with these proteins through an extended and dynamic interface that spans the surface of multiple domains of the chaperone proteins. This contrasts with many other Hsp90–client protein interactions for which only a single bound conformation of Hsp90 is proposed. The dynamic nature of these multidomain interactions allows for polymorphic binding of multiple conformations to vast regions of Hsp90. The holdase functions of Hsp70 and Hsp90 may thus allow neuronal cells to modulate misfolded proteins more efficiently by reducing the long-term ATP running costs of the chaperone budget. However, it remains unclear whether holdase functions protect cells by preventing aggregate formation or can increase neurotoxicity by inadvertently stabilizing deleterious oligomers.
Collapse
Affiliation(s)
| | - Wing-Yiu Choy
- Department of Biochemistry, Western University, London, Ontario, Canada
| | - Martin L Duennwald
- Department of Anatomy and Cell Biology, Western University, London, Ontario, Canada.
| |
Collapse
|
60
|
Neurodegenerative Disease-Associated TDP-43 Fragments Are Extracellularly Secreted with CASA Complex Proteins. Cells 2022; 11:cells11030516. [PMID: 35159325 PMCID: PMC8833957 DOI: 10.3390/cells11030516] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023] Open
Abstract
Extracellular vesicles (EVs) play a central role in neurodegenerative diseases (NDs) since they may either spread the pathology or contribute to the intracellular protein quality control (PQC) system for the cellular clearance of NDs-associated proteins. Here, we investigated the crosstalk between large (LVs) and small (SVs) EVs and PQC in the disposal of TDP-43 and its FTLD and ALS-associated C-terminal fragments (TDP-35 and TDP-25). By taking advantage of neuronal cells (NSC-34 cells), we demonstrated that both EVs types, but particularly LVs, contained TDP-43, TDP-35 and TDP-25. When the PQC system was inhibited, as it occurs in NDs, we found that TDP-35 and TDP-25 secretion via EVs increased. In line with this observation, we specifically detected TDP-35 in EVs derived from plasma of FTLD patients. Moreover, we demonstrated that both neuronal and plasma-derived EVs transported components of the chaperone-assisted selective autophagy (CASA) complex (HSP70, BAG3 and HSPB8). Neuronal EVs also contained the autophagy-related MAP1LC3B-II protein. Notably, we found that, under PQC inhibition, HSPB8, BAG3 and MAP1LC3B-II secretion paralleled that of TDP-43 species. Taken together, our data highlight the role of EVs, particularly of LVs, in the disposal of disease-associated TDP-43 species, and suggest a possible new role for the CASA complex in NDs.
Collapse
|
61
|
Dong W, Zhou R, Chen J, Shu Z, Duan M. Phosphorylation Regulation on the Homo-Dimeric Binding of Transactive Response DNA-Binding Protein. J Chem Inf Model 2022; 62:5267-5275. [PMID: 35040651 DOI: 10.1021/acs.jcim.1c01224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The dimerization of transactive response DNA-binding protein of 43 kDa (TDP-43) is crucial for the RNA metabolism, and the higher-order aggregation of TDP-43 would induce several neurodegenerative diseases. The dimerization and aggregation of TDP-43 are regulated by the phosphorylation on its N-terminal domain (NTD). Understanding the regulation mechanism of TDP-43 NTD dimerization is crucial for the preventing of harmful aggregation and the associated diseases. In this study, the dimerization processes of wild-type (WT), phosphorylated S48 (pS48), and phosphomimic S48E mutation (S48E) of TDP-43 NTD are characterized by the enhanced sampling technology. Our results show that the phosphorylation not only shift the conformation population of bound and unbound state of TDP-43 NTD, but also would regulate the dimerization processes, including increase the binding free-energy barrier. The phosphomimic mutation would also shift the conformational space of TDP-43 NTD dimer to the unbound structures; however, the thermodynamic and kinetic properties of the dimerization processes between the phosphorylated and phosphomimic mutant systems are distinct, which reminds us to carefully study the phosphorylation regulation by using the phosphomimic mutations.
Collapse
Affiliation(s)
- Wanqian Dong
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technoloy, College of Life Sciences, Fujian Normal University (Qishan Campus), Fuzhou 350117, Fujian, China.,National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
| | - Rui Zhou
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
| | - Jiawen Chen
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
| | - Zhengyu Shu
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technoloy, College of Life Sciences, Fujian Normal University (Qishan Campus), Fuzhou 350117, Fujian, China
| | - Mojie Duan
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
| |
Collapse
|
62
|
How Molecular Topology Can Help in Amyotrophic Lateral Sclerosis (ALS) Drug Development: A Revolutionary Paradigm for a Merciless Disease. Pharmaceuticals (Basel) 2022; 15:ph15010094. [PMID: 35056151 PMCID: PMC8781553 DOI: 10.3390/ph15010094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
Even if amyotrophic lateral sclerosis is still considered an orphan disease to date, its prevalence among the population is growing fast. Despite the efforts made by researchers and pharmaceutical companies, the cryptic information related to the biological and physiological onset mechanisms, as well as the complexity in identifying specific pharmacological targets, make it almost impossible to find effective treatments. Furthermore, because of complex ethical and economic aspects, it is usually hard to find all the necessary resources when searching for drugs for new orphan diseases. In this context, computational methods, based either on receptors or ligands, share the capability to improve the success rate when searching and selecting potential candidates for further experimentation and, consequently, reduce the number of resources and time taken when delivering a new drug to the market. In the present work, a computational strategy based on Molecular Topology, a mathematical paradigm capable of relating the chemical structure of a molecule to a specific biological or pharmacological property by means of numbers, is presented. The result was the creation of a reliable and accessible tool to help during the early in silico stages in the identification and repositioning of potential hits for ALS treatment, which can also apply to other orphan diseases. Considering that further computational and experimental results will be required for the final identification of viable hits, three linear discriminant equations combined with molecular docking simulations on specific proteins involved in ALS are reported, along with virtual screening of the Drugbank database as a practical example. In this particular case, as reported, a clinical trial has been already started for one of the drugs proposed in the present study.
Collapse
|
63
|
TDP-43 pathology: from noxious assembly to therapeutic removal. Prog Neurobiol 2022; 211:102229. [DOI: 10.1016/j.pneurobio.2022.102229] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/08/2021] [Accepted: 01/26/2022] [Indexed: 02/08/2023]
|
64
|
Grassmann G, Miotto M, Di Rienzo L, Salaris F, Silvestri B, Zacco E, Rosa A, Tartaglia GG, Ruocco G, Milanetti E. A Computational Approach to Investigate TDP-43 RNA-Recognition Motif 2 C-Terminal Fragments Aggregation in Amyotrophic Lateral Sclerosis. Biomolecules 2021; 11:1905. [PMID: 34944548 PMCID: PMC8699346 DOI: 10.3390/biom11121905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Many of the molecular mechanisms underlying the pathological aggregation of proteins observed in neurodegenerative diseases are still not fully understood. Among the aggregate-associated diseases, Amyotrophic Lateral Sclerosis (ALS) is of relevant importance. In fact, although understanding the processes that cause the disease is still an open challenge, its relationship with protein aggregation is widely known. In particular, human TDP-43, an RNA/DNA binding protein, is a major component of the pathological cytoplasmic inclusions observed in ALS patients. Indeed, the deposition of the phosphorylated full-length TDP-43 in spinal cord cells has been widely studied. Moreover, it has also been shown that the brain cortex presents an accumulation of phosphorylated C-terminal fragments (CTFs). Even if it is debated whether the aggregation of CTFs represents a primary cause of ALS, it is a hallmark of TDP-43 related neurodegeneration in the brain. Here, we investigate the CTFs aggregation process, providing a computational model of interaction based on the evaluation of shape complementarity at the molecular interfaces. To this end, extensive Molecular Dynamics (MD) simulations were conducted for different types of protein fragments, with the aim of exploring the equilibrium conformations. Adopting a newly developed approach based on Zernike polynomials, able to find complementary regions in the molecular surface, we sampled a large set of solvent-exposed portions of CTFs structures as obtained from MD simulations. Our analysis proposes and assesses a set of possible association mechanisms between the CTFs, which could drive the aggregation process of the CTFs. To further evaluate the structural details of such associations, we perform molecular docking and additional MD simulations to propose possible complexes and assess their stability, focusing on complexes whose interacting regions are both characterized by a high shape complementarity and involve β3 and β5 strands at their interfaces.
Collapse
Affiliation(s)
- Greta Grassmann
- Department of Physics and Astronomy, University of Bologna, Viale Carlo Berti Pichat 6/2, 40127 Bologna, Italy; or
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; (M.M.); (L.D.R.); (F.S.); (B.S.); (A.R.); (G.G.T.); (G.R.)
| | - Mattia Miotto
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; (M.M.); (L.D.R.); (F.S.); (B.S.); (A.R.); (G.G.T.); (G.R.)
| | - Lorenzo Di Rienzo
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; (M.M.); (L.D.R.); (F.S.); (B.S.); (A.R.); (G.G.T.); (G.R.)
| | - Federico Salaris
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; (M.M.); (L.D.R.); (F.S.); (B.S.); (A.R.); (G.G.T.); (G.R.)
| | - Beatrice Silvestri
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; (M.M.); (L.D.R.); (F.S.); (B.S.); (A.R.); (G.G.T.); (G.R.)
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Elsa Zacco
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy;
| | - Alessandro Rosa
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; (M.M.); (L.D.R.); (F.S.); (B.S.); (A.R.); (G.G.T.); (G.R.)
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Gian Gaetano Tartaglia
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; (M.M.); (L.D.R.); (F.S.); (B.S.); (A.R.); (G.G.T.); (G.R.)
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy;
- Center for Human Technologies, Via Enrico Melen 83, 16152 Genova, Italy
| | - Giancarlo Ruocco
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; (M.M.); (L.D.R.); (F.S.); (B.S.); (A.R.); (G.G.T.); (G.R.)
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Edoardo Milanetti
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; (M.M.); (L.D.R.); (F.S.); (B.S.); (A.R.); (G.G.T.); (G.R.)
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
65
|
Parkin beyond Parkinson’s Disease—A Functional Meaning of Parkin Downregulation in TDP-43 Proteinopathies. Cells 2021; 10:cells10123389. [PMID: 34943897 PMCID: PMC8699658 DOI: 10.3390/cells10123389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
Parkin and PINK1 are key regulators of mitophagy, an autophagic pathway for selective elimination of dysfunctional mitochondria. To this date, parkin depletion has been associated with recessive early onset Parkinson’s disease (PD) caused by loss-of-function mutations in the PARK2 gene, while, in sporadic PD, the activity and abundance of this protein can be compromised by stress-related modifications. Intriguingly, research in recent years has shown that parkin depletion is not limited to PD but is also observed in other neurodegenerative diseases—especially those characterized by TDP-43 proteinopathies, such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Here, we discuss the evidence of parkin downregulation in these disease phenotypes, its emerging connections with TDP-43, and its possible functional implications.
Collapse
|
66
|
Koski L, Ronnevi C, Berntsson E, Wärmländer SKTS, Roos PM. Metals in ALS TDP-43 Pathology. Int J Mol Sci 2021; 22:12193. [PMID: 34830074 PMCID: PMC8622279 DOI: 10.3390/ijms222212193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), Alzheimer's disease, Parkinson's disease and similar neurodegenerative disorders take their toll on patients, caregivers and society. A common denominator for these disorders is the accumulation of aggregated proteins in nerve cells, yet the triggers for these aggregation processes are currently unknown. In ALS, protein aggregation has been described for the SOD1, C9orf72, FUS and TDP-43 proteins. The latter is a nuclear protein normally binding to both DNA and RNA, contributing to gene expression and mRNA life cycle regulation. TDP-43 seems to have a specific role in ALS pathogenesis, and ubiquitinated and hyperphosphorylated cytoplasmic inclusions of aggregated TDP-43 are present in nerve cells in almost all sporadic ALS cases. ALS pathology appears to include metal imbalances, and environmental metal exposure is a known risk factor in ALS. However, studies on metal-to-TDP-43 interactions are scarce, even though this protein seems to have the capacity to bind to metals. This review discusses the possible role of metals in TDP-43 aggregation, with respect to ALS pathology.
Collapse
Affiliation(s)
- Lassi Koski
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | | | - Elina Berntsson
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden;
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12616 Tallinn, Estonia
| | | | - Per M. Roos
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden;
- Capio St. Göran Hospital, 112 19 Stockholm, Sweden;
| |
Collapse
|
67
|
Maraschi A, Gumina V, Dragotto J, Colombrita C, Mompeán M, Buratti E, Silani V, Feligioni M, Ratti A. SUMOylation Regulates TDP-43 Splicing Activity and Nucleocytoplasmic Distribution. Mol Neurobiol 2021; 58:5682-5702. [PMID: 34390468 PMCID: PMC8599232 DOI: 10.1007/s12035-021-02505-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022]
Abstract
The nuclear RNA-binding protein TDP-43 forms abnormal cytoplasmic aggregates in the brains of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) patients and several molecular mechanisms promoting TDP-43 cytoplasmic mislocalization and aggregation have been proposed, including defects in nucleocytoplasmic transport, stress granules (SG) disassembly and post-translational modifications (PTM). SUMOylation is a PTM which regulates a variety of cellular processes and, similarly to ubiquitination, targets lysine residues. To investigate the possible regulatory effects of SUMOylation on TDP-43 activity and trafficking, we first assessed that TDP-43 is SUMO-conjugated in the nuclear compartment both covalently and non-covalently in the RRM1 domain at the predicted lysine 136 and SUMO-interacting motif (SIM, 106–110 residues), respectively. By using the SUMO-mutant TDP-43 K136R protein, we demonstrated that SUMOylation modifies TDP-43 splicing activity, specifically exon skipping, and influences its sub-cellular localization and recruitment to SG after oxidative stress. When promoting deSUMOylation by SENP1 enzyme over-expression or by treatment with the cell-permeable SENP1 peptide TS-1, the cytoplasmic localization of TDP-43 increased, depending on its SUMOylation. Moreover, deSUMOylation by TS-1 peptide favoured the formation of small cytoplasmic aggregates of the C-terminal TDP-43 fragment p35, still containing the SUMO lysine target 136, but had no effect on the already formed p25 aggregates. Our data suggest that TDP-43 can be post-translationally modified by SUMOylation which may regulate its splicing function and trafficking, indicating a novel and druggable mechanism to explore as its dysregulation may lead to TDP-43 pathological aggregation in ALS and FTD.
Collapse
Affiliation(s)
- AnnaMaria Maraschi
- Department of Neurology, Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano, IRCCS, Piazzale Brescia 20, 20149 Milan, Italy
| | - Valentina Gumina
- Department of Neurology, Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano, IRCCS, Piazzale Brescia 20, 20149 Milan, Italy
| | - Jessica Dragotto
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, Viale Regina Elena 295, 00161 Rome, Italy
| | - Claudia Colombrita
- Department of Neurology, Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano, IRCCS, Piazzale Brescia 20, 20149 Milan, Italy
| | - Miguel Mompeán
- “Rocasolano” Institute for Physical Chemistry, Spanish National Research Council, Serrano 119, 28006 Madrid, Spain
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| | - Vincenzo Silani
- Department of Neurology, Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano, IRCCS, Piazzale Brescia 20, 20149 Milan, Italy
- Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi Di Milano, Via A. di Rudinì 8, 20142 Milan, Italy
- Department of Pathophysiology and Transplantation, Dino Ferrari” Center, Università Degli Studi Di Milano, Via F. Sforza 35, 20122 Milan, Italy
| | - Marco Feligioni
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, Viale Regina Elena 295, 00161 Rome, Italy
- Department of Neurorehabilitation Sciences, Casa Di Cura del Policlinico, Via Giuseppe Dezza 48, 20144 Milan, Italy
| | - Antonia Ratti
- Department of Neurology, Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano, IRCCS, Piazzale Brescia 20, 20149 Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università Degli Studi Di Milano, Via Fratelli Cervi 93, 20090 Segrate, Milan Italy
| |
Collapse
|
68
|
Mallucci GR, Klenerman D, Rubinsztein DC. Developing Therapies for Neurodegenerative Disorders: Insights from Protein Aggregation and Cellular Stress Responses. Annu Rev Cell Dev Biol 2021; 36:165-189. [PMID: 33021824 DOI: 10.1146/annurev-cellbio-040320-120625] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As the world's population ages, neurodegenerative disorders are poised to become the commonest cause of death. Despite this, they remain essentially untreatable. Characterized pathologically both by the aggregation of disease-specific misfolded proteins and by changes in cellular stress responses, to date, therapeutic approaches have focused almost exclusively on reducing misfolded protein load-notably amyloid beta (Aβ) in Alzheimer's disease. The repeated failure of clinical trials has led to despondency over the possibility that these disorders will ever be treated. We argue that this is in fact a time for optimism: Targeting various generic stress responses is emerging as an increasingly promising means of modifying disease progression across these disorders. New treatments are approaching clinical trials, while novel means of targeting aggregates could eventually act preventively in early disease.
Collapse
Affiliation(s)
- Giovanna R Mallucci
- UK Dementia Research Institute at the University of Cambridge, Cambridge CB2 0AH, United Kingdom; .,Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, United Kingdom
| | - David Klenerman
- UK Dementia Research Institute at the University of Cambridge, Cambridge CB2 0AH, United Kingdom; .,Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - David C Rubinsztein
- UK Dementia Research Institute at the University of Cambridge, Cambridge CB2 0AH, United Kingdom; .,Cambridge Institute for Medical Research, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
69
|
Strategies in the design and development of (TAR) DNA-binding protein 43 (TDP-43) binding ligands. Eur J Med Chem 2021; 225:113753. [PMID: 34388383 DOI: 10.1016/j.ejmech.2021.113753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/16/2021] [Accepted: 08/05/2021] [Indexed: 01/09/2023]
Abstract
The human transactive responsive (TAR) DNA-binding protein 43 (TDP-43) is involved in a number of physiological processes in the body. Its primary function involves RNA regulation. The TDP-43 protein is also involved in many diseases such as amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Alzheimer's disease (AD), Parkinson's disease (PD) and even cancers. These TDP-43 mediated diseases are collectively called as TDP-43 proteinopathies. Intense research in the last decade has increased our understanding on TDP-43 structure and function in biology. The three-dimensional structures of TDP-43 domains such as N-terminal domain (NTD), RNA-recognition motif-1 (RRM1), RNA-recognition motif-2 (RRM2) and the C-terminal domain (CTD) or low-complexity domain (LCD) have been solved. These structures have yielded insights into novel binding sites and pockets at various TDP-43 domains, which can be targeted by designing a diverse library of ligands including small molecules, peptides and oligonucleotides as molecular tools to (i) study TDP-43 function, (ii) develop novel diagnostic agents and (iii) discover disease-modifying therapies to treat TDP-43 proteinopathies. This review provides a summary on recent progress in the development of TDP-43 binding ligands and uses the solved structures of various TDP-43 domains to investigate putative ligand binding regions that can be exploited to discover novel molecular probes to modulate TDP-43 structure and function.
Collapse
|
70
|
Francois-Moutal L, Scott DD, Khanna M. Direct targeting of TDP-43, from small molecules to biologics: the therapeutic landscape. RSC Chem Biol 2021; 2:1158-1166. [PMID: 34458829 PMCID: PMC8341936 DOI: 10.1039/d1cb00110h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/18/2021] [Indexed: 11/21/2022] Open
Abstract
Tar DNA binding (TDP)-43 proteinopathy, typically described as cytoplasmic accumulation of highly modified and misfolded TDP-43 molecules, is characteristic of several neurodegenerative diseases such as Amyotrophic Lateral Sclerosis (ALS) and limbic-predominant age-related TDP-43 encephalopathy (LATE). TDP-43 proposed proteinopathies include homeostatic imbalance between nuclear and cytoplasmic localization, aggregation of ubiquitinated and hyper-phosphorylated TDP-43, and an increase in protein truncation of cytoplasmic TDP-43. Given the therapeutic interest of targeting TDP-43, this review focuses on the current landscape of strategies, ranging from biologics to small molecules, that directly target TDP-43. Antibodies, peptides and compounds have been designed or found to recognize specific TDP-43 sequences but alleviate TDP-43 toxicity through different mechanisms. While two antibodies described here were able to induce degradation of pathological TDP-43, the peptides and small molecules were primarily designed to reduce aggregation of TDP-43. Furthermore, we discuss promising emerging therapeutic targets.
Collapse
Affiliation(s)
- Liberty Francois-Moutal
- Department of Pharmacology, College of Medicine, University of Arizona 1501 North Campbell Drive, P.O. Box 245050 Tucson AZ 85724 USA +520-626-2204 +520-626-2147
- Center of Innovation in Brain Science Tucson AZ 85721 USA
| | - David Donald Scott
- Department of Pharmacology, College of Medicine, University of Arizona 1501 North Campbell Drive, P.O. Box 245050 Tucson AZ 85724 USA +520-626-2204 +520-626-2147
- Center of Innovation in Brain Science Tucson AZ 85721 USA
| | - May Khanna
- Department of Pharmacology, College of Medicine, University of Arizona 1501 North Campbell Drive, P.O. Box 245050 Tucson AZ 85724 USA +520-626-2204 +520-626-2147
- Center of Innovation in Brain Science Tucson AZ 85721 USA
- Bio5 Institute, University of Arizona Tucson USA
| |
Collapse
|
71
|
Esposto JC, Martic S. Phosphorylated TAR DNA-Binding Protein-43: Aggregation and Antibody-Based Inhibition. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166234. [PMID: 34339840 DOI: 10.1016/j.bbadis.2021.166234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 12/28/2022]
Abstract
TAR DNA-binding protein-43 (TDP-43) pathology, including fibrillar aggregates and mutations, develops in amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD) and limbic-predominant age-related TDP-43 encephalopathy (LATE). Hyperphosphorylation and aggregation of TDP-43 contribute to pathology and are viable therapeutic targets for ALS. In vivo inhibition of TDP-43 aggregation was evaluated using anti-TDP-43 antibodies with promising outcomes. However, the exact mechanism of antibody-based inhibition targeting TDP-43 is not well understood but may lead to the identification of viable immunotherapies. Herein, the mechanism of in vitro aggregation of phosphorylated TDP-43 was explored, and the anti-TDP-43 antibodies tested for their inhibitor efficacies. Specifically, the aggregation of phosphorylated full-length TDP-43 protein (pS410) was monitored by transmission electron microscopy (TEM), turbidity absorbance, and thioflavin (ThT). The protein aggregates were insoluble, ThT-positive and characterized with heterogeneous morphologies (fibers, amorphous structures). Antibodies specific to epitopes 178-393 and 256-269, within the RRM2-CTD domain, reduced the formation of β-sheets and insoluble aggregates, at low antibody loading (antibody: protein ratio = 1 ug/mL: 45 ug/mL). Inhibition outcomes were highly dependent on the type and loading of antibodies, indicating dual functionality of such inhibitors, as aggregation inhibitors or aggregation promoters. Anti-SOD1 and anti-tau antibodies were not effective inhibitors against TDP-43 aggregation, indicating selective inhibition.
Collapse
Affiliation(s)
- Josephine C Esposto
- Environmental and Life Sciences, Trent University, Peterborough, Ontario, Canada K9L 0G2.
| | - Sanela Martic
- Department of Forensic Science, Trent University, Peterborough, Ontario, Canada K9L 0G2.
| |
Collapse
|
72
|
Patni D, Jha SK. Protonation-Deprotonation Switch Controls the Amyloid-like Misfolding of Nucleic-Acid-Binding Domains of TDP-43. J Phys Chem B 2021; 125:8383-8394. [PMID: 34318672 DOI: 10.1021/acs.jpcb.1c03262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nutrient starvation stress acidifies the cytosol and leads to the formation of large protein assemblies and misfolded aggregates. However, how starvation stress is sensed at the molecular level and leads to protein misfolding is poorly understood. TDP-43 is a vital protein, which, under stress-like conditions, associates with stress granule proteins via its functional nucleic-acid-binding domains (TDP-43tRRM) and misfolds to form aberrant aggregates. Here, we show that the monomeric N form of TDP-43tRRM forms a misfolded amyloid-like protein assembly, β form, in a pH-dependent manner and identified the critical protein side-chain residue whose protonation triggers its misfolding. We systematically mutated the three buried ionizable residues, D105, H166, and H256, to neutral amino acids to block the pH-dependent protonation-deprotonation titration of their side chain and studied their effect on the N-to-β transition. We observed that D105A and H256Q resembled TDP-43tRRM in their pH-dependent misfolding behavior. However, H166Q retains the N-like secondary structure under low-pH conditions and does not show pH-dependent misfolding to the β form. These results indicate that H166 is the critical side-chain residue whose protonation triggers the misfolding of TDP-43tRRM and shed light on how stress-induced misfolding of proteins during neurodegeneration could begin from site-specific triggers.
Collapse
Affiliation(s)
- Divya Patni
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Jha
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
73
|
Bright F, Chan G, van Hummel A, Ittner LM, Ke YD. TDP-43 and Inflammation: Implications for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Int J Mol Sci 2021; 22:ijms22157781. [PMID: 34360544 PMCID: PMC8346169 DOI: 10.3390/ijms22157781] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
The abnormal mislocalisation and ubiquitinated protein aggregation of the TAR DNA binding protein 43 (TDP-43) within the cytoplasm of neurons and glia in the central nervous system (CNS) is a pathological hallmark of early-onset neurodegenerative disorders amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The pathomechanisms underlying abnormal mislocalisation and aggregation of TDP-43 remain unknown. However, there is a growing body of evidence implicating neuroinflammation and immune-mediated mechanisms in the pathogenesis of neurodegeneration. Importantly, most of the evidence for an active role of immunity and inflammation in the pathogenesis of ALS and FTD relates specifically to TDP-43, posing the question as to whether immune-mediated mechanisms could hold the key to understanding TDP-43’s underlying role in neurodegeneration in both diseases. Therefore, this review aims to piece together key lines of evidence for the specific association of TDP-43 with key immune and inflammatory pathways to explore the nature of this relationship and the implications for potential pathomechanisms underlying neurodegeneration in ALS and FTD.
Collapse
|
74
|
Lotz SK, Blackhurst BM, Reagin KL, Funk KE. Microbial Infections Are a Risk Factor for Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:691136. [PMID: 34305533 PMCID: PMC8292681 DOI: 10.3389/fncel.2021.691136] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, comprise a family of disorders characterized by progressive loss of nervous system function. Neuroinflammation is increasingly recognized to be associated with many neurodegenerative diseases but whether it is a cause or consequence of the disease process is unclear. Of growing interest is the role of microbial infections in inciting degenerative neuroinflammatory responses and genetic factors that may regulate those responses. Microbial infections cause inflammation within the central nervous system through activation of brain-resident immune cells and infiltration of peripheral immune cells. These responses are necessary to protect the brain from lethal infections but may also induce neuropathological changes that lead to neurodegeneration. This review discusses the molecular and cellular mechanisms through which microbial infections may increase susceptibility to neurodegenerative diseases. Elucidating these mechanisms is critical for developing targeted therapeutic approaches that prevent the onset and slow the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Kristen E. Funk
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
75
|
Gupta R, Sahu M, Srivastava D, Tiwari S, Ambasta RK, Kumar P. Post-translational modifications: Regulators of neurodegenerative proteinopathies. Ageing Res Rev 2021; 68:101336. [PMID: 33775891 DOI: 10.1016/j.arr.2021.101336] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/10/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022]
Abstract
One of the hallmark features in the neurodegenerative disorders (NDDs) is the accumulation of aggregated and/or non-functional protein in the cellular milieu. Post-translational modifications (PTMs) are an essential regulator of non-functional protein aggregation in the pathogenesis of NDDs. Any alteration in the post-translational mechanism and the protein quality control system, for instance, molecular chaperone, ubiquitin-proteasome system, autophagy-lysosomal degradation pathway, enhances the accumulation of misfolded protein, which causes neuronal dysfunction. Post-translational modification plays many roles in protein turnover rate, accumulation of aggregate and can also help in the degradation of disease-causing toxic metabolites. PTMs such as acetylation, glycosylation, phosphorylation, ubiquitination, palmitoylation, SUMOylation, nitration, oxidation, and many others regulate protein homeostasis, which includes protein structure, functions and aggregation propensity. Different studies demonstrated the involvement of PTMs in the regulation of signaling cascades such as PI3K/Akt/GSK3β, MAPK cascade, AMPK pathway, and Wnt signaling pathway in the pathogenesis of NDDs. Further, mounting evidence suggests that targeting different PTMs with small chemical molecules, which acts as an inhibitor or activator, reverse misfolded protein accumulation and thus enhances the neuroprotection. Herein, we briefly discuss the protein aggregation and various domain structures of different proteins involved in the NDDs, indicating critical amino acid residues where PTMs occur. We also describe the implementation and involvement of various PTMs on signaling cascade and cellular processes in NDDs. Lastly, we implement our current understanding of the therapeutic importance of PTMs in neurodegeneration, along with emerging techniques targeting various PTMs.
Collapse
|
76
|
Tau and TDP-43 synergy: a novel therapeutic target for sporadic late-onset Alzheimer's disease. GeroScience 2021; 43:1627-1634. [PMID: 34185246 PMCID: PMC8492812 DOI: 10.1007/s11357-021-00407-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/16/2021] [Indexed: 11/10/2022] Open
Abstract
Alzheimer’s disease (AD) is traditionally defined by the presence of two types of protein aggregates in the brain: amyloid plaques comprised of the protein amyloid-β (Aβ) and neurofibrillary tangles containing the protein tau. However, a large proportion (up to 57%) of AD patients also have TDP-43 aggregates present as an additional comorbid pathology. The presence of TDP-43 aggregates in AD correlates with hippocampal sclerosis, worse brain atrophy, more severe cognitive impairment, and more rapid cognitive decline. In patients with mixed Aβ, tau, and TDP-43 pathology, TDP-43 may interact with neurodegenerative processes in AD, worsening outcomes. While considerable progress has been made to characterize TDP-43 pathology in AD and late-onset dementia, there remains a critical need for mechanistic studies to understand underlying disease biology and develop therapeutic interventions. This perspectives article reviews the current understanding of these processes from autopsy cohort studies and model organism-based research, and proposes targeting neurotoxic synergies between tau and TDP-43 as a new therapeutic strategy for AD with comorbid TDP-43 pathology.
Collapse
|
77
|
Lashuel HA. Rethinking protein aggregation and drug discovery in neurodegenerative diseases: Why we need to embrace complexity? Curr Opin Chem Biol 2021; 64:67-75. [PMID: 34174698 DOI: 10.1016/j.cbpa.2021.05.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/30/2021] [Accepted: 05/09/2021] [Indexed: 12/19/2022]
Abstract
More than a century has passed since pathological protein aggregates were first identified in the brains of patients with neurodegenerative diseases (NDDs). Yet, we still do not have effective therapies to treat or slow the progression of these devastating diseases or diagnostics for early detection and monitoring disease progression. Herein, I reflect on recent findings that are challenging traditional views about the composition, ultrastructural properties, and diversity of protein pathologies in the brain, their mechanisms of formation and how we investigate and model pathological aggregation processes in the laboratory today. This article is an invitation to embrace the complexity of proteinopathies as an essential step to understanding the molecular mechanisms underpinning NDDs and to advance translational research and drug discovery in NDDs.
Collapse
Affiliation(s)
- Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
78
|
Zgórzyńska E, Krawczyk K, Bełdzińska P, Walczewska A. Molecular basis of proteinopathies: Etiopathology
of dementia and motor disorders. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.9513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neurodegenerative diseases are one of the most important medical and social problems affecting
elderly people, the percentage of which is significantly increasing in the total world population.
The cause of these diseases is the destruction of neurons by protein aggregates that form pathological
deposits in neurons, glial cells and in the intercellular space. Proteins whose molecules
are easily destabilized by point mutations or endogenous processes are alpha-synuclein (ASN),
tau and TDP-43. Pathological forms of these proteins form characteristic aggregates, which accumulate
in the neurons and are the cause of various forms of dementia and motor disorders.
The most common causes of dementia are tauopathies. In primary tauopathies, which include
progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), Pick’s disease (PiD), and
frontotemporal dementia (FTD), modified tau molecules disrupt axonal transport and protein
distribution in neurons. Ultimately, the helical filaments and neurofibrillary tangles of tau lead to
neuron death in various structures of the brain. In Alzheimer’s disease hyperphosphorylated tau tangles along with β amyloid plaques are responsible for the degeneration of the hippocampus,
entorhinal cortex and amygdala. The most prevalent synucleinopathies are Parkinson’s disease,
multiple system atrophy (MSA) and dementia with Lewy bodies, where there is a degeneration of
neurons in the extrapyramidal tracts or, as in MSA, autonomic nerves. TDP-43 inclusions in the
cytoplasm cause the degeneration of motor neurons in amyotrophic lateral sclerosis (ALS) and
in one of the frontotemporal dementia variant (FTLD-TDP). In this work ASN, tau and TDP-43
structures are described, as well as the genetic and sporadic factors that lead to the destabilization
of molecules, their aggregation and incorrect distribution in neurons, which are the causes
of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Klaudia Krawczyk
- Zakład Interakcji Międzykomórkowych, Uniwersytet Medyczny w Łodzi
| | | | - Anna Walczewska
- Zakład Interakcji Międzykomórkowych, Uniwersytet Medyczny w Łodzi
| |
Collapse
|
79
|
Velázquez-Cruz A, Baños-Jaime B, Díaz-Quintana A, De la Rosa MA, Díaz-Moreno I. Post-translational Control of RNA-Binding Proteins and Disease-Related Dysregulation. Front Mol Biosci 2021; 8:658852. [PMID: 33987205 PMCID: PMC8111222 DOI: 10.3389/fmolb.2021.658852] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
Cell signaling mechanisms modulate gene expression in response to internal and external stimuli. Cellular adaptation requires a precise and coordinated regulation of the transcription and translation processes. The post-transcriptional control of mRNA metabolism is mediated by the so-called RNA-binding proteins (RBPs), which assemble with specific transcripts forming messenger ribonucleoprotein particles of highly dynamic composition. RBPs constitute a class of trans-acting regulatory proteins with affinity for certain consensus elements present in mRNA molecules. However, these regulators are subjected to post-translational modifications (PTMs) that constantly adjust their activity to maintain cell homeostasis. PTMs can dramatically change the subcellular localization, the binding affinity for RNA and protein partners, and the turnover rate of RBPs. Moreover, the ability of many RBPs to undergo phase transition and/or their recruitment to previously formed membrane-less organelles, such as stress granules, is also regulated by specific PTMs. Interestingly, the dysregulation of PTMs in RBPs has been associated with the pathophysiology of many different diseases. Abnormal PTM patterns can lead to the distortion of the physiological role of RBPs due to mislocalization, loss or gain of function, and/or accelerated or disrupted degradation. This Mini Review offers a broad overview of the post-translational regulation of selected RBPs and the involvement of their dysregulation in neurodegenerative disorders, cancer and other pathologies.
Collapse
Affiliation(s)
- Alejandro Velázquez-Cruz
- Instituto de Investigaciones Químicas, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Blanca Baños-Jaime
- Instituto de Investigaciones Químicas, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Antonio Díaz-Quintana
- Instituto de Investigaciones Químicas, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Miguel A De la Rosa
- Instituto de Investigaciones Químicas, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
| |
Collapse
|
80
|
Shuster SO, Lee JC. Tryptophan Probes of TDP-43 C-Terminal Domain Amyloid Formation. J Phys Chem B 2021; 125:3781-3789. [PMID: 33835818 DOI: 10.1021/acs.jpcb.1c00767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aggregated TAR DNA-binding protein 43 (TDP-43) forms the cytoplasmic hallmarks associated with patients suffering from amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin. Under normal conditions, TDP-43 is a 414-amino acid protein; however, aggregates are enriched with N-terminal truncations which contain residues 267-414, known as the C-terminal domain of TDP-43 (TDP-43CTD). To gain residue-specific information on the aggregation process of TDP-43CTD, we created three single-Trp containing mutants (W385F/W412F, W334F/W412F, and W334F/W385F) by substituting two of the three native Trp residues with Phe, yielding fluorescent probes at W334, W385, and W412, respectively. Aggregation kinetics, secondary structure, and fibril morphology were compared to the wild-type protein using thioflavin-T fluorescence, Raman spectroscopy, and transmission electron microscopy, respectively. While only W334 is determined to be in the proteinase-K resistant core, all three sites are sensitive reporters of aggregation, revealing site-specific differences. Interestingly, W334 exhibited unusual multistep Trp kinetics, pinpointing a distinctive role for W334 and its nearby region during aggregation. This behavior is retained even upon seeding, suggesting the observed spectral change is related to fibril growth. This work provides new insights into the aggregation mechanism of TDP-43CTD and exemplifies the advantages of Trp as a site-specific environmentally sensitive fluorescent probe.
Collapse
Affiliation(s)
- Sydney O Shuster
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jennifer C Lee
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
81
|
Lucini CB, Braun RJ. Mitochondrion-Dependent Cell Death in TDP-43 Proteinopathies. Biomedicines 2021; 9:376. [PMID: 33918437 PMCID: PMC8066287 DOI: 10.3390/biomedicines9040376] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
In the last decade, pieces of evidence for TDP-43-mediated mitochondrial dysfunction in neurodegenerative diseases have accumulated. In patient samples, in vitro and in vivo models have shown mitochondrial accumulation of TDP-43, concomitantly with hallmarks of mitochondrial destabilization, such as increased production of reactive oxygen species (ROS), reduced level of oxidative phosphorylation (OXPHOS), and mitochondrial membrane permeabilization. Incidences of TDP-43-dependent cell death, which depends on mitochondrial DNA (mtDNA) content, is increased upon ageing. However, the molecular pathways behind mitochondrion-dependent cell death in TDP-43 proteinopathies remained unclear. In this review, we discuss the role of TDP-43 in mitochondria, as well as in mitochondrion-dependent cell death. This review includes the recent discovery of the TDP-43-dependent activation of the innate immunity cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) pathway. Unravelling cell death mechanisms upon TDP-43 accumulation in mitochondria may open up new opportunities in TDP-43 proteinopathy research.
Collapse
Affiliation(s)
- Chantal B. Lucini
- Research Area Neurodegenerative Diseases, Center for Biosciences, Faculty of Medicine/Dental Medicine, Danube Private University, 3500 Krems an der Donau, Austria
| | - Ralf J. Braun
- Research Area Neurodegenerative Diseases, Center for Biosciences, Faculty of Medicine/Dental Medicine, Danube Private University, 3500 Krems an der Donau, Austria
| |
Collapse
|
82
|
Dhakal S, Wyant CE, George HE, Morgan SE, Rangachari V. Prion-like C-Terminal Domain of TDP-43 and α-Synuclein Interact Synergistically to Generate Neurotoxic Hybrid Fibrils. J Mol Biol 2021; 433:166953. [PMID: 33771571 DOI: 10.1016/j.jmb.2021.166953] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/04/2021] [Accepted: 03/17/2021] [Indexed: 12/17/2022]
Abstract
Aberrant aggregation and amyloid formation of tar DNA binding protein (TDP-43) and α-synuclein (αS) underlie frontotemporal dementia (FTD) and Parkinson's disease (PD), respectively. Amyloid inclusions of TDP-43 and αS are also commonly co-observed in amyotrophic lateral sclerosis (ALS), dementia with Lewy bodies (DLB) and Alzheimer disease (AD). Emerging evidence from cellular and animal models show colocalization of the TDP-43 and αS aggregates, raising the possibility of direct interactions and co-aggregation between the two proteins. In this report, we set out to answer this question by investigating the interactions between αS and prion-like pathogenic C-terminal domain of TDP-43 (TDP-43 PrLD). PrLD is an aggregation-prone fragment generated both by alternative splicing as well as aberrant proteolytic cleavage of full length TDP-43. Our results indicate that two proteins interact in a synergistic manner to augment each other's aggregation towards hybrid fibrils. While monomers, oligomers and sonicated fibrils of αS seed TDP-43 PrLD monomers, TDP-43 PrLD fibrils failed to seed αS monomers indicating selectivity in interactions. Furthermore, αS modulates liquid droplets formed by TDP-43 PrLD and RNA to promote insoluble amyloid aggregates. Importantly, the cross-seeded hybrid aggregates show greater cytotoxicity as compared to the individual homotypic aggregates suggesting that the interactions between the two proteins have a discernable impact on cellular functions. Together, these results bring forth insights into TDP-43 PrLD - αS interactions that could help explain clinical and pathological presentations in patients with co-morbidities involving the two proteins.
Collapse
Affiliation(s)
- Shailendra Dhakal
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Courtney E Wyant
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Hannah E George
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Sarah E Morgan
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Vijayaraghavan Rangachari
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA; Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA.
| |
Collapse
|
83
|
Buratti E. Trends in Understanding the Pathological Roles of TDP-43 and FUS Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:243-267. [PMID: 33433879 DOI: 10.1007/978-3-030-51140-1_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Following the discovery of TDP-43 and FUS involvement in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD), the major challenge in the field has been to understand their physiological functions, both in normal and disease conditions. The hope is that this knowledge will improve our understanding of disease and lead to the development of effective therapeutic options. Initially, the focus has been directed at characterizing the role of these proteins in the control of RNA metabolism, because the main function of TDP-43 and FUS is to bind coding and noncoding RNAs to regulate their life cycle within cells. As a result, we now have an in-depth picture of the alterations that occur in RNA metabolism following their aggregation in various ALS/FTLD models and, to a somewhat lesser extent, in patients' brains. In parallel, progress has been made with regard to understanding how aggregation of these proteins occurs in neurons, how it can spread in different brain regions, and how these changes affect various metabolic cellular pathways to result in neuronal death. The aim of this chapter will be to provide a general overview of the trending topics in TDP-43 and FUS investigations and to highlight what might represent the most promising avenues of research in the years to come.
Collapse
Affiliation(s)
- Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.
| |
Collapse
|
84
|
Oxidative Stress in Amyotrophic Lateral Sclerosis: Pathophysiology and Opportunities for Pharmacological Intervention. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5021694. [PMID: 33274002 PMCID: PMC7683149 DOI: 10.1155/2020/5021694] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/25/2020] [Accepted: 10/24/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease or Charcot disease, is a fatal neurodegenerative disease that affects motor neurons (MNs) and leads to death within 2–5 years of diagnosis, without any effective therapy available. Although the pathological mechanisms leading to ALS are still unknown, a wealth of evidence indicates that an excessive reactive oxygen species (ROS) production associated with an inefficient antioxidant defense represents an important pathological feature in ALS. Substantial evidence indicates that oxidative stress (OS) is implicated in the loss of MNs and in mitochondrial dysfunction, contributing decisively to neurodegeneration in ALS. Although the modulation of OS represents a promising approach to protect MNs from degeneration, the fact that several antioxidants with beneficial effects in animal models failed to show any therapeutic benefit in patients raises several questions that should be analyzed. Using specific queries for literature search on PubMed, we review here the role of OS-related mechanisms in ALS, including the involvement of altered mitochondrial function with repercussions in neurodegeneration. We also describe antioxidant compounds that have been mostly tested in preclinical and clinical trials of ALS, also describing their respective mechanisms of action. While the description of OS mechanism in the different mutations identified in ALS has as principal objective to clarify the contribution of OS in ALS, the description of positive and negative outcomes for each antioxidant is aimed at paving the way for novel opportunities for intervention. In conclusion, although antioxidant strategies represent a very promising approach to slow the progression of the disease, it is of utmost need to invest on the characterization of OS profiles representative of each subtype of patient, in order to develop personalized therapies, allowing to understand the characteristics of antioxidants that have beneficial effects on different subtypes of patients.
Collapse
|
85
|
Ravnik-Glavač M, Glavač D. Circulating RNAs as Potential Biomarkers in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2020; 21:ijms21051714. [PMID: 32138249 PMCID: PMC7084402 DOI: 10.3390/ijms21051714] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex multi-system neurodegenerative disorder with currently limited diagnostic and no therapeutic options. Despite the intense efforts no clinically applicable biomarkers for ALS are yet established. Most current research is thus focused, in particular, in identifying potential non-invasive circulating biomarkers for more rapid and accurate diagnosis and monitoring of the disease. In this review, we have focused on messenger RNA (mRNA), non-coding RNAs (lncRNAs), micro RNAs (miRNAs) and circular RNA (circRNAs) as potential biomarkers for ALS in peripheral blood serum, plasma and cells. The most promising miRNAs include miR-206, miR-133b, miR-27a, mi-338-3p, miR-183, miR-451, let-7 and miR-125b. To test clinical potential of this miRNA panel, a useful approach may be to perform such analysis on larger multi-center scale using similar experimental design. However, other types of RNAs (lncRNAs, circRNAs and mRNAs) that, together with miRNAs, represent RNA networks, have not been yet extensively studied in blood samples of patients with ALS. Additional research has to be done in order to find robust circulating biomarkers and therapeutic targets that will distinguish key RNA interactions in specific ALS-types to facilitate diagnosis, predict progression and design therapy.
Collapse
Affiliation(s)
- Metka Ravnik-Glavač
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
- Correspondence: (M.R.-G.); (D.G.)
| | - Damjan Glavač
- Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
- Correspondence: (M.R.-G.); (D.G.)
| |
Collapse
|
86
|
ALS-causing D169G mutation disrupts the ATP-binding capacity of TDP-43 RRM1 domain. Biochem Biophys Res Commun 2020; 524:459-464. [PMID: 32007267 DOI: 10.1016/j.bbrc.2020.01.122] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
TDP-43 inclusion is a pathological hallmark for ∼97% ALS and ∼45% FTD patients. So far, >50 ALS-causing mutations have been identified, most of which are hosted by the intrinsically-disordered prion-like domain. The D169G mutation is the only one within the well-folded RRM1 domain, which, however, induces no significant change of the crystal structure and even slightly enhances the thermodynamic stability. Therefore, the mechanism for D169G to enhance the cytotoxicity remains elusive. Here by NMR, we reveal for the first time: 1) D169G does trigger significant dynamic changes for a cluster of residues. 2) Very unexpectedly, D169G disrupts the ATP-binding capacity of RRM1 although the ATP-binding pocket is on the back side of the mutation site. Taken together with our previous results, the current study provides a potential mechanism to rationalize enhancement of the TDP-43 cytotoxicity by D169G and highlights again the key roles of ATP in neurodegenerative diseases and ageing.
Collapse
|