51
|
Zhang Z, Wang Z, Yan M, Yu J, Dekker A, Zhao L, Wee L. Radiomics and Dosiomics Signature From Whole Lung Predicts Radiation Pneumonitis: A Model Development Study With Prospective External Validation and Decision-curve Analysis. Int J Radiat Oncol Biol Phys 2023; 115:746-758. [PMID: 36031028 DOI: 10.1016/j.ijrobp.2022.08.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 08/10/2022] [Accepted: 08/20/2022] [Indexed: 02/04/2023]
Abstract
PURPOSE Radiation pneumonitis (RP) is one of the common side effects of radiation therapy in the thoracic region. Radiomics and dosiomics quantify information implicit within medical images and radiation therapy dose distributions. In this study we demonstrate the prognostic potential of radiomics, dosiomics, and clinical features for RP prediction. METHODS AND MATERIALS Radiomics, dosiomics, dose-volume histogram (DVH) metrics, and clinical parameters were obtained on 314 retrospectively collected and 35 prospectively enrolled patients diagnosed with lung cancer between 2013 to 2019. A radiomics risk score (R score) and dosiomics risk score (D score), as well as a DVH-score, were calculated based on logistic regression after feature selection. Six models were built using different combinations of R score, D score, DVH score, and clinical parameters to evaluate their added prognostic power. Overoptimism was evaluated by bootstrap resampling from the training set, and the prospectively collected cohort was used as the external test set. Model calibration and decision-curve characteristics of the best-performing models were evaluated. For ease of further evaluation, nomograms were constructed for selected models. RESULTS A model built by integrating all of the R score, D score, and clinical parameters had the best discriminative ability with areas under the curve of 0.793 (95% confidence interval [CI], 0.735-0.851), 0.774 (95% CI, 0.762-0.786), and 0.855 (95% CI, 0.719-0.990) in the training, bootstrapping, and external test sets, respectively. The calibration curve image showed good agreement between the predicted and actual values, with a slope of 1.21 and intercept of -0.04. The decision curve image showed a positive net benefit for the final model based on the nomogram. CONCLUSIONS Radiomic and dosiomic features have the potential to assist with the prediction of RP, and the combination of radiomics, dosiomics, and clinical parameters led to the best prognostic model in the present study.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China; Department of Radiation Oncology, MAASTRO, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Zhixiang Wang
- Department of Radiation Oncology, MAASTRO, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Meng Yan
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jiaqi Yu
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Andre Dekker
- Department of Radiation Oncology, MAASTRO, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Lujun Zhao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| | - Leonard Wee
- Department of Radiation Oncology, MAASTRO, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
52
|
Machine Learning-Based Multiomics Prediction Model for Radiation Pneumonitis. JOURNAL OF ONCOLOGY 2023; 2023:5328927. [PMID: 36852328 PMCID: PMC9966572 DOI: 10.1155/2023/5328927] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/18/2023] [Accepted: 02/01/2023] [Indexed: 02/20/2023]
Abstract
Objective The study aims to establish and validate an effective CT-based radiation pneumonitis (RP) prediction model using the multiomics method of radiomics and EQD2-based dosiomics. Materials and Methods The study performed a retrospective analysis on 91 nonsmall cell lung cancer patients who received radiotherapy from 2019 to 2021 in our hospital. The patients with RP grade ≥1 were labeled as 1, and those with RP grade < 1 were labeled as 0. The whole lung excluding clinical target volume (lung-CTV) was used as the region of interest (ROI). The radiomic and dosiomic features were extracted from the lung-CTV area's image and dose distribution. Besides, the equivalent dose of the 2 Gy fractionated radiation (EQD2) model was used to convert the physical dose to the isoeffect dose, and then, the EQD2-based dosiomic (eqd-dosiomic) features were extracted from the isoeffect dose distribution. Four machine learning (ML) models, including DVH, radiomics combined with DVH (radio + DVH), radiomics combined with dosiomics (radio + dose), and radiomics combined with eqd-dosiomics (radio + eqdose), were established to construct the prediction model via eleven different classifiers. The fivefold cross-validation was used to complete the classification experiment. The area under the curve (AUC) of the receiver operating characteristics (ROC), accuracy, precision, recall, and F1-score were calculated to assess the performance level of the prediction models. Results Compared with the DVH, radio + DVH, and radio + dose model, the value of the training AUC, accuracy, and F1-score of radio + eqdose was higher, and the difference was statistically significant (p < 0.05). Besides, the average value of the precision and recall of radio + eqdose was higher, but the difference was not statistically significant (p > 0.05). Conclusion The performance of using the ML-based multiomics method of radiomics and eqd-dosiomics to predict RP is more efficient and effective.
Collapse
|
53
|
Cai C, Lv W, Chi F, Zhang B, Zhu L, Yang G, Zhao S, Zhu Y, Han X, Dai Z, Wang X, Lu L. Prognostic generalization of multi-level CT-dose fusion dosiomics from primary tumor and lymph node in nasopharyngeal carcinoma. Med Phys 2023; 50:922-934. [PMID: 36317870 DOI: 10.1002/mp.16044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 09/13/2022] [Accepted: 09/24/2022] [Indexed: 11/12/2022] Open
Abstract
PURPOSE To investigate the prognostic performance of multi-level computed tomography (CT)-dose fusion dosiomics at the image-, matrix-, and feature-levels from the gross tumor volume (GTV) at nasopharynx and the involved lymph node for nasopharyngeal carcinoma (NPC) patients. METHODS Two hundred and nineteen NPC patients (175 vs. 44 for training vs. internal validation) were used to train prediction model, and 32 NPC patients were used for external validation. We first extracted CT and dose information from intratumoral nasopharynx (GTV_nx) and lymph node (GTV_nd) regions. Then, the corresponding peritumoral regions (RING_3 mm and RING_5 mm) were also considered. Thus, the individual and combination of intratumoral and peritumoral regions were as follows: GTV_nx, GTV_nd, RING_3 mm_nx, RING_3 mm_nd, RING_5 mm_nx, RING_5 mm_nd, GTV_nxnd, RING_3 mm_nxnd, RING_5 mm_nxnd, GTV + RING_3 mm_nxnd, and GTV + RING_5 mm_nxnd. For each region, 11 models were built by combining five clinical parameters and 127 features from: (1) dose images alone; (2-7) fused dose and CT images via wavelet-based fusion using CT weights of 0.2, 0.4, 0.6, and 0.8, gradient transfer fusion, and guided-filtering-based fusion (GFF); (8) fused matrices (sumMat); (9-10) fused features derived via feature averaging (avgFea) and feature concatenation (conFea); and finally, (11) CT images alone. The concordance index (C-index) and Kaplan-Meier curves with log-rank test were used to assess model performance. RESULTS The fusion models' performance was better than single CT/dose model on both internal and external validation. Models that combined the information from both GTV_nx and GTV_nd regions outperformed the single region model. For internal validation, GTV + RING_3 mm_nxnd GFF model achieved the highest C-index both in recurrence-free survival (RFS) and metastasis-free survival (MFS) predictions (RFS: 0.822; MFS: 0.786). The highest C-index in external validation set was achieved by RING_3 mm_nxnd model (RFS: 0.762; MFS: 0.719). The GTV + RING_3 mm_nxnd GFF model is able to significantly separate patients into high-risk and low-risk groups compared to dose-only or CT-only models. CONCLUSION Fusion dosiomics model combining the primary tumor, the involved lymph node, and 3 mm peritumoral information outperformed single-modality models for different outcome predictions, which is helpful for clinical decision-making and the development of personalized treatment.
Collapse
Affiliation(s)
- Chunya Cai
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, China
- Department of Radiotherapy, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wenbing Lv
- Department of Electronic Engineering, Information School, Yunnan University, Kunming, Yunnan, China
| | - Feng Chi
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Bailin Zhang
- Department of Radiotherapy, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lin Zhu
- Department of Radiotherapy, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Geng Yang
- Department of Radiotherapy, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shiwu Zhao
- Department of Radiotherapy, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yuanhu Zhu
- Department of Radiotherapy, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xu Han
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhenhui Dai
- Department of Radiotherapy, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xuetao Wang
- Department of Radiotherapy, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lijun Lu
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, China
- Pazhou Lab, Guangzhou, China
| |
Collapse
|
54
|
Cheng M, Lin R, Bai N, Zhang Y, Wang H, Guo M, Duan X, Zheng J, Qiu Z, Zhao Y. Deep learning for predicting the risk of immune checkpoint inhibitor-related pneumonitis in lung cancer. Clin Radiol 2023; 78:e377-e385. [PMID: 36914457 DOI: 10.1016/j.crad.2022.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/14/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023]
Abstract
AIM To develop and validate a nomogram model that combines computed tomography (CT)-based radiological factors extracted from deep-learning and clinical factors for the early predictions of immune checkpoint inhibitor-related pneumonitis (ICI-P). MATERIALS AND METHODS Forty ICI-P patients and 101 patients without ICI-P were divided randomly into the training (n=113) and test (n=28) sets. The convolution neural network (CNN) algorithm was used to extract the CT-based radiological features of predictable ICI-P and calculated the CT score of each patient. A nomogram model to predict the risk of ICI-P was developed by logistic regression. RESULTS CT score was calculated from five radiological features extracted by the residual neural network-50-V2 with feature pyramid networks. Four predictors of ICI-P in the nomogram model included a clinical feature (pre-existing lung diseases), two serum markers (absolute lymphocyte count and lactate dehydrogenase), and a CT score. The area under curve of the nomogram model in the training (0.910 versus 0.871 versus 0.778) and test (0.900 versus 0.856 versus 0.869) sets was better than the radiological and clinical models. The nomogram model showed good consistency and better clinical practicability. CONCLUSION The nomogram model that combined CT-based radiological factors and clinical factors can be used as a new non-invasive tool for the early prediction of ICI-P in lung cancer patients after immunotherapy with low cost and low manual input.
Collapse
Affiliation(s)
- M Cheng
- Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - R Lin
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - N Bai
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Y Zhang
- Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - H Wang
- Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - M Guo
- Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - X Duan
- Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - J Zheng
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Z Qiu
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Y Zhao
- Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
55
|
Liu H, Zhao D, Huang Y, Li C, Dong Z, Tian H, Sun Y, Lu Y, Chen C, Wu H, Zhang Y. Comprehensive prognostic modeling of locoregional recurrence after radiotherapy for patients with locoregionally advanced hypopharyngeal squamous cell carcinoma. Front Oncol 2023; 13:1129918. [PMID: 37025592 PMCID: PMC10072214 DOI: 10.3389/fonc.2023.1129918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Abstract
Purpose To propose and evaluate a comprehensive modeling approach combing radiomics, dosiomics and clinical components, for more accurate prediction of locoregional recurrence risk after radiotherapy for patients with locoregionally advanced HPSCC. Materials and methods Clinical data of 77 HPSCC patients were retrospectively investigated, whose median follow-up duration was 23.27 (4.83-81.40) months. From the planning CT and dose distribution, 1321 radiomics and dosiomics features were extracted respectively from planning gross tumor volume (PGTV) region each patient. After stability test, feature dimension was further reduced by Principal Component Analysis (PCA), yielding Radiomic and Dosiomic Principal Components (RPCs and DPCs) respectively. Multiple Cox regression models were constructed using various combinations of RPC, DPC and clinical variables as the predictors. Akaike information criterion (AIC) and C-index were used to evaluate the performance of Cox regression models. Results PCA was performed on 338 radiomic and 873 dosiomic features that were tested as stable (ICC1 > 0.7 and ICC2 > 0.95), yielding 5 RPCs and DPCs respectively. Three comprehensive features (RPC0, P<0.01, DPC0, P<0.01 and DPC3, P<0.05) were found to be significant in the individual Radiomic or Dosiomic Cox regression models. The model combining the above features and clinical variable (total stage IVB) provided best risk stratification of locoregional recurrence (C-index, 0.815; 95%CI, 0.770-0.859) and prevailing balance between predictive accuracy and complexity (AIC, 143.65) than any other investigated models using either single factors or two combined components. Conclusion This study provided quantitative tools and additional evidence for the personalized treatment selection and protocol optimization for HPSCC, a relatively rare cancer. By combining complementary information from radiomics, dosiomics, and clinical variables, the proposed comprehensive model provided more accurate prediction of locoregional recurrence risk after radiotherapy.
Collapse
Affiliation(s)
- Hongjia Liu
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Dan Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yuliang Huang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Chenguang Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhengkun Dong
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hongbo Tian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yijie Sun
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yanye Lu
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Chen Chen
- School of Electronics Engineering and Computer Science, Peking University, Beijing, China
| | - Hao Wu
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yibao Zhang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
- *Correspondence: Yibao Zhang,
| |
Collapse
|
56
|
Xia WL, Liang B, Men K, Zhang K, Tian Y, Li MH, Lu NN, Li YX, Dai JR. Prediction of adaptive strategies based on deformation vector field features for MR-guided adaptive radiotherapy of prostate cancer. Med Phys 2022. [PMID: 36583878 DOI: 10.1002/mp.16192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The selection of adaptive strategies in MR-guided adaptive radiotherapy (MRgART) usually relies on subjective review of anatomical changes. However, this kind of review may lead to improper selection of adaptive strategy for some fractions. PURPOSE The purpose of this study was to develop prediction models based on deformation vector field (DVF) features for automatic and accurate strategy selection, using prostate cancer as an example. METHODS 100 fractions of 20 prostate cancer patients were retrospectively selected in this study. Treatment plans using both adapt to position (ATP) strategy and adapt to shape (ATS) strategy were generated. Optimal adaptive strategy was determined according to dosimetric evaluation. DVFs of the deformable image registration (DIR) of daily MRI and CT simulation scans were extracted. The shape, first order statistics, and spatial features were extracted from the DVFs, subjected to further selection using the minimum redundancy maximum relevance (mRMR) method. The number of features (Fn ) was hyper-tuned using bootstrapping method, and then Fn indicating a peak area under the curve (AUC) value was used to construct three prediction models. RESULTS According to subjective review, the ATS strategy was adopted for all 100 fractions. However, the evaluation results showed that the ATP strategy could have met the clinical requirements for 23 (23%) fractions. The three prediction models showed high prediction performance, with the best performing model achieving an AUC value of 0.896, corresponding accuracy (ACC), sensitivity (SEN) and specificity (SPC) of 0.9, 0.958, and 0.667, respectively. The features used to construct prediction models included four features extracted from y direction of DVF (DVFy ) and mask, one feature from z direction of DVF (DVFz ). It indicated that the deformation along the anterior-posterior direction had a greater impact on determining the adaptive strategy than other directions. CONCLUSIONS DVF-feature-based models could accurately predict the adaptive strategy and avoid unnecessary selection of time-consuming ATS strategy, which consequently improves the efficiency of the MRgART process.
Collapse
Affiliation(s)
- Wen-Long Xia
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Liang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kuo Men
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ke Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Tian
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming-Hui Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning-Ning Lu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ye-Xiong Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Rong Dai
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
57
|
Morelli L, Parrella G, Molinelli S, Magro G, Annunziata S, Mairani A, Chalaszczyk A, Fiore MR, Ciocca M, Paganelli C, Orlandi E, Baroni G. A Dosiomics Analysis Based on Linear Energy Transfer and Biological Dose Maps to Predict Local Recurrence in Sacral Chordomas after Carbon-Ion Radiotherapy. Cancers (Basel) 2022; 15:cancers15010033. [PMID: 36612029 PMCID: PMC9817801 DOI: 10.3390/cancers15010033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Carbon Ion Radiotherapy (CIRT) is one of the most promising therapeutic options to reduce Local Recurrence (LR) in Sacral Chordomas (SC). The aim of this work is to compare the performances of survival models fed with dosiomics features and conventional DVH metrics extracted from relative biological effectiveness (RBE)-weighted dose (DRBE) and dose-averaged Linear Energy Transfer (LETd) maps, towards the identification of possible prognostic factors for LR in SC patients treated with CIRT. This retrospective study included 50 patients affected by SC with a focus on patients that presented a relapse in a high-dose region. Survival models were built to predict both LR and High-Dose Local Recurrencies (HD-LR). The models were evaluated through Harrell Concordance Index (C-index) and patients were stratified into high/low-risk groups. Local Recurrence-free Kaplan-Meier curves were estimated and evaluated through log-rank tests. The model with highest performance (median(interquartile-range) C-index of 0.86 (0.22)) was built on features extracted from LETd maps, with DRBE models showing promising but weaker results (C-index of 0.83 (0.21), 0.80 (0.21)). Although the study should be extended to a wider patient population, LETd maps show potential as a prognostic factor for SC HD-LR in CIRT, and dosiomics appears to be the most promising approach against more conventional methods (e.g., DVH-based).
Collapse
Affiliation(s)
- Letizia Morelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
- Correspondence: (L.M.); (G.P.); Tel.: +39-02-2399-9022 (G.P.)
| | - Giovanni Parrella
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
- Correspondence: (L.M.); (G.P.); Tel.: +39-02-2399-9022 (G.P.)
| | - Silvia Molinelli
- Medical Physics Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy
| | - Giuseppe Magro
- Medical Physics Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy
| | - Simone Annunziata
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Andrea Mairani
- Medical Physics Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy
- Heidelberg Ion Beam Therapy Center (HIT), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
| | - Agnieszka Chalaszczyk
- Radiotherapy Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy
| | - Maria Rosaria Fiore
- Radiotherapy Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy
| | - Mario Ciocca
- Medical Physics Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy
| | - Chiara Paganelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Ester Orlandi
- Radiotherapy Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy
| | - Guido Baroni
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| |
Collapse
|
58
|
Huang Y, Feng A, Lin Y, Gu H, Chen H, Wang H, Shao Y, Duan Y, Zhuo W, Xu Z. Radiation pneumonitis prediction after stereotactic body radiation therapy based on 3D dose distribution: dosiomics and/or deep learning-based radiomics features. Radiat Oncol 2022; 17:188. [PMID: 36397060 PMCID: PMC9673306 DOI: 10.1186/s13014-022-02154-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/08/2022] [Indexed: 11/18/2022] Open
Abstract
Background This study was designed to establish radiation pneumonitis (RP) prediction models using dosiomics and/or deep learning-based radiomics (DLR) features based on 3D dose distribution. Methods A total of 140 patients with non-small cell lung cancer who received stereotactic body radiation therapy (SBRT) were retrospectively included in this study. These patients were randomly divided into the training (n = 112) and test (n = 28) sets. Besides, 107 dosiomics features were extracted by Pyradiomics, and 1316 DLR features were extracted by ResNet50. Feature visualization was performed based on Spearman’s correlation coefficients, and feature selection was performed based on the least absolute shrinkage and selection operator. Three different models were constructed based on random forest, including (1) a dosiomics model (a model constructed based on dosiomics features), (2) a DLR model (a model constructed based on DLR features), and (3) a hybrid model (a model constructed based on dosiomics and DLR features). Subsequently, the performance of these three models was compared with receiver operating characteristic curves. Finally, these dosiomics and DLR features were analyzed with Spearman’s correlation coefficients. Results In the training set, the area under the curve (AUC) of the dosiomics, DLR, and hybrid models was 0.9986, 0.9992, and 0.9993, respectively; the accuracy of these three models was 0.9643, 0.9464, and 0.9642, respectively. In the test set, the AUC of these three models was 0.8462, 0.8750, and 0.9000, respectively; the accuracy of these three models was 0.8214, 0.7857, and 0.8571, respectively. The hybrid model based on dosiomics and DLR features outperformed other two models. Correlation analysis between dosiomics features and DLR features showed weak correlations. The dosiomics features that correlated DLR features with the Spearman’s rho |ρ| ≥ 0.8 were all first-order features. Conclusion The hybrid features based on dosiomics and DLR features from 3D dose distribution could improve the performance of RP prediction after SBRT.
Collapse
|
59
|
Yang S, Huang S, Ye X, Xiong K, Zeng B, Shi Y. Risk analysis of grade ≥ 2 radiation pneumonitis based on radiotherapy timeline in stage III/IV non-small cell lung cancer treated with volumetric modulated arc therapy: a retrospective study. BMC Pulm Med 2022; 22:402. [PMID: 36344945 PMCID: PMC9639320 DOI: 10.1186/s12890-022-02211-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Radiotherapy is an important treatment for patients with stage III/IV non-small cell lung cancer (NSCLC), and due to its high incidence of radiation pneumonitis, it is essential to identify high-risk people as early as possible. The present work investigates the value of the application of different phase data throughout the radiotherapy process in analyzing risk of grade ≥ 2 radiation pneumonitis in stage III/IV NSCLC. Furthermore, the phase data fusion was gradually performed with the radiotherapy timeline to develop a risk assessment model. METHODS This study retrospectively collected data from 91 stage III/IV NSCLC cases treated with Volumetric modulated arc therapy (VMAT). Patient data were collected according to the radiotherapy timeline for four phases: clinical characteristics, radiomics features, radiation dosimetry parameters, and hematological indexes during treatment. Risk assessment models for single-phase and stepwise fusion phases were established according to logistic regression. In addition, a nomogram of the final fusion phase model and risk classification system was generated. Receiver operating characteristic (ROC), decision curve, and calibration curve analysis were conducted to internally validate the nomogram to analyze its discrimination. RESULTS Smoking status, PTV and lung radiomics feature, lung and esophageal dosimetry parameters, and platelets at the third week of radiotherapy were independent risk factors for the four single-phase models. The ROC result analysis of the risk assessment models created by stepwise phase fusion were: (area under curve [AUC]: 0.67,95% confidence interval [CI]: 0.52-0.81), (AUC: 0.82,95%CI: 0.70-0.94), (AUC: 0.90,95%CI: 0.80-1.00), and (AUC:0.90,95%CI: 0.80-1.00), respectively. The nomogram based on the final fusion phase model was validated using calibration curve analysis and decision curve analysis, demonstrating good consistency and clinical utility. The nomogram-based risk classification system could correctly classify cases into three diverse risk groups: low-(ratio:3.6%; 0 < score < 135), intermediate-(ratio:30.7%, 135 < score < 160) and high-risk group (ratio:80.0%, score > 160). CONCLUSIONS In our study, the risk assessment model makes it easy for physicians to assess the risk of grade ≥ 2 radiation pneumonitis at various phases in the radiotherapy process, and the risk classification system and nomogram identify the patient's risk level after completion of radiation therapy.
Collapse
Affiliation(s)
- Songhua Yang
- Department of Clinical Pharmaceutical Research Institution, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Shixiong Huang
- Department of Radiation Oncology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Xu Ye
- Department of Radiation Oncology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, Hunan, China
| | - Biao Zeng
- Department of Radiation Oncology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Yingrui Shi
- Department of Radiation Oncology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|
60
|
Li B, Zheng X, Zhang J, Lam S, Guo W, Wang Y, Cui S, Teng X, Zhang Y, Ma Z, Zhou T, Lou Z, Meng L, Ge H, Cai J. Lung Subregion Partitioning by Incremental Dose Intervals Improves Omics-Based Prediction for Acute Radiation Pneumonitis in Non-Small-Cell Lung Cancer Patients. Cancers (Basel) 2022; 14:cancers14194889. [PMID: 36230812 PMCID: PMC9564373 DOI: 10.3390/cancers14194889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose: To evaluate the effectiveness of features obtained from our proposed incremental-dose-interval-based lung subregion segmentation (IDLSS) for predicting grade ≥ 2 acute radiation pneumonitis (ARP) in lung cancer patients upon intensity-modulated radiotherapy (IMRT). (1) Materials and Methods: A total of 126 non-small-cell lung cancer patients treated with IMRT were retrospectively analyzed. Five lung subregions (SRs) were generated by the intersection of the whole lung (WL) and five sub-regions receiving incremental dose intervals. A total of 4610 radiomics features (RF) from pre-treatment planning computed tomographic (CT) and 213 dosiomics features (DF) were extracted. Six feature groups, including WL-RF, WL-DF, SR-RF, SR-DF, and the combined feature sets of WL-RDF and SR-RDF, were generated. Features were selected by using a variance threshold, followed by a Student t-test. Pearson’s correlation test was applied to remove redundant features. Subsequently, Ridge regression was adopted to develop six models for ARP using the six feature groups. Thirty iterations of resampling were implemented to assess overall model performance by using the area under the Receiver-Operating-Characteristic curve (AUC), accuracy, precision, recall, and F1-score. (2) Results: The SR-RDF model achieved the best classification performance and provided significantly better predictability than the WL-RDF model in training cohort (Average AUC: 0.98 ± 0.01 vs. 0.90 ± 0.02, p < 0.001) and testing cohort (Average AUC: 0.88 ± 0.05 vs. 0.80 ± 0.04, p < 0.001). Similarly, predictability of the SR-DF model was significantly stronger than that of the WL-DF model in training cohort (Average AUC: 0.88 ± 0.03 vs. 0.70 ± 0.030, p < 0.001) and in testing cohort (Average AUC: 0.74 ± 0.08 vs. 0.65 ± 0.06, p < 0.001). By contrast, the SR-RF model significantly outperformed the WL-RF model only in the training set (Average AUC: 0.93 ± 0.02 vs. 0.85 ± 0.03, p < 0.001), but not in the testing set (Average AUC: 0.79 ± 0.05 vs. 0.77 ± 0.07, p = 0.13). (3) Conclusions: Our results demonstrated that the IDLSS method improved model performance for classifying ARP with grade ≥ 2 when using dosiomics or combined radiomics-dosiomics features.
Collapse
Affiliation(s)
- Bing Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Xiaoli Zheng
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Jiang Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Saikit Lam
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wei Guo
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Yunhan Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Sunan Cui
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, Stanford, CA 94305, USA
| | - Xinzhi Teng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yuanpeng Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zongrui Ma
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ta Zhou
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zhaoyang Lou
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Lingguang Meng
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Hong Ge
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
- Correspondence: (H.G.); (J.C.); Tel.: +852-3400-8645 (J.C.)
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
- Correspondence: (H.G.); (J.C.); Tel.: +852-3400-8645 (J.C.)
| |
Collapse
|
61
|
Li B, Ren G, Guo W, Zhang J, Lam SK, Zheng X, Teng X, Wang Y, Yang Y, Dan Q, Meng L, Ma Z, Cheng C, Tao H, Lei H, Cai J, Ge H. Function-Wise Dual-Omics analysis for radiation pneumonitis prediction in lung cancer patients. Front Pharmacol 2022; 13:971849. [PMID: 36199694 PMCID: PMC9528994 DOI: 10.3389/fphar.2022.971849] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: This study investigates the impact of lung function on radiation pneumonitis prediction using a dual-omics analysis method. Methods: We retrospectively collected data of 126 stage III lung cancer patients treated with chemo-radiotherapy using intensity-modulated radiotherapy, including pre-treatment planning CT images, radiotherapy dose distribution, and contours of organs and structures. Lung perfusion functional images were generated using a previously developed deep learning method. The whole lung (WL) volume was divided into function-wise lung (FWL) regions based on the lung perfusion functional images. A total of 5,474 radiomics features and 213 dose features (including dosiomics features and dose-volume histogram factors) were extracted from the FWL and WL regions, respectively. The radiomics features (R), dose features (D), and combined dual-omics features (RD) were used for the analysis in each lung region of WL and FWL, labeled as WL-R, WL-D, WL-RD, FWL-R, FWL-D, and FWL-RD. The feature selection was carried out using ANOVA, followed by a statistical F-test and Pearson correlation test. Thirty times train-test splits were used to evaluate the predictability of each group. The overall average area under the receiver operating characteristic curve (AUC), accuracy, precision, recall, and f1-score were calculated to assess the performance of each group. Results: The FWL-RD achieved a significantly higher average AUC than the WL-RD group in the training (FWL-RD: 0.927 ± 0.031, WL-RD: 0.849 ± 0.064) and testing cohorts (FWL-RD: 0.885 ± 0.028, WL-RD: 0.762 ± 0.053, p < 0.001). When using radiomics features only, the FWL-R group yielded a better classification result than the model trained with WL-R features in the training (FWL-R: 0.919 ± 0.036, WL-R: 0.820 ± 0.052) and testing cohorts (FWL-R: 0.862 ± 0.028, WL-R: 0.750 ± 0.057, p < 0.001). The FWL-D group obtained an average AUC of 0.782 ± 0.032, obtaining a better classification performance than the WL-D feature-based model of 0.740 ± 0.028 in the training cohort, while no significant difference was observed in the testing cohort (FWL-D: 0.725 ± 0.064, WL-D: 0.710 ± 0.068, p = 0.54). Conclusion: The dual-omics features from different lung functional regions can improve the prediction of radiation pneumonitis for lung cancer patients under IMRT treatment. This function-wise dual-omics analysis method holds great promise to improve the prediction of radiation pneumonitis for lung cancer patients.
Collapse
Affiliation(s)
- Bing Li
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Ge Ren
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Wei Guo
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jiang Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Sai-Kit Lam
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xiaoli Zheng
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Xinzhi Teng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yunhan Wang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Yang Yang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Qinfu Dan
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Lingguang Meng
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Zongrui Ma
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Chen Cheng
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Hongyan Tao
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Hongchang Lei
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
- *Correspondence: Hong Ge, ; Jing Cai,
| | - Hong Ge
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Hong Ge, ; Jing Cai,
| |
Collapse
|
62
|
Qin Y, Zhu LH, Zhao W, Wang JJ, Wang H. Review of Radiomics- and Dosiomics-based Predicting Models for Rectal Cancer. Front Oncol 2022; 12:913683. [PMID: 36016617 PMCID: PMC9395725 DOI: 10.3389/fonc.2022.913683] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/23/2022] [Indexed: 12/20/2022] Open
Abstract
By breaking the traditional medical image analysis framework, precision medicine-radiomics has attracted much attention in the past decade. The use of various mathematical algorithms offers radiomics the ability to extract vast amounts of detailed features from medical images for quantitative analysis and analyzes the confidential information related to the tumor in the image, which can establish valuable disease diagnosis and prognosis models to support personalized clinical decisions. This article summarizes the application of radiomics and dosiomics in radiation oncology. We focus on the application of radiomics in locally advanced rectal cancer and also summarize the latest research progress of dosiomics in radiation tumors to provide ideas for the treatment of future related diseases, especially 125I CT-guided radioactive seed implant brachytherapy.
Collapse
Affiliation(s)
- Yun Qin
- School of Physics, Beihang University, Beijing, China
| | - Li-Hua Zhu
- School of Physics, Beihang University, Beijing, China
| | - Wei Zhao
- School of Physics, Beihang University, Beijing, China
| | - Jun-Jie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Hao Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| |
Collapse
|
63
|
Keek SA, Beuque M, Primakov S, Woodruff HC, Chatterjee A, van Timmeren JE, Vallières M, Hendriks LEL, Kraft J, Andratschke N, Braunstein SE, Morin O, Lambin P. Predicting Adverse Radiation Effects in Brain Tumors After Stereotactic Radiotherapy With Deep Learning and Handcrafted Radiomics. Front Oncol 2022; 12:920393. [PMID: 35912214 PMCID: PMC9326101 DOI: 10.3389/fonc.2022.920393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionThere is a cumulative risk of 20–40% of developing brain metastases (BM) in solid cancers. Stereotactic radiotherapy (SRT) enables the application of high focal doses of radiation to a volume and is often used for BM treatment. However, SRT can cause adverse radiation effects (ARE), such as radiation necrosis, which sometimes cause irreversible damage to the brain. It is therefore of clinical interest to identify patients at a high risk of developing ARE. We hypothesized that models trained with radiomics features, deep learning (DL) features, and patient characteristics or their combination can predict ARE risk in patients with BM before SRT.MethodsGadolinium-enhanced T1-weighted MRIs and characteristics from patients treated with SRT for BM were collected for a training and testing cohort (N = 1,404) and a validation cohort (N = 237) from a separate institute. From each lesion in the training set, radiomics features were extracted and used to train an extreme gradient boosting (XGBoost) model. A DL model was trained on the same cohort to make a separate prediction and to extract the last layer of features. Different models using XGBoost were built using only radiomics features, DL features, and patient characteristics or a combination of them. Evaluation was performed using the area under the curve (AUC) of the receiver operating characteristic curve on the external dataset. Predictions for individual lesions and per patient developing ARE were investigated.ResultsThe best-performing XGBoost model on a lesion level was trained on a combination of radiomics features and DL features (AUC of 0.71 and recall of 0.80). On a patient level, a combination of radiomics features, DL features, and patient characteristics obtained the best performance (AUC of 0.72 and recall of 0.84). The DL model achieved an AUC of 0.64 and recall of 0.85 per lesion and an AUC of 0.70 and recall of 0.60 per patient.ConclusionMachine learning models built on radiomics features and DL features extracted from BM combined with patient characteristics show potential to predict ARE at the patient and lesion levels. These models could be used in clinical decision making, informing patients on their risk of ARE and allowing physicians to opt for different therapies.
Collapse
Affiliation(s)
- Simon A. Keek
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
| | - Manon Beuque
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
| | - Sergey Primakov
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
| | - Henry C. Woodruff
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
- Department of Radiology and Nuclear Medicine, GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Avishek Chatterjee
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
| | - Janita E. van Timmeren
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Martin Vallières
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Department of Computer Science, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Lizza E. L. Hendriks
- Department of Pulmonary Diseases, GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Johannes Kraft
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
- Department of Radiation Oncology, University Hospital Würzburg, Würzburg, Germany
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Steve E. Braunstein
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, United States
| | - Olivier Morin
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, United States
| | - Philippe Lambin
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
- Department of Radiology and Nuclear Medicine, GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, Netherlands
- *Correspondence: Philippe Lambin,
| |
Collapse
|
64
|
Yusufaly TI, Zou J, Nelson TJ, Williamson CW, Simon A, Singhal M, Liu H, Wong H, Saenz CC, Mayadev J, McHale MT, Yashar CM, Eskander R, Sharabi A, Hoh CK, Obrzut S, Mell LK. Improved Prognosis of Treatment Failure in Cervical Cancer with Nontumor PET/CT Radiomics. J Nucl Med 2022; 63:1087-1093. [PMID: 34711618 PMCID: PMC9258568 DOI: 10.2967/jnumed.121.262618] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/20/2021] [Indexed: 01/03/2023] Open
Abstract
Radiomics has been applied to predict recurrence in several disease sites, but current approaches are typically restricted to analyzing tumor features, neglecting nontumor information in the rest of the body. The purpose of this work was to develop and validate a model incorporating nontumor radiomics, including whole-body features, to predict treatment outcomes in patients with previously untreated locoregionally advanced cervical cancer. Methods: We analyzed 127 cervical cancer patients treated definitively with chemoradiotherapy and intracavitary brachytherapy. All patients underwent pretreatment whole-body 18F-FDG PET/CT. To quantify effects due to the tumor itself, the gross tumor volume (GTV) was directly contoured on the PET/CT image. Meanwhile, to quantify effects arising from the rest of the body, the planning target volume (PTV) was deformably registered from each planning CT to the PET/CT scan, and a semiautomated approach combining seed-growing and manual contour review generated whole-body muscle, bone, and fat segmentations on each PET/CT image. A total of 965 radiomic features were extracted for GTV, PTV, muscle, bone, and fat. Ninety-five patients were used to train a Cox model of disease recurrence including both radiomic and clinical features (age, stage, tumor grade, histology, and baseline complete blood cell counts), using bagging and split-sample-validation for feature reduction and model selection. To further avoid overfitting, the resulting models were tested for generalization on the remaining 32 patients, by calculating a risk score based on Cox regression and evaluating the c-index (c-index > 0.5 indicates predictive power). Results: Optimal performance was seen in a Cox model including 1 clinical biomarker (whether or not a tumor was stage III-IVA), 2 GTV radiomic biomarkers (PET gray-level size-zone matrix small area low gray level emphasis and zone entropy), 1 PTV radiomic biomarker (major axis length), and 1 whole-body radiomic biomarker (CT bone root mean square). In particular, stratification into high- and low-risk groups, based on the linear risk score from this Cox model, resulted in a hazard ratio of 0.019 (95% CI, 0.004, 0.082), an improvement over stratification based on clinical stage alone, which had a hazard ratio of 0.36 (95% CI, 0.16, 0.83). Conclusion: Incorporating nontumor radiomic biomarkers can improve the performance of prognostic models compared with using only clinical and tumor radiomic biomarkers. Future work should look to further test these models in larger, multiinstitutional cohorts.
Collapse
Affiliation(s)
- Tahir I Yusufaly
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, School of Medicine, Baltimore, Maryland;
| | - Jingjing Zou
- Department of Family Medicine and Public Health and Department of Mathematics, University of California San Diego, La Jolla, California
| | - Tyler J Nelson
- Center for Precision Radiation Medicine, La Jolla, California
| | - Casey W Williamson
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Aaron Simon
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | | | - Hannah Liu
- Center for Precision Radiation Medicine, La Jolla, California
| | - Hank Wong
- Center for Precision Radiation Medicine, La Jolla, California
| | - Cheryl C Saenz
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Gynecologic Oncology, University of California San Diego, La Jolla, California; and
| | - Jyoti Mayadev
- Center for Precision Radiation Medicine, La Jolla, California
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Michael T McHale
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Gynecologic Oncology, University of California San Diego, La Jolla, California; and
| | - Catheryn M Yashar
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Ramez Eskander
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Gynecologic Oncology, University of California San Diego, La Jolla, California; and
| | - Andrew Sharabi
- Center for Precision Radiation Medicine, La Jolla, California
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Carl K Hoh
- Department of Radiology, Division of Nuclear Medicine, University of California San Diego, La Jolla, California
| | - Sebastian Obrzut
- Department of Radiology, Division of Nuclear Medicine, University of California San Diego, La Jolla, California
| | - Loren K Mell
- Center for Precision Radiation Medicine, La Jolla, California
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| |
Collapse
|
65
|
Puttanawarut C, Sirirutbunkajorn N, Tawong N, Khachonkham S, Pattaranutaporn P, Wongsawat Y. Impact of Interfractional Error on Dosiomic Features. Front Oncol 2022; 12:726896. [PMID: 35756677 PMCID: PMC9231355 DOI: 10.3389/fonc.2022.726896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives The purpose of this study was to investigate the stability of dosiomic features under random interfractional error. We investigated the differences in the values of features with different fractions and the error in the values of dosiomic features under interfractional error. Material and Methods The isocenters of the treatment plans of 15 lung cancer patients were translated by a maximum of ±3 mm in each axis with a mean of (0, 0, 0) and a standard deviation of (1.2, 1.2, 1.2) mm in the x, y, and z directions for each fraction. A total of 81 dose distributions for each patient were then calculated considering four fraction number groups (2, 10, 20, and 30). A total of 93 dosiomic features were extracted from each dose distribution in four different regions of interest (ROIs): gross tumor volume (GTV), planning target volume (PTV), heart, and both lungs. The stability of dosiomic features was analyzed for each fraction number group by the coefficient of variation (CV) and intraclass correlation coefficient (ICC). The agreements in the means of dosiomic features among the four fraction number groups were tested by ICC. The percent differences (PD) between the dosiomic features extracted from the original dose distribution and the dosiomic features extracted from the dose distribution with interfractional error were calculated. Results Eleven out of 93 dosiomic features demonstrated a large CV (CV ≥ 20%). Overall CV values were highest in GTV ROIs and lowest in lung ROIs. The stability of dosiomic features decreased as the total number of fractions decreased. The ICC results showed that five out of 93 dosiomic features had an ICC lower than 0.75, which indicates intermediate or poor stability under interfractional error. The mean dosiomic feature values were shown to be consistent with different numbers of fractions (ICC ≥ 0.9). Some of the dosiomic features had PD greater than 50% and showed different PD values with different numbers of fractions. Conclusion Some dosiomic features have low stability under interfractional error. The stability and values of the dosiomic features were affected by the total number of fractions. The effect of interfractional error on dosiomic features should be considered in further studies regarding dosiomics for reproducible results.
Collapse
Affiliation(s)
- Chanon Puttanawarut
- Chakri Naruebodindra Medical Institute, Ramathibodi Hospital, Mahidol University, Samutprakarn, Thailand.,Brain-Computer Interface Laboratory, Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhorn Pathom, Thailand
| | - Nat Sirirutbunkajorn
- Department of Diagnostic and Therapeutic Radiology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Narisara Tawong
- Department of Diagnostic and Therapeutic Radiology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Suphalak Khachonkham
- Department of Diagnostic and Therapeutic Radiology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Poompis Pattaranutaporn
- Department of Diagnostic and Therapeutic Radiology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Yodchanan Wongsawat
- Brain-Computer Interface Laboratory, Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhorn Pathom, Thailand
| |
Collapse
|
66
|
Abdollahi H, Chin E, Clark H, Hyde DE, Thomas S, Wu J, Uribe CF, Rahmim A. Radiomics-guided radiation therapy: opportunities and challenges. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac6fab] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/13/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Radiomics is an advanced image-processing framework, which extracts image features and considers them as biomarkers towards personalized medicine. Applications include disease detection, diagnosis, prognosis, and therapy response assessment/prediction. As radiation therapy aims for further individualized treatments, radiomics could play a critical role in various steps before, during and after treatment. Elucidation of the concept of radiomics-guided radiation therapy (RGRT) is the aim of this review, attempting to highlight opportunities and challenges underlying the use of radiomics to guide clinicians and physicists towards more effective radiation treatments. This work identifies the value of RGRT in various steps of radiotherapy from patient selection to follow-up, and subsequently provides recommendations to improve future radiotherapy using quantitative imaging features.
Collapse
|
67
|
Zhang X, Zhang Y, Zhang G, Qiu X, Tan W, Yin X, Liao L. Deep Learning With Radiomics for Disease Diagnosis and Treatment: Challenges and Potential. Front Oncol 2022; 12:773840. [PMID: 35251962 PMCID: PMC8891653 DOI: 10.3389/fonc.2022.773840] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
The high-throughput extraction of quantitative imaging features from medical images for the purpose of radiomic analysis, i.e., radiomics in a broad sense, is a rapidly developing and emerging research field that has been attracting increasing interest, particularly in multimodality and multi-omics studies. In this context, the quantitative analysis of multidimensional data plays an essential role in assessing the spatio-temporal characteristics of different tissues and organs and their microenvironment. Herein, recent developments in this method, including manually defined features, data acquisition and preprocessing, lesion segmentation, feature extraction, feature selection and dimension reduction, statistical analysis, and model construction, are reviewed. In addition, deep learning-based techniques for automatic segmentation and radiomic analysis are being analyzed to address limitations such as rigorous workflow, manual/semi-automatic lesion annotation, and inadequate feature criteria, and multicenter validation. Furthermore, a summary of the current state-of-the-art applications of this technology in disease diagnosis, treatment response, and prognosis prediction from the perspective of radiology images, multimodality images, histopathology images, and three-dimensional dose distribution data, particularly in oncology, is presented. The potential and value of radiomics in diagnostic and therapeutic strategies are also further analyzed, and for the first time, the advances and challenges associated with dosiomics in radiotherapy are summarized, highlighting the latest progress in radiomics. Finally, a robust framework for radiomic analysis is presented and challenges and recommendations for future development are discussed, including but not limited to the factors that affect model stability (medical big data and multitype data and expert knowledge in medical), limitations of data-driven processes (reproducibility and interpretability of studies, different treatment alternatives for various institutions, and prospective researches and clinical trials), and thoughts on future directions (the capability to achieve clinical applications and open platform for radiomics analysis).
Collapse
Affiliation(s)
- Xingping Zhang
- Institute of Advanced Cyberspace Technology, Guangzhou University, Guangzhou, China
- Department of New Networks, Peng Cheng Laboratory, Shenzhen, China
| | - Yanchun Zhang
- Institute of Advanced Cyberspace Technology, Guangzhou University, Guangzhou, China
- Department of New Networks, Peng Cheng Laboratory, Shenzhen, China
| | - Guijuan Zhang
- Department of Respiratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xingting Qiu
- Department of Radiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Wenjun Tan
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Shenyang, China
| | - Xiaoxia Yin
- Institute of Advanced Cyberspace Technology, Guangzhou University, Guangzhou, China
| | - Liefa Liao
- School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou, China
| |
Collapse
|
68
|
Puttanawarut C, Sirirutbunkajorn N, Tawong N, Jiarpinitnun C, Khachonkham S, Pattaranutaporn P, Wongsawat Y. Radiomic and Dosiomic Features for the Prediction of Radiation Pneumonitis Across Esophageal Cancer and Lung Cancer. Front Oncol 2022; 12:768152. [PMID: 35251959 PMCID: PMC8889567 DOI: 10.3389/fonc.2022.768152] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/13/2022] [Indexed: 01/13/2023] Open
Abstract
PURPOSE The aim was to investigate the advantages of dosiomic and radiomic features over traditional dose-volume histogram (DVH) features for predicting the development of radiation pneumonitis (RP), to validate the generalizability of dosiomic and radiomic features by using features selected from an esophageal cancer dataset and to use these features with a lung cancer dataset. MATERIALS AND METHODS A dataset containing 101 patients with esophageal cancer and 93 patients with lung cancer was included in this study. DVH and dosiomic features were extracted from 3D dose distributions. Radiomic features were extracted from pretreatment CT images. Feature selection was performed using only the esophageal cancer dataset. Four predictive models for RP (DVH, dosiomic, radiomic and dosiomic + radiomic models) were compared on the esophageal cancer dataset. We further used a lung cancer dataset for the external validation of the selected dosiomic and radiomic features from the esophageal cancer dataset. The performance of the predictive models was evaluated by the area under the curve (AUC) of the receiver operating characteristic curve (ROCAUC) and the AUC of the precision recall curve (PRAUC) metrics. RESULT The ROCAUCs and PRAUCs of the DVH, dosiomic, radiomic and dosiomic + radiomic models on esophageal cancer dataset were 0.67 ± 0.11 and 0.75 ± 0.10, 0.71 ± 0.10 and 0.77 ± 0.09, 0.71 ± 0.11 and 0.79 ± 0.09, and 0.75 ± 0.10 and 0.81 ± 0.09, respectively. The predictive performance of the dosiomic- and radiomic-based models was significantly higher than that of the DVH-based model with respect to esophageal cancer. The ROCAUCs and PRAUCs of the DVH, dosiomic, radiomic and dosiomic + radiomic models on the lung cancer dataset were 0.64 ± 0.18 and 0.37 ± 0.20, 0.67 ± 0.17 and 0.37 ± 0.20, 0.67 ± 0.16 and 0.45 ± 0.23, and 0.68 ± 0.16 and 0.44 ± 0.22, respectively. On the lung cancer dataset, the predictive performance of the radiomic and dosiomic + radiomic models was significantly higher than that of the DVH-based model. However, the PRAUC of the dosiomic-based model showed no significant difference relative to the corresponding RP prediction performance on the lung cancer dataset. CONCLUSION The results suggested that dosiomic and CT radiomic features could improve RP prediction in thoracic radiotherapy. Dosiomic and radiomic feature knowledge might be transferrable from esophageal cancer to lung cancer.
Collapse
Affiliation(s)
- Chanon Puttanawarut
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
- Brain-Computer Interface Laboratory, Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhorn Pathom, Thailand
| | - Nat Sirirutbunkajorn
- Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Narisara Tawong
- Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chuleeporn Jiarpinitnun
- Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Suphalak Khachonkham
- Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Poompis Pattaranutaporn
- Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Yodchanan Wongsawat
- Brain-Computer Interface Laboratory, Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhorn Pathom, Thailand
| |
Collapse
|
69
|
Zeng F, Lin KR, Jin YB, Li HJ, Quan Q, Su JC, Chen K, Zhang J, Han C, Zhang GY. MRI-based radiomics models can improve prognosis prediction for nasopharyngeal carcinoma with neoadjuvant chemotherapy. Magn Reson Imaging 2022; 88:108-115. [PMID: 35181470 DOI: 10.1016/j.mri.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/27/2021] [Accepted: 02/13/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND The purpose of this study was to explore the prognostic value of imaging features and related models in nasopharyngeal carcinoma (NPC) patients that received neoadjuvant chemotherapy. MATERIALS AND METHODS We systematically reviewed the data of 110 NPC patients who received radiotherapy and neoadjuvant chemotherapy. The patients were randomly divided into the training cohort (n = 88) and the verification cohort (n = 22). The imaging data collected in this study were screened via Pyramidics and used to construct prediction models based on histology and clinical nomographs. The models' accuracy was evaluated via calibration curves and the consistency index (C-index). In addition, we also explored the correlation between radiomics expression patterns, quantitative histological characteristics, and clinical data and then constructed a model to predict the prognosis of NPC. RESULTS The models that integrated radiomics contours with all the clinical data were superior to those based on the clinical data alone (C-index 0.746 vs. C-index 0.814, respectively) and the calibration curves showed good consistency. The heat map showed that the radiomics expression pattern and selected histological characteristics were correlated with the clinical stage, T stage, and N stage (p < 0.05), and no radiomics feature was associated with lactate dehydrogenase expression, lymphocyte count, or mononuclear cell count. CONCLUSION MRI-based radiomics can significantly improve the efficacy of traditional TNM staging and clinical data in predicting the progression-free survival (PFS) of patients with advanced NPC, which may provide an opportunity for precision medicine.
Collapse
Affiliation(s)
- Fan Zeng
- Guangdong Medical University, Zhanjiang 524000, Department of Radiation Oncology, Foshan Academy of Medical Sciences, Sun Yat-Sen University Foshan Hospital & the First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Kai-Rong Lin
- Clinical Research Institute, Foshan Academy of Medical Sciences, Sun Yat-Sen University Foshan Hospital & the First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Ya-Bin Jin
- Clinical Research Institute, Foshan Academy of Medical Sciences, Sun Yat-Sen University Foshan Hospital & the First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Hao-Jiang Li
- Department of Radiology, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Qiang Quan
- Department of Radiation Oncology, Foshan Academy of Medical Sciences, Sun Yat-Sen University Foshan Hospital & the First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Jian-Chun Su
- Department of Radiation Oncology, Foshan Academy of Medical Sciences, Sun Yat-Sen University Foshan Hospital & the First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Kai Chen
- Department of Radiation Oncology, Foshan Academy of Medical Sciences, Sun Yat-Sen University Foshan Hospital & the First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Jing Zhang
- Department of Radiation Oncology, Foshan Academy of Medical Sciences, Sun Yat-Sen University Foshan Hospital & the First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Chen Han
- Department of Radiation Oncology, Foshan Academy of Medical Sciences, Sun Yat-Sen University Foshan Hospital & the First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Guo-Yi Zhang
- Department of Radiation Oncology, Foshan Academy of Medical Sciences, Sun Yat-Sen University Foshan Hospital & the First People's Hospital of Foshan, Foshan 528000, Guangdong, China..
| |
Collapse
|
70
|
Dosiomic feature comparison between dose-calculation algorithms used for lung stereotactic body radiation therapy. Radiol Phys Technol 2022; 15:63-71. [DOI: 10.1007/s12194-022-00651-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 10/19/2022]
|
71
|
Wang D, Lee SH, Geng H, Zhong H, Plastaras J, Wojcieszynski A, Caruana R, Xiao Y. Interpretable machine learning for predicting pathologic complete response in patients treated with chemoradiation therapy for rectal adenocarcinoma. Front Artif Intell 2022; 5:1059033. [PMID: 36568580 PMCID: PMC9771385 DOI: 10.3389/frai.2022.1059033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose Pathologic complete response (pCR) is a critical factor in determining whether patients with rectal cancer (RC) should have surgery after neoadjuvant chemoradiotherapy (nCRT). Currently, a pathologist's histological analysis of surgical specimens is necessary for a reliable assessment of pCR. Machine learning (ML) algorithms have the potential to be a non-invasive way for identifying appropriate candidates for non-operative therapy. However, these ML models' interpretability remains challenging. We propose using explainable boosting machine (EBM) to predict the pCR of RC patients following nCRT. Methods A total of 296 features were extracted, including clinical parameters (CPs), dose-volume histogram (DVH) parameters from gross tumor volume (GTV) and organs-at-risk, and radiomics (R) and dosiomics (D) features from GTV. R and D features were subcategorized into shape (S), first-order (L1), second-order (L2), and higher-order (L3) local texture features. Multi-view analysis was employed to determine the best set of input feature categories. Boruta was used to select all-relevant features for each input dataset. ML models were trained on 180 cases from our institution, with 37 cases from RTOG 0822 clinical trial serving as the independent dataset for model validation. The performance of EBM in predicting pCR on the test dataset was evaluated using ROC AUC and compared with that of three state-of-the-art black-box models: extreme gradient boosting (XGB), random forest (RF) and support vector machine (SVM). The predictions of all black-box models were interpreted using Shapley additive explanations. Results The best input feature categories were CP+DVH+S+R_L1+R_L2 for all models, from which Boruta-selected features enabled the EBM, XGB, RF, and SVM models to attain the AUCs of 0.820, 0.828, 0.828, and 0.774, respectively. Although EBM did not achieve the best performance, it provided the best capability for identifying critical turning points in response scores at distinct feature values, revealing that the bladder with maximum dose >50 Gy, and the tumor with maximum2DDiameterColumn >80 mm, elongation <0.55, leastAxisLength >50 mm and lower variance of CT intensities were associated with unfavorable outcomes. Conclusions EBM has the potential to enhance the physician's ability to evaluate an ML-based prediction of pCR and has implications for selecting patients for a "watchful waiting" strategy to RC therapy.
Collapse
Affiliation(s)
- Du Wang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| | - Sang Ho Lee
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| | - Huaizhi Geng
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| | - Haoyu Zhong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| | - John Plastaras
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| | - Andrzej Wojcieszynski
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Ying Xiao
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
72
|
Zhou J, Zou S, Kuang D, Yan J, Zhao J, Zhu X. A Novel Approach Using FDG-PET/CT-Based Radiomics to Assess Tumor Immune Phenotypes in Patients With Non-Small Cell Lung Cancer. Front Oncol 2021; 11:769272. [PMID: 34868999 PMCID: PMC8635743 DOI: 10.3389/fonc.2021.769272] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Tumor microenvironment immune types (TMITs) are closely related to the efficacy of immunotherapy. We aimed to assess the predictive ability of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT)-based radiomics of TMITs in treatment-naive patients with non-small cell lung cancer (NSCLC). METHODS A retrospective analysis was performed in 103 patients with NSCLC who underwent 18F-FDG PET/CT scans. The patients were randomly assigned into a training set (n = 71) and a validation set (n = 32). Tumor specimens were analyzed by immunohistochemistry for the expression of programmed death-ligand 1 (PD-L1), programmed death-1 (PD-1), and CD8+ tumor-infiltrating lymphocytes (TILs) and categorized into four TMITs according to their expression of PD-L1 and CD8+ TILs. LIFEx package was used to extract radiomic features. The optimal features were selected using the least absolute shrinkage and selection operator (LASSO) algorithm, and a radiomics signature score (rad-score) was developed. We constructed a combined model based on the clinical variables and radiomics signature and compared the predictive performance of models using receiver operating characteristic (ROC) curves. RESULTS Four radiomic features (GLRLM_LRHGE, GLZLM_SZE, SUVmax, NGLDM_Contrast) were selected to build the rad-score. The rad-score showed a significant ability to discriminate between TMITs in both sets (p < 0.001, p < 0.019), with an area under the ROC curve (AUC) of 0.800 [95% CI (0.688-0.885)] in the training set and that of 0.794 [95% CI (0.615-0.916)] in the validation set, while the AUC values of clinical variables were 0.738 and 0.699, respectively. When clinical variables and radiomics signature were combined, the complex model showed better performance in predicting TMIT-I tumors, with the AUC values increased to 0.838 [95% CI (0.731-0.914)] in the training set and 0.811 [95% CI (0.634-0.927)] in the validation set. CONCLUSION The FDG-PET/CT-based radiomic features showed good performance in predicting TMIT-I tumors in NSCLC, providing a promising approach for the choice of immunotherapy in a clinical setting.
Collapse
Affiliation(s)
- Jianyuan Zhou
- Department of Nuclear Medicine and PET, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sijuan Zou
- Department of Nuclear Medicine and PET, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Kuang
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianhua Yan
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jun Zhao
- Department of Nuclear Medicine and PET, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohua Zhu
- Department of Nuclear Medicine and PET, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
73
|
Puttanawarut C, Sirirutbunkajorn N, Khachonkham S, Pattaranutaporn P, Wongsawat Y. Biological dosiomic features for the prediction of radiation pneumonitis in esophageal cancer patients. Radiat Oncol 2021; 16:220. [PMID: 34775975 PMCID: PMC8591796 DOI: 10.1186/s13014-021-01950-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/04/2021] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE The purpose of this study was to develop a model using dose volume histogram (DVH) and dosiomic features to predict the risk of radiation pneumonitis (RP) in the treatment of esophageal cancer with radiation therapy and to compare the performance of DVH and dosiomic features after adjustment for the effect of fractionation by correcting the dose to the equivalent dose in 2 Gy (EQD2). MATERIALS AND METHODS DVH features and dosiomic features were extracted from the 3D dose distribution of 101 esophageal cancer patients. The features were extracted with and without correction to EQD2. A predictive model was trained to predict RP grade ≥ 1 by logistic regression with L1 norm regularization. The models were then evaluated by the areas under the receiver operating characteristic curves (AUCs). RESULT The AUCs of both DVH-based models with and without correction of the dose to EQD2 were 0.66 and 0.66, respectively. Both dosiomic-based models with correction of the dose to EQD2 (AUC = 0.70) and without correction of the dose to EQD2 (AUC = 0.71) showed significant improvement in performance when compared to both DVH-based models. There were no significant differences in the performance of the model by correcting the dose to EQD2. CONCLUSION Dosiomic features can improve the performance of the predictive model for RP compared with that obtained with the DVH-based model.
Collapse
Affiliation(s)
- Chanon Puttanawarut
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Nakhorn Pathom, Samutprakarn, Thailand
- Brain-Computer Interface Laboratory, Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhorn Pathom, Thailand
| | - Nat Sirirutbunkajorn
- Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Suphalak Khachonkham
- Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Poompis Pattaranutaporn
- Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Yodchanan Wongsawat
- Brain-Computer Interface Laboratory, Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhorn Pathom, Thailand.
| |
Collapse
|
74
|
McKenzie J, Rajapakshe R, Shen H, Rajapakshe S, Lin A. A Semiautomated Chart Review for Assessing the Development of Radiation Pneumonitis Using Natural Language Processing: Diagnostic Accuracy and Feasibility Study. JMIR Med Inform 2021; 9:e29241. [PMID: 34766919 PMCID: PMC8663661 DOI: 10.2196/29241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/18/2021] [Accepted: 08/05/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Health research frequently requires manual chart reviews to identify patients in a study-specific cohort and examine their clinical outcomes. Manual chart review is a labor-intensive process that requires significant time investment for clinical researchers. OBJECTIVE This study aims to evaluate the feasibility and accuracy of an assisted chart review program, using an in-house rule-based text-extraction program written in Python, to identify patients who developed radiation pneumonitis (RP) after receiving curative radiotherapy. METHODS A retrospective manual chart review was completed for patients who received curative radiotherapy for stage 2-3 lung cancer from January 1, 2013 to December 31, 2015, at British Columbia Cancer, Kelowna Centre. In the manual chart review, RP diagnosis and grading were recorded using the Common Terminology Criteria for Adverse Events version 5.0. From the charts of 50 sample patients, a total of 1413 clinical documents were obtained for review from the electronic medical record system. The text-extraction program was built using the Natural Language Toolkit Python platform (and regular expressions, also known as RegEx). Python version 3.7.2 was used to run the text-extraction program. The output of the text-extraction program was a list of the full sentences containing the key terms, document IDs, and dates from which these sentences were extracted. The results from the manual review were used as the gold standard in this study, with which the results of the text-extraction program were compared. RESULTS Fifty percent (25/50) of the sample patients developed grade ≥1 RP; the natural language processing program was able to ascertain 92% (23/25) of these patients (sensitivity 0.92, 95% CI 0.74-0.99; specificity 0.36, 95% CI 0.18-0.57). Furthermore, the text-extraction program was able to correctly identify all 9 patients with grade ≥2 RP, which are patients with clinically significant symptoms (sensitivity 1.0, 95% CI 0.66-1.0; specificity 0.27, 95% CI 0.14-0.43). The program was useful for distinguishing patients with RP from those without RP. The text-extraction program in this study avoided unnecessary manual review of 22% (11/50) of the sample patients, as these patients were identified as grade 0 RP and would not require further manual review in subsequent studies. CONCLUSIONS This feasibility study showed that the text-extraction program was able to assist with the identification of patients who developed RP after curative radiotherapy. The program streamlines the manual chart review further by identifying the key sentences of interest. This work has the potential to improve future clinical research, as the text-extraction program shows promise in performing chart review in a more time-efficient manner, compared with the traditional labor-intensive manual chart review.
Collapse
Affiliation(s)
- Jordan McKenzie
- Northern Medical Program, Faculty of Medicine, University of British Columbia, Prince George, BC, Canada
| | - Rasika Rajapakshe
- Medical Physics, BC Cancer, Kelowna, BC, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Hua Shen
- Department of Mathematics and Statistics, University of Calgary, Calgary, AB, Canada
| | - Shan Rajapakshe
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC, Canada
| | - Angela Lin
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Radiation Oncology, BC Cancer, Kelowna, BC, Canada
| |
Collapse
|
75
|
Radiomics for Predicting Lung Cancer Outcomes Following Radiotherapy: A Systematic Review. Clin Oncol (R Coll Radiol) 2021; 34:e107-e122. [PMID: 34763965 DOI: 10.1016/j.clon.2021.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/24/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022]
Abstract
Lung cancer's radiomic phenotype may potentially inform clinical decision-making with respect to radical radiotherapy. At present there are no validated biomarkers available for the individualisation of radical radiotherapy in lung cancer and the mortality rate of this disease remains the highest of all other solid tumours. MEDLINE was searched using the terms 'radiomics' and 'lung cancer' according to the Preferred Reporting Items for Systematic Reviews and Met-Analyses (PRISMA) guidance. Radiomics studies were defined as those manuscripts describing the extraction and analysis of at least 10 quantifiable imaging features. Only those studies assessing disease control, survival or toxicity outcomes for patients with lung cancer following radical radiotherapy ± chemotherapy were included. Study titles and abstracts were reviewed by two independent reviewers. The Radiomics Quality Score was applied to the full text of included papers. Of 244 returned results, 44 studies met the eligibility criteria for inclusion. End points frequently reported were local (17%), regional (17%) and distant control (31%), overall survival (79%) and pulmonary toxicity (4%). Imaging features strongly associated with clinical outcomes include texture features belonging to the subclasses Gray level run length matrix, Gray level co-occurrence matrix and kurtosis. The median cohort size for model development was 100 (15-645); in the 11 studies with external validation in a separate independent population, the median cohort size was 84 (21-295). The median number of imaging features extracted was 184 (10-6538). The median Radiomics Quality Score was 11% (0-47). Patient-reported outcomes were not incorporated within any studies identified. No studies externally validated a radiomics signature in a registered prospective study. Imaging-derived indices attained through radiomic analyses could equip thoracic oncologists with biomarkers for treatment response, patterns of failure, normal tissue toxicity and survival in lung cancer. Based on routine scans, their non-invasive nature and cost-effectiveness are major advantages over conventional pathological assessment. Improved tools are required for the appraisal of radiomics studies, as significant barriers to clinical implementation remain, such as standardisation of input scan data, quality of reporting and external validation of signatures in randomised, interventional clinical trials.
Collapse
|
76
|
Kaplan LP, Korreman SS. A systematically compiled set of quantitative metrics to describe spatial characteristics of radiotherapy dose distributions and aid in treatment planning. Phys Med 2021; 90:164-175. [PMID: 34673370 DOI: 10.1016/j.ejmp.2021.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Many quantitative metrics have been proposed in literature for characterization of spatial dose properties. The aim of this study is to work towards much-needed consensus in the radiotherapy community on which of these metrics to use. We do this by comparing characteristics of the metrics and providing a systematically selected set of metrics to comprehensively quantify properties of the spatial dose distribution. METHODS We searched the literature for metrics to quantitatively evaluate dose conformity, homogeneity, gradient (overall and directional), and distribution and location of over- and under-dosed sub-volumes. For each spatial dose property, we compared the responses of its corresponding metrics to simulated dose variations in a virtual water phantom. Selection criteria were a metric's ability to describe simulated scenarios robustly and to be visualized in an intuitive way. RESULTS We saw substantial differences in the responses of metrics to the simulated dose variations. Some conformity and homogeneity metrics were unable to quantify certain types of changes (e.g. target under-coverage). Others showed a large dependency on the shape and volume of targets and isodoses. Metric values differed between calculations in a static plan and in simulated full treatment courses including setup errors, especially for metrics quantifying distribution and location of hot and cold spots. We provide an Eclipse plugin script to calculate and visualize selected metrics. CONCLUSION The selected set of metrics provides complementary and comprehensive quantitative information about the spatial dose distribution. This work serves as a step towards broader consensus on the use of spatial dose metrics.
Collapse
Affiliation(s)
- Laura Patricia Kaplan
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark.
| | - Stine Sofia Korreman
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
77
|
Anetai Y, Koike Y, Takegawa H, Nakamura S, Tanigawa N. Evaluation approach for whole dose distribution in clinical cases using spherical projection and spherical harmonics expansion: spherical coefficient tensor and score method. JOURNAL OF RADIATION RESEARCH 2021:rrab081. [PMID: 34590126 DOI: 10.1093/jrr/rrab081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Whole dose distribution results from well-conceived treatment plans including patient-specific (location, size and shape of tumor, etc.) and facility-specific (clinical policy and goal, equipment, etc.) information. To evaluate the whole dose distribution efficiently and effectively, we propose a method to apply spherical projection and real spherical harmonics (SH) expansion, thus leading to the expanded coefficients as a rank-2 tensor, SH coefficient tensor, for every patient-specific dose distribution. To verify the feature of this tensor, we introduce Isomap from the manifold learning method and multi-dimensional scaling (MDS). Subsequently, we obtained the MDS distance representing similarity, η, and the SH score, ζ, which is a Frobenius norm of the SH coefficient tensor. These were then validated in the intensity-modulated radiation therapy (IMRT) data sets of: (i) 375 mixing treated regions, (ii) 135 head and neck (HN), and (iii) 132 prostate cases, respectively. The MDS map indicated that the SH coefficient tensor enabled a quantitative feature extraction of whole dose distributions. In particular, the SH score systematically detected irregular cases as the deviation higher than +1.5 standard deviations (SD) from the average case, which matched up with clinically irregular case that required very complicated dose distributions. In summary, the proposed SH coefficient tensor is a useful representation of the whole dose distribution. The SH score from the SH coefficient tensor is a convenient and simple criterion used to characterize the entire dose distributions, which is not dependent on the data set.
Collapse
Affiliation(s)
- Yusuke Anetai
- Department of Radiology, Kansai Medical University, Shin-machi 2-5-1, Hirakata-shi, Osaka 573-0101, Japan
| | - Yuhei Koike
- Department of Radiology, Kansai Medical University, Shin-machi 2-5-1, Hirakata-shi, Osaka 573-0101, Japan
| | - Hideki Takegawa
- Department of Radiology, Kansai Medical University, Shin-machi 2-5-1, Hirakata-shi, Osaka 573-0101, Japan
| | - Satoaki Nakamura
- Department of Radiology, Kansai Medical University, Shin-machi 2-5-1, Hirakata-shi, Osaka 573-0101, Japan
| | - Noboru Tanigawa
- Department of Radiology, Kansai Medical University, Shin-machi 2-5-1, Hirakata-shi, Osaka 573-0101, Japan
| |
Collapse
|
78
|
Ren W, Liang B, Sun C, Wu R, Men K, Xu Y, Han F, Yi J, Qu Y, Dai J. Dosiomics-based prediction of radiation-induced hypothyroidism in nasopharyngeal carcinoma patients. Phys Med 2021; 89:219-225. [PMID: 34425512 DOI: 10.1016/j.ejmp.2021.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/23/2021] [Accepted: 08/11/2021] [Indexed: 11/19/2022] Open
Abstract
PURPOSE To predict the incidence of radiation-induced hypothyroidism (RHT) in nasopharyngeal carcinoma (NPC) patients, dosiomics features based prediction models were established. MATERIALS AND METHODS A total of 145 NPC patients treated with radiotherapy from January 2012 to January 2015 were included. Dosiomics features of the dose distribution within thyroid gland were extracted. The minimal-redundancy-maximal-relevance (mRMR) criterion was used to rank the extracted features and selected the most relevant features. Machine learning (ML) algorithms including logistic regression (LR), support vector machine (SVM), random forest (RF), and k-nearest neighbor (KNN) were utilized to establish prediction models, respectively. Nested sampling and hyper-tuning methods were adopted to train and validate the prediction models. The dosiomics-based (DO) prediction models were evaluated through comparing with the dose-volume factor-based (DV) models in terms of the area under the receiver operating characteristic (ROC) curve (AUC). The demographics factors (age and gender) were included in both DO model and DV model. RESULTS Age, V45 and 37 dosiomics features exhibited significant correlations with RHT in univariate analysis. For prediction performance, DO prediction models exhibited better results with the best AUC value 0.7 while DV prediction models 0.61. In DO prediction models, the AUC values displayed a trend from ascending to descending with the increasing of selected features. The highest AUC value was achieved when the number of selected features was 3. In DV prediction model, similar trend was not observed. CONCLUSION This study established a prediction model based on the dosiomics features with better performance than conventional dose-volume factors, leading to early predict the possible RHT among NPC patients who had received radiotherapy and take precaution measures for NPC patients.
Collapse
Affiliation(s)
- Wenting Ren
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Bin Liang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chao Sun
- Department of Ultrasound, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Runye Wu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Kuo Men
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yingjie Xu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Fei Han
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Junlin Yi
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuan Qu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Jianrong Dai
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
79
|
Avanzo M, Gagliardi V, Stancanello J, Blanck O, Pirrone G, El Naqa I, Revelant A, Sartor G. Combining computed tomography and biologically effective dose in radiomics and deep learning improves prediction of tumor response to robotic lung stereotactic body radiation therapy. Med Phys 2021; 48:6257-6269. [PMID: 34415574 DOI: 10.1002/mp.15178] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 07/20/2021] [Accepted: 08/02/2021] [Indexed: 02/06/2023] Open
Abstract
PURPOSE The aim of this study is to improve the performance of machine learning (ML) models in predicting response of non-small cell lung cancer (NSCLC) to stereotactic body radiation therapy (SBRT) by integrating image features from pre-treatment computed tomography (CT) with features from the biologically effective dose (BED) distribution. MATERIALS AND METHODS Image features, consisting of crafted radiomic features or machine-learned features extracted using a convolutional neural network, were calculated from pre-treatment CT data and from dose distributions converted into BED for 80 NSCLC lesions over 76 patients treated with robotic guided SBRT. ML models using different combinations of features were trained to predict complete or partial response according to response criteria in solid tumors, including radiomics CT (RadCT ), radiomics CT and BED (RadCT,BED ), deep learning (DL) CT (DLCT ), and DL CT and BED (DLCT,BED ). Training of ML included feature selection by neighborhood component analysis followed by ensemble ML using robust boosting. A model was considered as acceptable when the sum of average sensitivity and specificity on test data in repeated cross validations was at least 1.5. RESULTS Complete or partial response occurred in 58 out of 80 lesions. The best models to predict the tumor response were those using BED variables, achieving significantly better area under curve (AUC) and accuracy than those using only features from CT, including a RadCT,BED model using three radiomic features from BED, which scored an accuracy of 0.799 (95% confidence intervals (0.75-0.85)) and AUC of 0.773 (0.688-0.846), and a DLCT,BED model also using three variables with an accuracy of 0.798 (0.649-0.829) and AUC of 0.812 (0.755-0.867). CONCLUSION According to our results, the inclusion of BED features improves the response prediction of ML models for lung cancer patients undergoing SBRT, regardless of the use of radiomic or DL features.
Collapse
Affiliation(s)
- Michele Avanzo
- Medical Physics Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, PN, Italy
| | - Vito Gagliardi
- Medical Physics Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, PN, Italy
| | | | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Giovanni Pirrone
- Medical Physics Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, PN, Italy
| | - Issam El Naqa
- Department of Machine Learning, Moffitt University, Tampa, Florida, USA
| | - Alberto Revelant
- Radiation Oncology Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, PN, Italy
| | - Giovanna Sartor
- Medical Physics Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, PN, Italy
| |
Collapse
|
80
|
Kawahara D, Imano N, Nishioka R, Ogawa K, Kimura T, Nakashima T, Iwamoto H, Fujitaka K, Hattori N, Nagata Y. Prediction of radiation pneumonitis after definitive radiotherapy for locally advanced non-small cell lung cancer using multi-region radiomics analysis. Sci Rep 2021; 11:16232. [PMID: 34376721 PMCID: PMC8355298 DOI: 10.1038/s41598-021-95643-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022] Open
Abstract
To predict grade ≥ 2 radiation pneumonitis (RP) in patients with locally advanced non-small cell lung cancer (NSCLC) using multi-region radiomics analysis. Data from 77 patients with NSCLC who underwent definitive radiotherapy between 2008 and 2018 were analyzed. Radiomic feature extraction from the whole lung (whole-lung radiomics analysis) and imaging- and dosimetric-based segmentation (multi-region radiomics analysis) were performed. Patients with RP grade ≥ 2 or < 2 were classified. Predictors were selected with least absolute shrinkage and selection operator logistic regression and the model was built with neural network classifiers. A total of 49,383 radiomics features per patient image were extracted from the radiotherapy planning computed tomography. We identified 4 features and 13 radiomics features in the whole-lung and multi-region radiomics analysis for classification, respectively. The accuracy and area under the curve (AUC) without the synthetic minority over-sampling technique (SMOTE) were 60.8%, and 0.62 for whole-lung and 80.1%, and 0.84 for multi-region radiomics analysis. These were improved 1.7% for whole-lung and 2.1% for multi-region radiomics analysis with the SMOTE. The developed multi-region radiomics analysis can help predict grade ≥ 2 RP. The radiomics features in the median- and high-dose regions, and the local intensity roughness and variation were important factors in predicting grade ≥ 2 RP.
Collapse
Affiliation(s)
- Daisuke Kawahara
- Department of Radiation Oncology, Graduate School of Biomedical Health Sciences, Hiroshima University, 1-3-2 Kagamiyama, Higashihiroshima, Hiroshima, 734-8551, Japan.
| | - Nobuki Imano
- Department of Radiation Oncology, Graduate School of Biomedical Health Sciences, Hiroshima University, 1-3-2 Kagamiyama, Higashihiroshima, Hiroshima, 734-8551, Japan
| | - Riku Nishioka
- Medical and Dental Sciences Course, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kouta Ogawa
- School of Medicine, Hiroshima University, Hiroshima, Japan
| | - Tomoki Kimura
- Division of Radiation Oncology Kochi Medical School, Department of Radiology, Kochi University, Kochi, Japan
| | - Taku Nakashima
- Department Molecular and Internal Medicine, Graduate School of Biomedical Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Iwamoto
- Department Molecular and Internal Medicine, Graduate School of Biomedical Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazunori Fujitaka
- Department Molecular and Internal Medicine, Graduate School of Biomedical Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Noboru Hattori
- Department Molecular and Internal Medicine, Graduate School of Biomedical Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasushi Nagata
- Department of Radiation Oncology, Graduate School of Biomedical Health Sciences, Hiroshima University, 1-3-2 Kagamiyama, Higashihiroshima, Hiroshima, 734-8551, Japan.,Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
| |
Collapse
|
81
|
Dose-based radiomic analysis (dosiomics) for intensity-modulated radiotherapy in patients with prostate cancer: Correlation between planned dose distribution and biochemical failure. Int J Radiat Oncol Biol Phys 2021; 112:247-259. [PMID: 34706278 DOI: 10.1016/j.ijrobp.2021.07.1714] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/18/2021] [Accepted: 07/27/2021] [Indexed: 11/22/2022]
Abstract
PURPOSE Although radiotherapy is one of the most significant modalities for localized prostate cancer, the prognostic factors for biochemical recurrence (BCR) regarding the treatment plan are unclear. We aimed to develop a novel dosiomics-based prediction model for BCR in patients with prostate cancer and clarify the correlations between the dosimetric factors and BCR. METHODS AND MATERIALS This study included 489 patients with localized prostate cancer (BCR: 96, No-BCR: 393) who received intensity-modulated radiation therapy. A total of 2,475 dosiomic features were extracted from the dose distributions on the prostate, clinical target volume (CTV), and planning target volume. A prediction model for BCR was trained on a training cohort of 342 patients. The performance of this model was validated using the concordance index (C-index) in a validation cohort of 147 patients. Another model was constructed using clinical variables, dosimetric parameters, and radiomic features for comparisons. Kaplan-Meier curves with log-rank analysis were used to assess the univariate discrimination based on the predictive dosiomic features. RESULTS The dosiomic feature derived from the CTV was significantly associated with BCR (hazard ratio: 0.73; 95% confidence interval [CI]: 0.57-0.93; P = .01). Although the dosiomics model outperformed the dosimetric and radiomics models, it did not outperform the clinical model. The performance significantly improved by combining the clinical variables and dosiomic features (C-index: 0.67; 95% CI: 0.65-0.68; P < .0001). The predictive dosiomic features were used to distinguish high-risk and low-risk patients (P < .05). CONCLUSIONS The dosiomic feature extracted from the CTV was significantly correlated with BCR in patients with prostate cancer, and the dosiomics model outperformed the model with conventional dose indices. Hence, new metrics for evaluating the quality of a treatment plan are warranted. Moreover, further research should be conducted to determine whether dosiomics can be incorporated in a clinical workflow or clinical trial.
Collapse
|
82
|
Jiang W, Song Y, Sun Z, Qiu J, Shi L. Dosimetric Factors and Radiomics Features Within Different Regions of Interest in Planning CT Images for Improving the Prediction of Radiation Pneumonitis. Int J Radiat Oncol Biol Phys 2021; 110:1161-1170. [PMID: 33548340 DOI: 10.1016/j.ijrobp.2021.01.049] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/21/2020] [Accepted: 01/24/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE This study aimed to establish machine learning models using dosimetric factors and radiomics features within 5 regions of interest (ROIs) in treatment planning computed tomography images to improve the prediction of symptomatic radiation pneumonitis (RP) (grade ≥2). METHODS AND MATERIALS This study retrospectively collected data on 79 patients with lung cancer (25 RP ≥2) who underwent chemoradiotherapy between 2015 and 2018. We defined 5 ROIs in planning computed tomography images: gross tumor volume (GTV), planning tumor volume (PTV), PTV-GTV, total lung (TL)-GTV, and TL-PTV. We calculated the mean dose, V5, V10, V20, and V30 within TL-GTV and TL-PTV and the mean dose within the other ROIs. A total of 1924 radiomics features were extracted from all 5 ROIs. We selected the best predictors for classifying 2 groups of patients using a sequential backward elimination support vector machine model. A permutation test was used to assess its statistical significance (P < .05). RESULTS The best predictors for symptomatic RP were the combination of 11 radiomics features, 5 dosimetric factors, age, and T stage, achieving an area under the curve (AUC) of 0.94 (95% confidence interval [CI], 0.85-1) (accuracy, 90%; sensitivity, 80% [95% CI, 44%-96%]; specificity, 95% [95% CI, 73%-100%]; P = 8 × 10-4). The clinical characteristics, dosimetric factors, and their combination showed limited predictive power (accuracy, 63.3%, 70%, and 70%; AUC [95% CI]: 0.73 [0.54-0.92], 0.53 [0.31-0.75], and 0.72 [0.51-0.92], respectively). The radiomics features of PTV-GTV and TL-PTV outperformed those of the other ROIs (accuracy, 76.7% and 76.7%; AUC [95% CI]: 0.82 [0.65-0.99] and 0.80 [0.59-1], respectively). CONCLUSIONS Combining dosimetric factors and radiomics features within different ROIs can improve the prediction of symptomatic RP. Our results can help physicians adjust the radiation dose distribution of the dose-sensitive lungs and target volumes based on personalized RP estimates.
Collapse
Affiliation(s)
- Wei Jiang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; Department of Radiotherapy, Yantai Yuhuangding Hospital, Qingdao University School of Medicine, Yantai, China
| | - Yipeng Song
- Department of Radiotherapy, Yantai Yuhuangding Hospital, Qingdao University School of Medicine, Yantai, China
| | - Zhe Sun
- Medical Engineering and Technology Research Center; Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Jianfeng Qiu
- Medical Engineering and Technology Research Center; Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China.
| | - Liting Shi
- Medical Engineering and Technology Research Center; Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China.
| |
Collapse
|
83
|
Ebert MA, Gulliford S, Acosta O, de Crevoisier R, McNutt T, Heemsbergen WD, Witte M, Palma G, Rancati T, Fiorino C. Spatial descriptions of radiotherapy dose: normal tissue complication models and statistical associations. Phys Med Biol 2021; 66:12TR01. [PMID: 34049304 DOI: 10.1088/1361-6560/ac0681] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/28/2021] [Indexed: 12/20/2022]
Abstract
For decades, dose-volume information for segmented anatomy has provided the essential data for correlating radiotherapy dosimetry with treatment-induced complications. Dose-volume information has formed the basis for modelling those associations via normal tissue complication probability (NTCP) models and for driving treatment planning. Limitations to this approach have been identified. Many studies have emerged demonstrating that the incorporation of information describing the spatial nature of the dose distribution, and potentially its correlation with anatomy, can provide more robust associations with toxicity and seed more general NTCP models. Such approaches are culminating in the application of computationally intensive processes such as machine learning and the application of neural networks. The opportunities these approaches have for individualising treatment, predicting toxicity and expanding the solution space for radiation therapy are substantial and have clearly widespread and disruptive potential. Impediments to reaching that potential include issues associated with data collection, model generalisation and validation. This review examines the role of spatial models of complication and summarises relevant published studies. Sources of data for these studies, appropriate statistical methodology frameworks for processing spatial dose information and extracting relevant features are described. Spatial complication modelling is consolidated as a pathway to guiding future developments towards effective, complication-free radiotherapy treatment.
Collapse
Affiliation(s)
- Martin A Ebert
- School of Physics, Mathematics and Computing, University of Western Australia, Crawley, Western Australia, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- 5D Clinics, Claremont, Western Australia, Australia
| | - Sarah Gulliford
- Department of Radiotherapy Physics, University College Hospitals London, United Kingdom
- Department of Medical Physics and Bioengineering, University College London, United Kingdom
| | - Oscar Acosta
- Univ Rennes, CLCC Eugène Marquis, INSERM, LTSI-UMR 1099, F-35000 Rennes, France
| | | | - Todd McNutt
- Johns Hopkins University, Baltimore, Maryland, United States of America
| | | | - Marnix Witte
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Giuseppe Palma
- Institute of Biostructures and Bioimaging, National Research Council, Napoli, Italy
| | - Tiziana Rancati
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Claudio Fiorino
- Medical Physics, San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
84
|
Tang W, Li X, Yu H, Yin X, Zou B, Zhang T, Chen J, Sun X, Liu N, Yu J, Xie P. A novel nomogram containing acute radiation esophagitis predicting radiation pneumonitis in thoracic cancer receiving radiotherapy. BMC Cancer 2021; 21:585. [PMID: 34022830 PMCID: PMC8140476 DOI: 10.1186/s12885-021-08264-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/28/2021] [Indexed: 12/25/2022] Open
Abstract
Background Radiation-induced pneumonitis (RP) is a non-negligible and sometimes life-threatening complication among patients with thoracic radiation. We initially aimed to ascertain the predictive value of acute radiation-induced esophagitis (SARE, grade ≥ 2) to symptomatic RP (SRP, grade ≥ 2) among thoracic cancer patients receiving radiotherapy. Based on that, we established a novel nomogram model to provide individualized risk assessment for SRP. Methods Thoracic cancer patients who were treated with thoracic radiation from Jan 2018 to Jan 2019 in Shandong Cancer Hospital and Institute were enrolled prospectively. All patients were followed up during and after radiotherapy (RT) to observe the development of esophagitis as well as pneumonitis. Variables were analyzed by univariate and multivariate analysis using the logistic regression model, and a nomogram model was established to predict SRP by “R” version 3.6.0. Results A total of 123 patients were enrolled (64 esophageal cancer, 57 lung cancer and 2 mediastinal cancer) in this study prospectively. RP grades of 0, 1, 2, 3, 4 and 5 occurred in 29, 57, 31, 0, 3 and 3 patients, respectively. SRP appeared in 37 patients (30.1%). In univariate analysis, SARE was shown to be a significant predictive factor for SRP (P < 0.001), with the sensitivity 91.9% and the negative predictive value 93.5%. The incidence of SRP in different grades of ARE were as follows: Grade 0–1: 6.5%; Grade 2: 36.9%; Grade 3: 80.0%; Grade 4: 100%. Besides that, the dosimetric factors considering total lung mean dose, total lung V5, V20, ipsilateral lung mean dose, ipsilateral lung V5, and mean esophagus dose were correlated with SRP (all P < 0.05) by univariate analysis. The incidence of SRP was significantly higher in patients whose symptoms of RP appeared early. SARE, mean esophagus dose and ipsilateral mean lung dose were still significant in multivariate analysis, and they were included to build a predictive nomogram model for SRP. Conclusions As an early index that can reflect the tissue’s radiosensitivity visually, SARE can be used as a predictor for SRP in patients receiving thoracic radiation. And the nomogram containing SARE may be fully applied in future’s clinical work.
Collapse
Affiliation(s)
- Wenjie Tang
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, 250117, Shandong, China
| | - Xiaolin Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, 250117, Shandong, China
| | - Haining Yu
- Department of Human Resource, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Xiaoyang Yin
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, 250117, Shandong, China
| | - Bing Zou
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, 250117, Shandong, China
| | - Tingting Zhang
- Department of Surgical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Jinlong Chen
- Department of Surgical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Xindong Sun
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, 250117, Shandong, China
| | - Naifu Liu
- Department of Surgical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, 250117, Shandong, China
| | - Peng Xie
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, 250117, Shandong, China.
| |
Collapse
|
85
|
Wang L, Gao Z, Li C, Sun L, Li J, Yu J, Meng X. Computed Tomography-Based Delta-Radiomics Analysis for Discriminating Radiation Pneumonitis in Patients With Esophageal Cancer After Radiation Therapy. Int J Radiat Oncol Biol Phys 2021; 111:443-455. [PMID: 33974887 DOI: 10.1016/j.ijrobp.2021.04.047] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 04/24/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Our purpose was to construct a computed tomography (CT)-based delta-radiomics nomogram and corresponding risk classification system for individualized and accurate estimation of severe acute radiation pneumonitis (SARP) in patients with esophageal cancer (EC) after radiation therapy. METHODS AND MATERIALS Four hundred patients with EC were enrolled from 2 independent institutions and were divided into the training (n = 200) and validation (n = 200) cohorts. Eight hundred fifty radiomics features of lung were extracted from treatment planning images, including the positioning CT before radiation therapy (CT1) and the resetting CT after receiving 40 to 45 Gy (CT2). The longitudinal net changes in radiomics features from CT1 to CT2 were calculated and defined as delta-radiomics features. Least absolute shrinkage and selection operator algorithm was performed to features selection and delta-radiomics signature building. Integrating the signature with multidimensional clinicopathologic, dosimetric, and hematological predictors of SARP, a novel CT-based delta-radiomics nomogram was established according to multivariate analysis. The clinical application values of nomogram were both evaluated in the training and validation cohorts by concordance index, calibration curves, and decision curve analysis. Recursive partitioning analysis was used to generate a risk classification system. RESULTS The delta-radiomics signature consisting of 24 features was significantly associated with SARP status (P < .001). Incorporating it with other high-risk factors, Subjective Global Assessment score, pulmonary fibrosis score, mean lung dose, and systemic immune inflammation index, the developed delta-radiomics nomogram showed increased improvement in SARP discrimination accuracy with concordance index of 0.975 and 0.921 in the training and validation cohorts, respectively. Calibration curves and decision curve analysis confirmed the satisfactory clinical feasibility and utility of nomogram. The risk classification system displayed excellent performance on identifying SARP occurrence (P < .001). CONCLUSIONS The delta-radiomics nomogram and risk classification system as low-cost and noninvasive means exhibited superior predictive accuracy and provided individualized probability of SARP stratification for patients with EC.
Collapse
Affiliation(s)
- Lu Wang
- Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhenhua Gao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Chengming Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Liangchao Sun
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jianing Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jinming Yu
- Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xue Meng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
86
|
El Ayachy R, Giraud N, Giraud P, Durdux C, Giraud P, Burgun A, Bibault JE. The Role of Radiomics in Lung Cancer: From Screening to Treatment and Follow-Up. Front Oncol 2021; 11:603595. [PMID: 34026602 PMCID: PMC8131863 DOI: 10.3389/fonc.2021.603595] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Lung cancer represents the first cause of cancer-related death in the world. Radiomics studies arise rapidly in this late decade. The aim of this review is to identify important recent publications to be synthesized into a comprehensive review of the current status of radiomics in lung cancer at each step of the patients' care. METHODS A literature review was conducted using PubMed/Medline for search of relevant peer-reviewed publications from January 2012 to June 2020. RESULTS We identified several studies at each point of patient's care: detection and classification of lung nodules (n=16), determination of histology and genomic (n=10) and finally treatment outcomes predictions (=23). We reported the methodology of those studies and their results and discuss the limitations and the progress to be made for clinical routine applications. CONCLUSION Promising perspectives arise from machine learning applications and radiomics based models in lung cancers, yet further data are necessary for their implementation in daily care. Multicentric collaboration and attention to quality and reproductivity of radiomics studies should be further consider.
Collapse
Affiliation(s)
- Radouane El Ayachy
- Radiation Oncology Department, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- Cancer Research and Personalized Medicine-Integrated Cancer Research Center (SIRIC), Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- INSERM UMR 1138 Team 22: Information Sciences to support Personalized Medicine, Cordeliers Research Centre, Paris Descartes University, Paris, France
| | - Nicolas Giraud
- INSERM UMR 1138 Team 22: Information Sciences to support Personalized Medicine, Cordeliers Research Centre, Paris Descartes University, Paris, France
- Radiation Oncology Department, Haut-Lévêque Hospital, CHU de Bordeaux, Pessac, France
| | - Paul Giraud
- Radiation Oncology Department, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- Cancer Research and Personalized Medicine-Integrated Cancer Research Center (SIRIC), Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- INSERM UMR 1138 Team 22: Information Sciences to support Personalized Medicine, Cordeliers Research Centre, Paris Descartes University, Paris, France
| | - Catherine Durdux
- Radiation Oncology Department, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- Cancer Research and Personalized Medicine-Integrated Cancer Research Center (SIRIC), Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
| | - Philippe Giraud
- Radiation Oncology Department, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- Cancer Research and Personalized Medicine-Integrated Cancer Research Center (SIRIC), Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
| | - Anita Burgun
- Cancer Research and Personalized Medicine-Integrated Cancer Research Center (SIRIC), Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- INSERM UMR 1138 Team 22: Information Sciences to support Personalized Medicine, Cordeliers Research Centre, Paris Descartes University, Paris, France
| | - Jean Emmanuel Bibault
- Radiation Oncology Department, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- Cancer Research and Personalized Medicine-Integrated Cancer Research Center (SIRIC), Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- INSERM UMR 1138 Team 22: Information Sciences to support Personalized Medicine, Cordeliers Research Centre, Paris Descartes University, Paris, France
| |
Collapse
|
87
|
Bousabarah K, Blanck O, Temming S, Wilhelm ML, Hoevels M, Baus WW, Ruess D, Visser-Vandewalle V, Ruge MI, Treuer H, Kocher M. Radiomics for prediction of radiation-induced lung injury and oncologic outcome after robotic stereotactic body radiotherapy of lung cancer: results from two independent institutions. Radiat Oncol 2021; 16:74. [PMID: 33863358 PMCID: PMC8052812 DOI: 10.1186/s13014-021-01805-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 04/11/2021] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVES To generate and validate state-of-the-art radiomics models for prediction of radiation-induced lung injury and oncologic outcome in non-small cell lung cancer (NSCLC) patients treated with robotic stereotactic body radiation therapy (SBRT). METHODS Radiomics models were generated from the planning CT images of 110 patients with primary, inoperable stage I/IIa NSCLC who were treated with robotic SBRT using a risk-adapted fractionation scheme at the University Hospital Cologne (training cohort). In total, 199 uncorrelated radiomic features fulfilling the standards of the Image Biomarker Standardization Initiative (IBSI) were extracted from the outlined gross tumor volume (GTV). Regularized models (Coxnet and Gradient Boost) for the development of local lung fibrosis (LF), local tumor control (LC), disease-free survival (DFS) and overall survival (OS) were built from either clinical/ dosimetric variables, radiomics features or a combination thereof and validated in a comparable cohort of 71 patients treated by robotic SBRT at the Radiosurgery Center in Northern Germany (test cohort). RESULTS Oncologic outcome did not differ significantly between the two cohorts (OS at 36 months 56% vs. 43%, p = 0.065; median DFS 25 months vs. 23 months, p = 0.43; LC at 36 months 90% vs. 93%, p = 0.197). Local lung fibrosis developed in 33% vs. 35% of the patients (p = 0.75), all events were observed within 36 months. In the training cohort, radiomics models were able to predict OS, DFS and LC (concordance index 0.77-0.99, p < 0.005), but failed to generalize to the test cohort. In opposite, models for the development of lung fibrosis could be generated from both clinical/dosimetric factors and radiomic features or combinations thereof, which were both predictive in the training set (concordance index 0.71- 0.79, p < 0.005) and in the test set (concordance index 0.59-0.66, p < 0.05). The best performing model included 4 clinical/dosimetric variables (GTV-Dmean, PTV-D95%, Lung-D1ml, age) and 7 radiomic features (concordance index 0.66, p < 0.03). CONCLUSION Despite the obvious difficulties in generalizing predictive models for oncologic outcome and toxicity, this analysis shows that carefully designed radiomics models for prediction of local lung fibrosis after SBRT of early stage lung cancer perform well across different institutions.
Collapse
Affiliation(s)
- Khaled Bousabarah
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.,Institute of Diagnostic and Interventional Radiology, University Hospital of Cologne, Cologne, Germany
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany.,Saphir Radiosurgery Center Northern Germany, Guestrow, Germany
| | - Susanne Temming
- Department of Radiation Oncology, University Hospital of Cologne, Cologne, Germany
| | - Maria-Lisa Wilhelm
- Saphir Radiosurgery Center Northern Germany, Guestrow, Germany.,Department of Radiation Oncology, University Medicine Rostock, Rostock, Germany
| | - Mauritius Hoevels
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Wolfgang W Baus
- Department of Radiation Oncology, University Hospital of Cologne, Cologne, Germany
| | - Daniel Ruess
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Maximilian I Ruge
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Harald Treuer
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Martin Kocher
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| |
Collapse
|
88
|
Adachi T, Nakamura M, Shintani T, Mitsuyoshi T, Kakino R, Ogata T, Ono T, Tanabe H, Kokubo M, Sakamoto T, Matsuo Y, Mizowaki T. Multi-institutional dose-segmented dosiomic analysis for predicting radiation pneumonitis after lung stereotactic body radiation therapy. Med Phys 2021; 48:1781-1791. [PMID: 33576510 DOI: 10.1002/mp.14769] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
PURPOSE To predict radiation pneumonitis (RP) grade 2 or worse after lung stereotactic body radiation therapy (SBRT) using dose-based radiomic (dosiomic) features. METHODS This multi-institutional study included 247 early-stage nonsmall cell lung cancer patients who underwent SBRT with a prescribed dose of 48-70 Gy at an isocenter between June 2009 and March 2016. Ten dose-volume indices (DVIs) were used, including the mean lung dose, internal target volume size, and percentage of entire lung excluding the internal target volume receiving greater than x Gy (x = 5, 10, 15, 20, 25, 30, 35, and 40). A total of 6,808 dose-segmented dosiomic features, such as shape, first order, and texture features, were extracted from the dose distribution. Patients were randomly partitioned into two groups: model training (70%) and test datasets (30%) over 100 times. Dosiomic features were converted to z-scores (standardized values) with a mean of zero and a standard deviation (SD) of one to put different variables on the same scale. The feature dimension was reduced using the following methods: interfeature correlation based on Spearman's correlation coefficients and feature importance based on a light gradient boosting machine (LightGBM) feature selection function. Three different models were developed using LightGBM as follows: (a) a model with ten DVIs (DVI model), (b) a model with the selected dosiomic features (dosiomic model), and (c) a model with ten DVIs and selected dosiomic features (hybrid model). Suitable hyperparameters were determined by searching the largest average area under the curve (AUC) value in the receiver operating characteristic curve (ROC-AUC) via stratified fivefold cross-validation. Each of the final three models with the closest the ROC-AUC value to the average ROC-AUC value was applied to the test datasets. The classification performance was evaluated by calculating the ROC-AUC, AUC in the precision-recall curve (PR-AUC), accuracy, precision, recall, and f1-score. The entire process was repeated 100 times with randomization, and 100 individual models were developed for each of the three models. Then the mean value and SD for the 100 random iterations were calculated for each performance metric. RESULTS Thirty-seven (15.0%) patients developed RP after SBRT. The ROC-AUC and PR-AUC values in the DVI, dosiomic, and hybrid models were 0.660 ± 0.054 and 0.272 ± 0.052, 0.837 ± 0.054 and 0.510 ± 0.115, and 0.846 ± 0.049 and 0.531 ± 0.116, respectively. For each performance metric, the dosiomic and hybrid models outperformed the DVI models (P < 0.05). Texture-based dosiomic feature was confirmed as an effective indicator for predicting RP. CONCLUSIONS Our dose-segmented dosiomic approach improved the prediction of the incidence of RP after SBRT.
Collapse
Affiliation(s)
- Takanori Adachi
- Division of Medical Physics, Department of Information Technology and Medical Engineering, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mitsuhiro Nakamura
- Division of Medical Physics, Department of Information Technology and Medical Engineering, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Shintani
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takamasa Mitsuyoshi
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Radiation Oncology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Ryo Kakino
- Division of Medical Physics, Department of Information Technology and Medical Engineering, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Ogata
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Radiation Oncology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Tomohiro Ono
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroaki Tanabe
- Department of Radiological Technology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Masaki Kokubo
- Department of Radiation Oncology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Takashi Sakamoto
- Department of Radiation Oncology, Kyoto Katsura Hospital, Kyoto, Japan
| | - Yukinori Matsuo
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
89
|
Buizza G, Paganelli C, D’Ippolito E, Fontana G, Molinelli S, Preda L, Riva G, Iannalfi A, Valvo F, Orlandi E, Baroni G. Radiomics and Dosiomics for Predicting Local Control after Carbon-Ion Radiotherapy in Skull-Base Chordoma. Cancers (Basel) 2021; 13:339. [PMID: 33477723 PMCID: PMC7832399 DOI: 10.3390/cancers13020339] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/05/2021] [Accepted: 01/14/2021] [Indexed: 02/08/2023] Open
Abstract
Skull-base chordoma (SBC) can be treated with carbon ion radiotherapy (CIRT) to improve local control (LC). The study aimed to explore the role of multi-parametric radiomic, dosiomic and clinical features as prognostic factors for LC in SBC patients undergoing CIRT. Before CIRT, 57 patients underwent MR and CT imaging, from which tumour contours and dose maps were obtained. MRI and CT-based radiomic, and dosiomic features were selected and fed to two survival models, singularly or by combining them with clinical factors. Adverse LC was given by in-field recurrence or tumour progression. The dataset was split in development and test sets and the models' performance evaluated using the concordance index (C-index). Patients were then assigned a low- or high-risk score. Survival curves were estimated, and risk groups compared through log-rank tests (after Bonferroni correction α = 0.0083). The best performing models were built on features describing tumour shape and dosiomic heterogeneity (median/interquartile range validation C-index: 0.80/024 and 0.79/0.26), followed by combined (0.73/0.30 and 0.75/0.27) and CT-based models (0.77/0.24 and 0.64/0.28). Dosiomic and combined models could consistently stratify patients in two significantly different groups. Dosiomic and multi-parametric radiomic features showed to be promising prognostic factors for LC in SBC treated with CIRT.
Collapse
Affiliation(s)
- Giulia Buizza
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; (C.P.); (G.B.)
| | - Chiara Paganelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; (C.P.); (G.B.)
| | - Emma D’Ippolito
- Radiotherapists Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy; (E.D.); (G.R.); (A.I.); (F.V.); (E.O.)
| | - Giulia Fontana
- Clinical Bioengineering Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy;
| | - Silvia Molinelli
- Medical Physics Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy;
| | - Lorenzo Preda
- Radiology Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy;
- Unit of Radiology, Department of Intensive Medicine, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giulia Riva
- Radiotherapists Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy; (E.D.); (G.R.); (A.I.); (F.V.); (E.O.)
| | - Alberto Iannalfi
- Radiotherapists Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy; (E.D.); (G.R.); (A.I.); (F.V.); (E.O.)
| | - Francesca Valvo
- Radiotherapists Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy; (E.D.); (G.R.); (A.I.); (F.V.); (E.O.)
| | - Ester Orlandi
- Radiotherapists Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy; (E.D.); (G.R.); (A.I.); (F.V.); (E.O.)
| | - Guido Baroni
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; (C.P.); (G.B.)
- Clinical Bioengineering Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy;
| |
Collapse
|
90
|
Marcello M, Denham JW, Kennedy A, Haworth A, Steigler A, Greer PB, Holloway LC, Dowling JA, Jameson MG, Roach D, Joseph DJ, Gulliford SL, Dearnaley DP, Sydes MR, Hall E, Ebert MA. Reduced Dose Posterior to Prostate Correlates With Increased PSA Progression in Voxel-Based Analysis of 3 Randomized Phase 3 Trials. Int J Radiat Oncol Biol Phys 2020; 108:1304-1318. [PMID: 32739320 DOI: 10.1016/j.ijrobp.2020.07.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Reducing margins during treatment planning to decrease dose to healthy organs surrounding the prostate can risk inadequate treatment of subclinical disease. This study aimed to investigate whether lack of dose to subclinical disease is associated with increased disease progression by using high-quality prostate radiation therapy clinical trial data to identify anatomically localized regions where dose variation is associated with prostate-specific antigen progression (PSAP). METHODS AND MATERIALS Planned dose distributions for 683 patients of the Trans-Tasman Radiation Oncology Group 03.04 Randomized Androgen Deprivation and Radiotherapy (RADAR) trial were deformably registered onto a single exemplar computed tomography data set. These were divided into high-risk and intermediate-risk subgroups for analysis. Three independent voxel-based statistical tests, using permutation testing, Cox regression modeling, and least absolute shrinkage selection operator feature selection, were applied to identify regions where dose variation was associated with PSAP. Results from the intermediate-risk RADAR subgroup were externally validated by registering dose distributions from the RT01 (n = 388) and Conventional or Hypofractionated High Dose Intensity Modulated Radiotherapy for Prostate Cancer Trial (CHHiP) (n = 253) trials onto the same exemplar and repeating the tests on each of these data sets. RESULTS Voxel-based Cox regression revealed regions where reduced dose was correlated with increased prostate-specific androgen progression. Reduced dose in regions associated with coverage at the posterior prostate, in the immediate periphery of the posterior prostate, and in regions corresponding to the posterior oblique beams or posterior lateral beam boundary, was associated with increased PSAP for RADAR and RT01 patients, but not for CHHiP patients. Reduced dose to the seminal vesicle region was also associated with increased PSAP for RADAR intermediate-risk patients. CONCLUSIONS Ensuring adequate dose coverage at the posterior prostate and immediately surrounding posterior region (including the seminal vesicles), where aggressive cancer spread may be occurring, may improve tumor control. It is recommended that particular care be taken when defining margins at the prostate posterior, acknowledging the trade-off between quality of life due to rectal dose and the preferences of clinicians and patients.
Collapse
Affiliation(s)
- Marco Marcello
- Department of Physics, University of Western Australia, Perth, Western Australia, Australia; Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia.
| | - James W Denham
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - Angel Kennedy
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Annette Haworth
- School of Physics, University of Sydney, Sydney, New South Wales, Australia
| | - Allison Steigler
- Prostate Cancer Trials Group, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - Peter B Greer
- School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, New South Wales, Australia; Department of Radiation Oncology, Calvary Mater Newcastle, Newcastle, New South Wales, Australia
| | - Lois C Holloway
- Department of Medical Physics, Liverpool Cancer Centre, Sydney, New South Wales, Australia; South Western Sydney Clinical School, University of New South Wales, Sydney, New South Wales, Australia; Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia
| | - Jason A Dowling
- School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, New South Wales, Australia; CSIRO, Brisbane, Queensland, Australia
| | - Michael G Jameson
- Department of Medical Physics, Liverpool Cancer Centre, Sydney, New South Wales, Australia; South Western Sydney Clinical School, University of New South Wales, Sydney, New South Wales, Australia; Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia; Cancer Research Team, Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia
| | - Dale Roach
- Department of Medical Physics, Liverpool Cancer Centre, Sydney, New South Wales, Australia; South Western Sydney Clinical School, University of New South Wales, Sydney, New South Wales, Australia; Cancer Research Team, Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia
| | - David J Joseph
- School of Surgery, University of Western Australia, Perth, Western Australia, Australia; 5D Clinics, Claremont, Perth, Western Australia, Australia; GenesisCare WA, Perth, Western Australia, Australia
| | - Sarah L Gulliford
- Radiotherapy Department, University College London Hospitals NHS Foundation Trust, London, United Kingdom; Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - David P Dearnaley
- Academic UroOncology Unit, The Institute of Cancer Research and the Royal Marsden NHS Trust, London, United Kingdom
| | - Matthew R Sydes
- MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology, University College London, London, United Kingdom
| | - Emma Hall
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Martin A Ebert
- Department of Physics, University of Western Australia, Perth, Western Australia, Australia; Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia; 5D Clinics, Claremont, Perth, Western Australia, Australia
| |
Collapse
|
91
|
Bourbonne V, Da-Ano R, Jaouen V, Lucia F, Dissaux G, Bert J, Pradier O, Visvikis D, Hatt M, Schick U. Radiomics analysis of 3D dose distributions to predict toxicity of radiotherapy for lung cancer. Radiother Oncol 2020; 155:144-150. [PMID: 33161012 DOI: 10.1016/j.radonc.2020.10.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE (Chemo)-radiotherapy (RT) is the gold standard treatment for patients with locally advanced lung cancer non accessible for surgery. However, current toxicity prediction models rely on clinical and dose volume histograms (DVHs) and remain unsufficient. The goal of this work is to investigate the added predictive value of the radiomics approach applied to dose maps regarding acute and late toxicities in both the lungs and esophagus. METHODS Acute and late toxicities scored using the CTCAE v4.0 were retrospectively collected on patients treated with RT in our institution. Radiomic features were extracted from 3D dose maps considering Gy values as grey-levels in images. DVH and usual clinical factors were also considered. Three toxicity prediction models (clinical only, clinical + DVH and combined, i.e., including clinical + DVH + radiomics) were incrementally trained using a neural network on 70% of the patients for prediction of grade ≥2 acute and late pulmonary toxicities (APT/LPT) and grade ≥2 acute esophageal toxicities (AET). After bootstrapping (n = 1000), optimal cut-off values were determined based on the Youden Index. The trained models were then evaluated in the remaining 30% of patients using balanced accuracy (BAcc). RESULTS 167 patients were treated from 2015 to 2018: 78% non small-cell lung cancers, 14% small-cell lung cancers and 8% other histology with a median age at treatment of 66 years. Respectively, 22.2%, 16.8% and 30.0% experienced APT, LPT and AET. In the training set (n = 117), the corresponding BAcc for clinical only/clinical + DVH/combined were 0.68/0.79/0.92, 0.66/0.77/0.87 and 0.68/0.73/0.84. In the testing evaluation (n = 50), these trained models obtained a corresponding BAcc of 0.69/0.69/0.92, 0.76/0.80/0.89 and 0.58/0.73/0.72. CONCLUSION In patients with a lung cancer treated with RT, radiomic features extracted from 3D dose maps seem to surpass usual models based on clinical factors and DVHs for the prediction of APT and LPT.
Collapse
Affiliation(s)
- V Bourbonne
- Radiation Oncology Department, University Hospital, Brest, France; LaTIM, UMR 1101, INSERM, Univ Brest, Brest, France.
| | - R Da-Ano
- LaTIM, UMR 1101, INSERM, Univ Brest, Brest, France
| | - V Jaouen
- LaTIM, UMR 1101, INSERM, Univ Brest, Brest, France
| | - F Lucia
- Radiation Oncology Department, University Hospital, Brest, France; LaTIM, UMR 1101, INSERM, Univ Brest, Brest, France
| | - G Dissaux
- Radiation Oncology Department, University Hospital, Brest, France; LaTIM, UMR 1101, INSERM, Univ Brest, Brest, France
| | - J Bert
- LaTIM, UMR 1101, INSERM, Univ Brest, Brest, France
| | - O Pradier
- Radiation Oncology Department, University Hospital, Brest, France; LaTIM, UMR 1101, INSERM, Univ Brest, Brest, France
| | - D Visvikis
- LaTIM, UMR 1101, INSERM, Univ Brest, Brest, France
| | - M Hatt
- LaTIM, UMR 1101, INSERM, Univ Brest, Brest, France
| | - U Schick
- Radiation Oncology Department, University Hospital, Brest, France; LaTIM, UMR 1101, INSERM, Univ Brest, Brest, France
| |
Collapse
|
92
|
Desideri I, Loi M, Francolini G, Becherini C, Livi L, Bonomo P. Application of Radiomics for the Prediction of Radiation-Induced Toxicity in the IMRT Era: Current State-of-the-Art. Front Oncol 2020; 10:1708. [PMID: 33117669 PMCID: PMC7574641 DOI: 10.3389/fonc.2020.01708] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
Normal tissue complication probability (NTCP) models that were formulated in the Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC) are one of the pillars in support of everyday’s clinical radiation oncology. Because of steady therapeutic refinements and the availability of cutting-edge technical solutions, the ceiling of organs-at-risk-sparing has been reached for photon-based intensity modulated radiotherapy (IMRT). The possibility to capture heterogeneity of patients and tissues in the prediction of toxicity is still an unmet need in modern radiation therapy. Potentially, a major step towards a wider therapeutic index could be obtained from refined assessment of radiation-induced morbidity at an individual level. The rising integration of quantitative imaging and machine learning applications into radiation oncology workflow offers an unprecedented opportunity to further explore the biologic interplay underlying the normal tissue response to radiation. Based on these premises, in this review we focused on the current-state-of-the-art on the use of radiomics for the prediction of toxicity in the field of head and neck, lung, breast and prostate radiotherapy.
Collapse
Affiliation(s)
- Isacco Desideri
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Mauro Loi
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Giulio Francolini
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Carlotta Becherini
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Lorenzo Livi
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Pierluigi Bonomo
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| |
Collapse
|
93
|
Yan M, Wang W. Radiomic Analysis of CT Predicts Tumor Response in Human Lung Cancer with Radiotherapy. J Digit Imaging 2020; 33:1401-1403. [PMID: 33025167 PMCID: PMC7728862 DOI: 10.1007/s10278-020-00385-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Radiomics features can be positioned to monitor changes throughout treatment. In this study, we evaluated machine learning for predicting tumor response by analyzing CT images of lung cancer patients treated with radiotherapy. EXPERIMENTAL DESIGN For this retrospective study, screening or standard diagnostic CT images were collected for 100 patients (mean age, 67 years; range, 55-82 years; 64 men [mean age, 68 years; range, 55-82 years] and 36 women [mean age, 65 years; range, 60-72 years]) from two institutions between 2013 and 2017. Radiomics analysis was available for each patient. Features were pruned to train machine learning classifiers with 50 patients, then trained in the test dataset. RESULT A support vector machine classifier with 2 radiomic features (flatness and coefficient of variation) achieved an area under the receiver operating characteristic curve (AUC) of 0.91 on the test set. CONCLUSION The 2 radiomic features, flatness, and coefficient of variation, from the volume of interest of lung tumor, can be the biomarkers for predicting tumor response at CT.
Collapse
Affiliation(s)
- Mengmeng Yan
- Urban Vocational College of Sichuan, Chengdu, China.,Sichuan Cancer Hospital & Institute, Chengdu, China
| | - Weidong Wang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Chengdu, 610041, China. .,Radiation Oncology, Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
94
|
Schick U, Lucia F, Bourbonne V, Dissaux G, Pradier O, Jaouen V, Tixier F, Visvikis D, Hatt M. Use of radiomics in the radiation oncology setting: Where do we stand and what do we need? Cancer Radiother 2020; 24:755-761. [DOI: 10.1016/j.canrad.2020.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022]
|
95
|
Lee SH, Han P, Hales RK, Voong KR, Noro K, Sugiyama S, Haller JW, McNutt TR, Lee J. Multi-view radiomics and dosiomics analysis with machine learning for predicting acute-phase weight loss in lung cancer patients treated with radiotherapy. Phys Med Biol 2020; 65:195015. [PMID: 32235058 DOI: 10.1088/1361-6560/ab8531] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We propose a multi-view data analysis approach using radiomics and dosiomics (R&D) texture features for predicting acute-phase weight loss (WL) in lung cancer radiotherapy. Baseline weight of 388 patients who underwent intensity modulated radiation therapy (IMRT) was measured between one month prior to and one week after the start of IMRT. Weight change between one week and two months after the commencement of IMRT was analyzed, and dichotomized at 5% WL. Each patient had a planning CT and contours of gross tumor volume (GTV) and esophagus (ESO). A total of 355 features including clinical parameter (CP), GTV and ESO (GTV&ESO) dose-volume histogram (DVH), GTV radiomics, and GTV&ESO dosiomics features were extracted. R&D features were categorized as first- (L1), second- (L2), higher-order (L3) statistics, and three combined groups, L1 + L2, L2 + L3 and L1 + L2 + L3. Multi-view texture analysis was performed to identify optimal R&D input features. In the training set (194 earlier patients), feature selection was performed using Boruta algorithm followed by collinearity removal based on variance inflation factor. Machine-learning models were developed using Laplacian kernel support vector machine (lpSVM), deep neural network (DNN) and their averaged ensemble classifiers. Prediction performance was tested on an independent test set (194 more recent patients), and compared among seven different input conditions: CP-only, DVH-only, R&D-only, DVH + CP, R&D + CP, R&D + DVH and R&D + DVH + CP. Combined GTV L1 + L2 + L3 radiomics and GTV&ESO L3 dosiomics were identified as optimal input features, which achieved the best performance with an ensemble classifier (AUC = 0.710), having statistically significantly higher predictability compared with DVH and/or CP features (p < 0.05). When this performance was compared to that with full R&D-only features which reflect traditional single-view data, there was a statistically significant difference (p < 0.05). Using optimized multi-view R&D input features is beneficial for predicting early WL in lung cancer radiotherapy, leading to improved performance compared to using conventional DVH and/or CP features.
Collapse
Affiliation(s)
- Sang Ho Lee
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Hernandez V, Hansen CR, Widesott L, Bäck A, Canters R, Fusella M, Götstedt J, Jurado-Bruggeman D, Mukumoto N, Kaplan LP, Koniarová I, Piotrowski T, Placidi L, Vaniqui A, Jornet N. What is plan quality in radiotherapy? The importance of evaluating dose metrics, complexity, and robustness of treatment plans. Radiother Oncol 2020; 153:26-33. [PMID: 32987045 DOI: 10.1016/j.radonc.2020.09.038] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/25/2022]
Abstract
Plan evaluation is a key step in the radiotherapy treatment workflow. Central to this step is the assessment of treatment plan quality. Hence, it is important to agree on what we mean by plan quality and to be fully aware of which parameters it depends on. We understand plan quality in radiotherapy as the clinical suitability of the delivered dose distribution that can be realistically expected from a treatment plan. Plan quality is commonly assessed by evaluating the dose distribution calculated by the treatment planning system (TPS). Evaluating the 3D dose distribution is not easy, however; it is hard to fully evaluate its spatial characteristics and we still lack the knowledge for personalising the prediction of the clinical outcome based on individual patient characteristics. This advocates for standardisation and systematic collection of clinical data and outcomes after radiotherapy. Additionally, the calculated dose distribution is not exactly the dose delivered to the patient due to uncertainties in the dose calculation and the treatment delivery, including variations in the patient set-up and anatomy. Consequently, plan quality also depends on the robustness and complexity of the treatment plan. We believe that future work and consensus on the best metrics for quality indices are required. Better tools are needed in TPSs for the evaluation of dose distributions, for the robust evaluation and optimisation of treatment plans, and for controlling and reporting plan complexity. Implementation of such tools and a better understanding of these concepts will facilitate the handling of these characteristics in clinical practice and be helpful to increase the overall quality of treatment plans in radiotherapy.
Collapse
Affiliation(s)
- Victor Hernandez
- Department of Medical Physics, Hospital Sant Joan de Reus, IISPV, Spain.
| | - Christian Rønn Hansen
- Laboratory of Radiation Physics, Odense University Hospital, Denmark; Institute of Clinical Research, University of Southern Denmark, Denmark; Danish Centre for Particle Therapy, Aarhus University Hospital, Denmark
| | | | - Anna Bäck
- Department of Therapeutic Radiation Physics, Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Richard Canters
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, The Netherlands
| | - Marco Fusella
- Medical Physics Department, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Julia Götstedt
- Department of Radiation Physics, University of Gothenburg, Göteborg, Sweden
| | - Diego Jurado-Bruggeman
- Medical Physics and Radiation Protection Department, Institut Català d'Oncologia, Girona, Spain
| | - Nobutaka Mukumoto
- Department of Radiation Oncology and Image-applied Therapy, Graduate, School of Medicine, Kyoto University, Japan
| | | | - Irena Koniarová
- National Radiation Protection Institute, Prague, Czech Republic
| | - Tomasz Piotrowski
- Department of Electroradiology, Poznań University of Medical Sciences, Poznań, Poland; Department of Medical Physics, Greater Poland Cancer Centre, Poznań, Poland
| | - Lorenzo Placidi
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Roma, Italy
| | - Ana Vaniqui
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, The Netherlands
| | - Nuria Jornet
- Servei de Radiofísica i Radioprotecció, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| |
Collapse
|
97
|
Stability of dosomics features extraction on grid resolution and algorithm for radiotherapy dose calculation. Phys Med 2020; 77:30-35. [DOI: 10.1016/j.ejmp.2020.07.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/29/2020] [Accepted: 07/16/2020] [Indexed: 12/16/2022] Open
|
98
|
Yang WC, Hsu FM, Yang PC. Precision radiotherapy for non-small cell lung cancer. J Biomed Sci 2020; 27:82. [PMID: 32693792 PMCID: PMC7374898 DOI: 10.1186/s12929-020-00676-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
Precision medicine is becoming the standard of care in anti-cancer treatment. The personalized precision management of cancer patients highly relies on the improvement of new technology in next generation sequencing and high-throughput big data processing for biological and radiographic information. Systemic precision cancer therapy has been developed for years. However, the role of precision medicine in radiotherapy has not yet been fully implemented. Emerging evidence has shown that precision radiotherapy for cancer patients is possible with recent advances in new radiotherapy technologies, panomics, radiomics and dosiomics. This review focused on the role of precision radiotherapy in non-small cell lung cancer and demonstrated the current landscape.
Collapse
Affiliation(s)
- Wen-Chi Yang
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, No. 7, Chung-Shan South Rd, Taipei, Taiwan.,Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Feng-Ming Hsu
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, No. 7, Chung-Shan South Rd, Taipei, Taiwan. .,Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Pan-Chyr Yang
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan. .,Department of Internal Medicine, National Taiwan University Hospital, No.1 Sec 1, Jen-Ai Rd, Taipei, 100, Taiwan.
| |
Collapse
|
99
|
Ibragimov B, Toesca DAS, Chang DT, Yuan Y, Koong AC, Xing L, Vogelius IR. Deep learning for identification of critical regions associated with toxicities after liver stereotactic body radiation therapy. Med Phys 2020; 47:3721-3731. [DOI: 10.1002/mp.14235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/02/2020] [Accepted: 05/05/2020] [Indexed: 12/26/2022] Open
Affiliation(s)
- Bulat Ibragimov
- Department of Computer Science University of Copenhagen Copenhagen Denmark
| | - Diego A. S. Toesca
- Department of Radiation Oncology Stanford University School of Medicine Stanford CA USA
| | - Daniel T. Chang
- Department of Radiation Oncology Stanford University School of Medicine Stanford CA USA
| | - Yixuan Yuan
- Department of Electronic Engineering City University of Hong Kong Hong Kong
| | - Albert C. Koong
- Department of Radiation Oncology MD Anderson Cancer Center Houston Texas
| | - Lei Xing
- Department of Radiation Oncology Stanford University School of Medicine Stanford CA USA
| | - Ivan R. Vogelius
- Department of Oncology Faulty of Health & Medical Sciences Rigshospitalet University of Copenhagen Copenhagen Denmark
| |
Collapse
|
100
|
Avanzo M, Stancanello J, Pirrone G, Sartor G. Radiomics and deep learning in lung cancer. Strahlenther Onkol 2020; 196:879-887. [PMID: 32367456 DOI: 10.1007/s00066-020-01625-9] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
Lung malignancies have been extensively characterized through radiomics and deep learning. By providing a three-dimensional characterization of the lesion, models based on radiomic features from computed tomography (CT) and positron-emission tomography (PET) have been developed to detect nodules, distinguish malignant from benign lesions, characterize their histology, stage, and genotype. Deep learning models have been applied to automatically segment organs at risk in lung cancer radiotherapy, stratify patients according to the risk for local and distant recurrence, and identify patients candidate for molecular targeted therapy and immunotherapy. Moreover, radiomics has also been applied successfully to predict side effects such as radiation- and immunotherapy-induced pneumonitis and differentiate lung injury from recurrence. Radiomics could also untap the potential for further use of the cone beam CT acquired for treatment image guidance, four-dimensional CT, and dose-volume data from radiotherapy treatment plans. Radiomics is expected to increasingly affect the clinical practice of treatment of lung tumors, optimizing the end-to-end diagnosis-treatment-follow-up chain. The main goal of this article is to provide an update on the current status of lung cancer radiomics.
Collapse
Affiliation(s)
- Michele Avanzo
- Department of Medical Physics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081, Aviano, PN, Italy.
| | | | - Giovanni Pirrone
- Department of Medical Physics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081, Aviano, PN, Italy
| | - Giovanna Sartor
- Department of Medical Physics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081, Aviano, PN, Italy
| |
Collapse
|