51
|
Zhang YD, Dong Z, Wang SH, Yu X, Yao X, Zhou Q, Hu H, Li M, Jiménez-Mesa C, Ramirez J, Martinez FJ, Gorriz JM. Advances in multimodal data fusion in neuroimaging: Overview, challenges, and novel orientation. AN INTERNATIONAL JOURNAL ON INFORMATION FUSION 2020; 64:149-187. [PMID: 32834795 PMCID: PMC7366126 DOI: 10.1016/j.inffus.2020.07.006] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 05/13/2023]
Abstract
Multimodal fusion in neuroimaging combines data from multiple imaging modalities to overcome the fundamental limitations of individual modalities. Neuroimaging fusion can achieve higher temporal and spatial resolution, enhance contrast, correct imaging distortions, and bridge physiological and cognitive information. In this study, we analyzed over 450 references from PubMed, Google Scholar, IEEE, ScienceDirect, Web of Science, and various sources published from 1978 to 2020. We provide a review that encompasses (1) an overview of current challenges in multimodal fusion (2) the current medical applications of fusion for specific neurological diseases, (3) strengths and limitations of available imaging modalities, (4) fundamental fusion rules, (5) fusion quality assessment methods, and (6) the applications of fusion for atlas-based segmentation and quantification. Overall, multimodal fusion shows significant benefits in clinical diagnosis and neuroscience research. Widespread education and further research amongst engineers, researchers and clinicians will benefit the field of multimodal neuroimaging.
Collapse
Affiliation(s)
- Yu-Dong Zhang
- School of Informatics, University of Leicester, Leicester, LE1 7RH, Leicestershire, UK
- Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Zhengchao Dong
- Department of Psychiatry, Columbia University, USA
- New York State Psychiatric Institute, New York, NY 10032, USA
| | - Shui-Hua Wang
- Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- School of Architecture Building and Civil engineering, Loughborough University, Loughborough, LE11 3TU, UK
- School of Mathematics and Actuarial Science, University of Leicester, LE1 7RH, UK
| | - Xiang Yu
- School of Informatics, University of Leicester, Leicester, LE1 7RH, Leicestershire, UK
| | - Xujing Yao
- School of Informatics, University of Leicester, Leicester, LE1 7RH, Leicestershire, UK
| | - Qinghua Zhou
- School of Informatics, University of Leicester, Leicester, LE1 7RH, Leicestershire, UK
| | - Hua Hu
- Department of Psychiatry, Columbia University, USA
- Department of Neurology, The Second Affiliated Hospital of Soochow University, China
| | - Min Li
- Department of Psychiatry, Columbia University, USA
- School of Internet of Things, Hohai University, Changzhou, China
| | - Carmen Jiménez-Mesa
- Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain
| | - Javier Ramirez
- Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain
| | - Francisco J Martinez
- Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain
| | - Juan Manuel Gorriz
- Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain
- Department of Psychiatry, University of Cambridge, Cambridge CB21TN, UK
| |
Collapse
|
52
|
Beauchamp MH, Dégeilh F, Yeates K, Gagnon I, Tang K, Gravel J, Stang A, Burstein B, Bernier A, Lebel C, El Jalbout R, Lupien S, de Beaumont L, Zemek R, Dehaes M, Deschênes S. Kids' Outcomes And Long-term Abilities (KOALA): protocol for a prospective, longitudinal cohort study of mild traumatic brain injury in children 6 months to 6 years of age. BMJ Open 2020; 10:e040603. [PMID: 33077571 PMCID: PMC7574946 DOI: 10.1136/bmjopen-2020-040603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Mild traumatic brain injury (mTBI) is highly prevalent, especially in children under 6 years. However, little research focuses on the consequences of mTBI early in development. The objective of the Kids' Outcomes And Long-term Abilities (KOALA) study is to document the impact of early mTBI on children's motor, cognitive, social and behavioural functioning, as well as on quality of life, stress, sleep and brain integrity. METHODS AND ANALYSES KOALA is a prospective, multicentre, longitudinal cohort study of children aged 6 months to 6 years at the time of injury/recruitment. Children who sustain mTBI (n=150) or an orthopaedic injury (n=75) will be recruited from three paediatric emergency departments (PEDs), and compared with typically developing children (community controls, n=75). A comprehensive battery of prognostic and outcome measures will be collected in the PED, at 10 days, 1, 3 and 12 months postinjury. Biological measures, including measures of brain structure and function (magnetic resonance imaging, MRI), stress (hair cortisol), sleep (actigraphy) and genetics (saliva), will complement direct testing of function using developmental and neuropsychological measures and parent questionnaires. Group comparisons and predictive models will test the a priori hypotheses that, compared with children from the community or with orthopaedic injuries, children with mTBI will (1) display more postconcussive symptoms and exhibit poorer motor, cognitive, social and behavioural functioning; (2) show evidence of altered brain structure and function, poorer sleep and higher levels of stress hormones. A combination of child, injury, socioenvironmental and psychobiological factors are expected to predict behaviour and quality of life at 1, 3 and 12 months postinjury. ETHICS AND DISSEMINATION The KOALA study is approved by the Sainte-Justine University Hospital, McGill University Health Centre and University of Calgary Conjoint Health Research Ethics Boards. Parents of participants will provide written consent. Dissemination will occur through peer-reviewed journals and an integrated knowledge translation plan.
Collapse
Affiliation(s)
- Miriam H Beauchamp
- Psychology, Université de Montréal, Montreal, Quebec, Canada
- Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada
| | - Fanny Dégeilh
- Psychology, Université de Montréal, Montreal, Quebec, Canada
- Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada
- Psychiatry, LMU München, Munchen, Bayern, Germany
| | - Keith Yeates
- Psychology, University of Calgary, Calgary, Alberta, Canada
- Research Institute, Alberta Children's Hospital, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Isabelle Gagnon
- School of Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada
- Trauma, Montreal Children's Hospital, Montreal, Quebec, Canada
| | - Ken Tang
- Clinical Research Unit, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Jocelyn Gravel
- Pediatric Emergency Medicine, CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Antonia Stang
- Pediatrics, University of Calgary, Calgary, Alberta, Canada
- Pediatrics, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Brett Burstein
- Pediatric Emergency Medicine, Montreal Children's Hospital, McGill University Health Center, Montreal, Quebec, Canada
| | - Annie Bernier
- Psychology, Université de Montreal, Montreal, Quebec, Canada
| | - Catherine Lebel
- Research Institute, Alberta Children's Hospital, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Radiology, University of Calgary, Calgary, Alberta, Canada
| | | | - Sonia Lupien
- Psychiatry, Université de Montréal, Montreal, Quebec, Canada
| | | | - Roger Zemek
- Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Mathieu Dehaes
- Psychology, Université de Montréal, Montreal, Quebec, Canada
| | | |
Collapse
|
53
|
Benischek A, Long X, Rohr CS, Bray S, Dewey D, Lebel C. Pre-reading language abilities and the brain’s functional reading network in young children. Neuroimage 2020; 217:116903. [DOI: 10.1016/j.neuroimage.2020.116903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 04/07/2020] [Accepted: 04/30/2020] [Indexed: 01/23/2023] Open
|
54
|
Wedderburn CJ, Subramoney S, Yeung S, Fouche JP, Joshi SH, Narr KL, Rehman AM, Roos A, Ipser J, Robertson FC, Groenewold NA, Gibb DM, Zar HJ, Stein DJ, Donald KA. Neuroimaging young children and associations with neurocognitive development in a South African birth cohort study. Neuroimage 2020; 219:116846. [PMID: 32304884 PMCID: PMC7443699 DOI: 10.1016/j.neuroimage.2020.116846] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/14/2020] [Accepted: 04/06/2020] [Indexed: 11/25/2022] Open
Abstract
Magnetic resonance imaging (MRI) is an indispensable tool for investigating brain development in young children and the neurobiological mechanisms underlying developmental risk and resilience. Sub-Saharan Africa has the highest proportion of children at risk of developmental delay worldwide, yet in this region there is very limited neuroimaging research focusing on the neurobiology of such impairment. Furthermore, paediatric MRI imaging is challenging in any setting due to motion sensitivity. Although sedation and anesthesia are routinely used in clinical practice to minimise movement in young children, this may not be ethical in the context of research. Our study aimed to investigate the feasibility of paediatric multimodal MRI at age 2–3 years without sedation, and to explore the relationship between cortical structure and neurocognitive development at this understudied age in a sub-Saharan African setting. A total of 239 children from the Drakenstein Child Health Study, a large observational South African birth cohort, were recruited for neuroimaging at 2–3 years of age. Scans were conducted during natural sleep utilising locally developed techniques. T1-MEMPRAGE and T2-weighted structural imaging, resting state functional MRI, diffusion tensor imaging and magnetic resonance spectroscopy sequences were included. Child neurodevelopment was assessed using the Bayley-III Scales of Infant and Toddler Development. Following 23 pilot scans, 216 children underwent scanning and T1-weighted images were obtained from 167/216 (77%) of children (median age 34.8 months). Furthermore, we found cortical surface area and thickness within frontal regions were associated with cognitive development, and in temporal and frontal regions with language development (beta coefficient ≥0.20). Overall, we demonstrate the feasibility of carrying out a neuroimaging study of young children during natural sleep in sub-Saharan Africa. Our findings indicate that dynamic morphological changes in heteromodal association regions are associated with cognitive and language development at this young age. These proof-of-concept analyses suggest similar links between the brain and cognition as prior literature from high income countries, enhancing understanding of the interplay between cortical structure and function during brain maturation. MRI data are challenging to acquire in the early years of life. Paediatric MRI without sedation is feasible in sub-Saharan Africa, with 77% success. The Drakenstein Child Health study has novel MRI data of South African children. Morphological features of the cortex associate with neurocognitive development. Structure-cognition relationships in heteromodal association regions at 2–3 years.
Collapse
Affiliation(s)
- Catherine J Wedderburn
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, South Africa; Department of Clinical Research, London School of Hygiene & Tropical Medicine, UK; Neuroscience Institute, University of Cape Town, South Africa.
| | - Sivenesi Subramoney
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, South Africa
| | - Shunmay Yeung
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, UK
| | | | - Shantanu H Joshi
- Departments of Neurology, Psychiatry and Biobehavioral Sciences, University of California Los Angeles, CA, USA
| | - Katherine L Narr
- Departments of Neurology, Psychiatry and Biobehavioral Sciences, University of California Los Angeles, CA, USA
| | - Andrea M Rehman
- MRC Tropical Epidemiology Group, London School of Hygiene & Tropical Medicine, London, UK
| | - Annerine Roos
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, South Africa; Neuroscience Institute, University of Cape Town, South Africa; SU/UCT MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, South Africa
| | - Jonathan Ipser
- Neuroscience Institute, University of Cape Town, South Africa; Department of Psychiatry, University of Cape Town, South Africa
| | - Frances C Robertson
- Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, South Africa; Cape Universities Brain Imaging Centre (CUBIC), Cape Town, South Africa
| | - Nynke A Groenewold
- Neuroscience Institute, University of Cape Town, South Africa; Department of Psychiatry, University of Cape Town, South Africa
| | - Diana M Gibb
- MRC Clinical Trials Unit, University College, London, UK
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, South Africa; SAMRC Unit on Child & Adolescent Health, University of Cape Town, South Africa
| | - Dan J Stein
- Neuroscience Institute, University of Cape Town, South Africa; Department of Psychiatry, University of Cape Town, South Africa; SU/UCT MRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, South Africa
| | - Kirsten A Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, South Africa; Neuroscience Institute, University of Cape Town, South Africa
| |
Collapse
|
55
|
Abstract
OBJECTIVE. Functional MRI (fMRI) is clinically used for localization of eloquent cortex before surgical intervention, most commonly motor and language function in patients with tumors or epilepsy. In the pediatric population, special considerations for fMRI relate to limited examination tolerance, small head size, developing anatomy and physiology, and diverse potential abnormalities. In this article, we will highlight pearls and pitfalls of clinical pediatric fMRI including blood oxygenation level-dependent imaging principles, patient preparation, study acquisition, data postprocessing, and examination interpretation. CONCLUSION. Clinical fMRI is indicated for presurgical localization of eloquent cortex in patients with tumors, epilepsy, or other neurologic conditions and requires a solid understanding of technical considerations and data processing. In children, special approaches are needed for patient preparation as well as study design, acquisition, and interpretation. Radiologists should be cognizant of developmental neuroanatomy, causes of neuropathology, and capacity for neuroplasticity in the pediatric population.
Collapse
|
56
|
Zamani A, Ryan NP, Wright DK, Caeyenberghs K, Semple BD. The Impact of Traumatic Injury to the Immature Human Brain: A Scoping Review with Insights from Advanced Structural Neuroimaging. J Neurotrauma 2020; 37:724-738. [PMID: 32037951 DOI: 10.1089/neu.2019.6895] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Traumatic brain injury (TBI) during critical periods of early-life brain development can affect the normal formation of brain networks responsible for a range of complex social behaviors. Because of the protracted nature of brain and behavioral development, deficits in cognitive and socioaffective behaviors may not become evident until late adolescence and early adulthood, when such skills are expected to reach maturity. In addition, multiple pre- and post-injury factors can interact with the effects of early brain insult to influence long-term outcomes. In recent years, with advancements in magnetic-resonance-based neuroimaging techniques and analysis, studies of the pediatric population have revealed a link between neurobehavioral deficits, such as social dysfunction, with white matter damage. In this review, in which we focus on contributions from Australian researchers to the field, we have highlighted pioneering longitudinal studies in pediatric TBI, in relation to social deficits specifically. We also discuss the use of advanced neuroimaging and novel behavioral assays in animal models of TBI in the immature brain. Together, this research aims to understand the relationship between injury consequences and ongoing brain development after pediatric TBI, which promises to improve prediction of the behavioral deficits that emerge in the years subsequent to early-life injury.
Collapse
Affiliation(s)
- Akram Zamani
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Nicholas P Ryan
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, Victoria, Australia
- Brain & Mind Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - David K Wright
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, Victoria, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
57
|
Reynolds JE, Long X, Paniukov D, Bagshawe M, Lebel C. Calgary Preschool magnetic resonance imaging (MRI) dataset. Data Brief 2020; 29:105224. [PMID: 32071993 PMCID: PMC7016255 DOI: 10.1016/j.dib.2020.105224] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/15/2020] [Accepted: 01/24/2020] [Indexed: 01/05/2023] Open
Abstract
The Calgary Preschool MRI Dataset in the Developmental Neuroimaging Lab at the University of Calgary uses magnetic resonance imaging (MRI) techniques to study brain structure and function in early childhood [1-3]. The dataset aims to characterise brain development in early childhood (2-8 years), and to understand links to cognitive and behavioral development, as well as provide a baseline from which to identify atypical development in children with diseases, disorders, or brain injuries. MRI data are provided for 126 children (61 males, 65 females). Children ranged from 1.95 to 6.22 years (mean = 3.98 ± 1.06 years) at the time of their first scan and were initially scanned at six month intervals, and now continue to be followed annually (1-20 scans per child, 431 total datasets; datasets do not always have all scan modalities available). All MRI scans were acquired on the same General Electric 3T MR750w system and 32-channel head coil (GE, Waukesha, WI) at the Alberta Children's Hospital in Calgary, Canada. The MRI protocols provided in this dataset include: T1-weighted images acquired using a FSPGR BRAVO sequence; arterial spin labeling (ASL) images acquired with the vendor supplied pseudo continuous 3D ASL sequence; diffusion tensor imaging data acquired using single shot spin echo echo-planar imaging; and passive viewing resting state functional MRI data acquired with a gradient-echo echo-planar imaging sequence.
Collapse
Affiliation(s)
- Jess E Reynolds
- Department of Radiology, University of Calgary, 2500 University Drive NW, Calgary, T2N 1N4, AB, Canada.,Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada.,Owerko Centre, Alberta Children Hospital Research Institute, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Xiangyu Long
- Department of Radiology, University of Calgary, 2500 University Drive NW, Calgary, T2N 1N4, AB, Canada.,Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Dmitrii Paniukov
- Department of Radiology, University of Calgary, 2500 University Drive NW, Calgary, T2N 1N4, AB, Canada.,Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada.,Owerko Centre, Alberta Children Hospital Research Institute, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.,Department of Pediatrics, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Mercedes Bagshawe
- Department of Radiology, University of Calgary, 2500 University Drive NW, Calgary, T2N 1N4, AB, Canada.,Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada.,Owerko Centre, Alberta Children Hospital Research Institute, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Catherine Lebel
- Department of Radiology, University of Calgary, 2500 University Drive NW, Calgary, T2N 1N4, AB, Canada.,Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada.,Owerko Centre, Alberta Children Hospital Research Institute, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
58
|
Paniukov D, Lebel RM, Giesbrecht G, Lebel C. Cerebral blood flow increases across early childhood. Neuroimage 2020; 204:116224. [PMID: 31561017 DOI: 10.1016/j.neuroimage.2019.116224] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/27/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022] Open
Abstract
Adequate cerebral blood flow (CBF) is essential to proper brain development and function. Detailed characterization of CBF developmental trajectories will lead to better understanding of the development of cognitive, motor, and sensory functions, as well as behaviour in children. Previous studies have shown CBF increases during infancy and decreases during adolescence; however, the trajectories during childhood, and in particular the timing of peak CBF, remain unclear. Here, we used arterial spin labeling to map age-related changes of CBF across a large longitudinal sample that included 279 scans on 96 participants (46 girls and 50 boys) aged 2-7 years. CBF maps were analyzed using hierarchical linear regression for every voxel inside the grey matter mask, controlling for multiple comparisons. The results revealed a significant positive linear association between CBF and age in distributed brain regions including prefrontal, temporal, parietal, and occipital cortex, and in the cerebellum. There were no differences in developmental trajectories between males and females. Our findings show that CBF continues to increase until the age of 7 years, likely supporting ongoing improvements in behaviour, cognition, motor, and sensory functions in early childhood.
Collapse
Affiliation(s)
- Dmitrii Paniukov
- Department of Pediatrics, University of Calgary, Canada; Department of Radiology, University of Calgary, Canada; Alberta Children's Hospital Research Institute at Alberta Children's Hospital, Cumming School of Medicine, University of Calgary, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Canada
| | - R Marc Lebel
- Department of Radiology, University of Calgary, Canada; Alberta Children's Hospital Research Institute at Alberta Children's Hospital, Cumming School of Medicine, University of Calgary, Canada; GE Healthcare, Calgary, Canada
| | - Gerald Giesbrecht
- Department of Pediatrics, University of Calgary, Canada; Alberta Children's Hospital Research Institute at Alberta Children's Hospital, Cumming School of Medicine, University of Calgary, Canada
| | - Catherine Lebel
- Department of Radiology, University of Calgary, Canada; Alberta Children's Hospital Research Institute at Alberta Children's Hospital, Cumming School of Medicine, University of Calgary, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Canada.
| |
Collapse
|
59
|
Grohs MN, Reynolds JE, Liu J, Martin JW, Pollock T, Lebel C, Dewey D. Prenatal maternal and childhood bisphenol a exposure and brain structure and behavior of young children. Environ Health 2019; 18:85. [PMID: 31615514 PMCID: PMC6794724 DOI: 10.1186/s12940-019-0528-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/25/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is commonly used in the manufacture of plastics and epoxy resins. In North America, over 90% of the population has detectable levels of urinary BPA. Human epidemiological studies have reported adverse behavioral outcomes with BPA exposure in children, however, corresponding effects on children's brain structure have not yet been investigated. The current study examined the association between prenatal maternal and childhood BPA exposure and white matter microstructure in children aged 2 to 5 years, and investigated whether brain structure mediated the association between BPA exposure and child behavior. METHODS Participants were 98 mother-child pairs who were recruited between January 2009 and December 2012. Total BPA concentrations in spot urine samples obtained from mothers in the second trimester of pregnancy and from children at 3-4 years of age were analyzed. Children participated in a diffusion magnetic resonance imaging (MRI) scan at age 2-5 years (3.7 ± 0.8 years). Associations between prenatal maternal and childhood BPA and children's fractional anisotropy and mean diffusivity of 10 isolated white matter tracts were investigated, controlling for urinary creatinine, child sex, and age at the time of MRI. Post-hoc analyses examined if alterations in white matter mediated the relationship of BPA and children's scores on the Child Behavior Checklist (CBCL). RESULTS Prenatal maternal urinary BPA was significantly associated with child mean diffusivity in the splenium and right inferior longitudinal fasciculus. Splenium diffusivity mediated the relationship between maternal prenatal BPA levels and children's internalizing behavior (indirect effect: β = 0.213, CI [0.0167, 0.564]). No significant associations were found between childhood BPA and white matter microstructure. CONCLUSIONS This study provides preliminary evidence for the neural correlates of BPA exposure in humans. Our findings suggest that prenatal maternal exposure to BPA may lead to alterations in white matter microstructure in preschool aged children, and that such alterations mediate the relationship between early life exposure to BPA and internalizing problems.
Collapse
Affiliation(s)
- Melody N Grohs
- Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Owerko Centre, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jess E Reynolds
- Owerko Centre, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jiaying Liu
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jonathan W Martin
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Science for Life Laboratory, Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Tyler Pollock
- Owerko Centre, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Catherine Lebel
- Owerko Centre, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Deborah Dewey
- Owerko Centre, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- University of Calgary, #397 Owerko Center, Child Development Centre 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
60
|
Maknojia S, Churchill NW, Schweizer TA, Graham SJ. Resting State fMRI: Going Through the Motions. Front Neurosci 2019; 13:825. [PMID: 31456656 PMCID: PMC6700228 DOI: 10.3389/fnins.2019.00825] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/23/2019] [Indexed: 11/19/2022] Open
Abstract
Resting state functional magnetic resonance imaging (rs-fMRI) has become an indispensable tool in neuroscience research. Despite this, rs-fMRI signals are easily contaminated by artifacts arising from movement of the head during data collection. The artifacts can be problematic even for motions on the millimeter scale, with complex spatiotemporal properties that can lead to substantial errors in functional connectivity estimates. Effective correction methods must be employed, therefore, to distinguish true functional networks from motion-related noise. Research over the last three decades has produced numerous correction methods, many of which must be applied in combination to achieve satisfactory data quality. Subject instruction, training, and mild restraints are helpful at the outset, but usually insufficient. Improvements come from applying multiple motion correction algorithms retrospectively after rs-fMRI data are collected, although residual artifacts can still remain in cases of elevated motion, which are especially prevalent in patient populations. Although not commonly adopted at present, “real-time” correction methods are emerging that can be combined with retrospective methods and that promise better correction and increased rs-fMRI signal sensitivity. While the search for the ideal motion correction protocol continues, rs-fMRI research will benefit from good disclosure practices, such as: (1) reporting motion-related quality control metrics to provide better comparison between studies; and (2) including motion covariates in group-level analyses to limit the extent of motion-related confounds when studying group differences.
Collapse
Affiliation(s)
- Sanam Maknojia
- Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Nathan W Churchill
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Tom A Schweizer
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Division of Neurosurgery, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Institute of Biomaterials and Biomedical Engineering, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - S J Graham
- Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
61
|
Baburamani AA, Patkee PA, Arichi T, Rutherford MA. New approaches to studying early brain development in Down syndrome. Dev Med Child Neurol 2019; 61:867-879. [PMID: 31102269 PMCID: PMC6618001 DOI: 10.1111/dmcn.14260] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/28/2019] [Indexed: 12/19/2022]
Abstract
Down syndrome is the most common genetic developmental disorder in humans and is caused by partial or complete triplication of human chromosome 21 (trisomy 21). It is a complex condition which results in multiple lifelong health problems, including varying degrees of intellectual disability and delays in speech, memory, and learning. As both length and quality of life are improving for individuals with Down syndrome, attention is now being directed to understanding and potentially treating the associated cognitive difficulties and their underlying biological substrates. These have included imaging and postmortem studies which have identified decreased regional brain volumes and histological anomalies that accompany early onset dementia. In addition, advances in genome-wide analysis and Down syndrome mouse models are providing valuable insight into potential targets for intervention that could improve neurogenesis and long-term cognition. As little is known about early brain development in human Down syndrome, we review recent advances in magnetic resonance imaging that allow non-invasive visualization of brain macro- and microstructure, even in utero. It is hoped that together these advances may enable Down syndrome to become one of the first genetic disorders to be targeted by antenatal treatments designed to 'normalize' brain development. WHAT THIS PAPER ADDS: Magnetic resonance imaging can provide non-invasive characterization of early brain development in Down syndrome. Down syndrome mouse models enable study of underlying pathology and potential intervention strategies. Potential therapies could modify brain structure and improve early cognitive levels. Down syndrome may be the first genetic disorder to have targeted therapies which alter antenatal brain development.
Collapse
Affiliation(s)
- Ana A Baburamani
- Centre for the Developing BrainDepartment of Perinatal Imaging and HealthSchool of Biomedical Engineering & Imaging SciencesKing's College LondonKing's Health PartnersSt Thomas’ HospitalLondonUK
| | - Prachi A Patkee
- Centre for the Developing BrainDepartment of Perinatal Imaging and HealthSchool of Biomedical Engineering & Imaging SciencesKing's College LondonKing's Health PartnersSt Thomas’ HospitalLondonUK
| | - Tomoki Arichi
- Centre for the Developing BrainDepartment of Perinatal Imaging and HealthSchool of Biomedical Engineering & Imaging SciencesKing's College LondonKing's Health PartnersSt Thomas’ HospitalLondonUK,Department of BioengineeringImperial College LondonLondonUK,Children's NeurosciencesEvelina London Children's HospitalLondonUK
| | - Mary A Rutherford
- Centre for the Developing BrainDepartment of Perinatal Imaging and HealthSchool of Biomedical Engineering & Imaging SciencesKing's College LondonKing's Health PartnersSt Thomas’ HospitalLondonUK
| |
Collapse
|
62
|
Reynolds JE, Long X, Grohs MN, Dewey D, Lebel C. Structural and functional asymmetry of the language network emerge in early childhood. Dev Cogn Neurosci 2019; 39:100682. [PMID: 31376589 PMCID: PMC6969356 DOI: 10.1016/j.dcn.2019.100682] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/18/2019] [Accepted: 07/17/2019] [Indexed: 11/15/2022] Open
Abstract
Macrostructural asymmetry of the arcuate fasciculus is present by age 2 years. Microstructural and functional asymmetry in the IFG increases across early childhood. Left arcuate microstructure is related to pre-reading language skills. Asymmetry is not related to pre-reading skills in early childhood.
Structural and functional neuroimaging studies show language and reading processes are left-lateralized, and associated with a dispersed group of left brain regions. However, it is unclear when and how asymmetry of these regions emerges. We characterized the development of structural and functional asymmetry of the language network in 386 datasets from 117 healthy children (58 male) across early childhood (2–7.5 years). Structural asymmetry was investigated using diffusion tensor imaging (DTI) and manual delineation of the arcuate fasciculus. Functional connectivity asymmetry was calculated from seed regions in the inferior frontal gyrus (IFG) and middle temporal gyrus (MTG). We show that macrostructural asymmetry of the arcuate fasciculus is present by age 2 years, while leftward asymmetry of microstructure and functional connectivity with the IFG increases across the age range. This emerging microstructural and functional asymmetry likely underlie the development of language and reading skills during this time.
Collapse
Affiliation(s)
- Jess E Reynolds
- Department of Radiology, Canada; Owerko Centre, Alberta Children Hospital Research Institute, Canada; Hotchkiss Brain Institute, Canada
| | - Xiangyu Long
- Department of Radiology, Canada; Owerko Centre, Alberta Children Hospital Research Institute, Canada; Hotchkiss Brain Institute, Canada
| | - Melody N Grohs
- Owerko Centre, Alberta Children Hospital Research Institute, Canada; Department of Neuroscience, Canada; Cumming School of Medicine, Canada
| | - Deborah Dewey
- Owerko Centre, Alberta Children Hospital Research Institute, Canada; Hotchkiss Brain Institute, Canada; Department of Pediatrics, Canada; Department of Community Health Sciences, Canada
| | - Catherine Lebel
- Department of Radiology, Canada; Owerko Centre, Alberta Children Hospital Research Institute, Canada; Hotchkiss Brain Institute, Canada.
| |
Collapse
|
63
|
Li J, Li Q, Dai X, Li J, Zhang X. Does pre-scanning training improve the image quality of children receiving magnetic resonance imaging?: A meta-analysis of current studies. Medicine (Baltimore) 2019; 98:e14323. [PMID: 30702613 PMCID: PMC6380694 DOI: 10.1097/md.0000000000014323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Magnetic resonance imaging (MRI) is often used in children for its clear display of body parts. But it is usually hard to acquire high-quality images, for the uncooperative ability of children. It is believed that pre-MRI training could ensure the high quality of images. The current meta-analysis was done to analyze the current evidences in this field. METHODS PubMed, Cochrane Library, and Web of Science were systematically searched up to July 2018, for studies assessing the effects of training on pediatric MRI. Data, including image quality, failed scanning rate, and sedation use, were extracted and analyzed using Revman 5.2 software. RESULTS There were 5 studies with 379 subjects in the meta-analysis. Training and control groups were quite comparable when accepted image quality was reviewed (P = .30), but a lower rate of excellent image quality was found in subjects with training (P = .02). The pooling results found no significance between training and control group in sedation use (P = .09) and successful MRI scanning (P = .63). CONCLUSIONS It is cautious to conclude that pre-MRI training does not improve the image quality and reduce sedation use among children, for the limited number of studies and sample size. More trials should be encouraged to demonstrate this issue.
Collapse
|
64
|
Abstract
BACKGROUND Pediatric ankle injuries are common, giving rise to ∼17% of all physeal injuries. An os subfibulare in a child with an ankle sprain may be confused with a type VII transepiphyseal fracture. Here, we evaluate the clinical and radiographic features of type VII transepiphyseal fractures to those of os subfibulare presenting with acute ankle trauma with the hypothesis that radiographs are necessary for final diagnosis and neither clinical history nor examination would be diagnostic. METHODS We performed an internal review board-approved, retrospective chart review of patients identified with a traumatic os subfibulare or type VII ankle fracture over an 18-month period. Charts were reviewed for demographics, mechanism, and clinical findings on initial presentation. Radiographic measurements of the distal fibular fragment as well as epiphysis were made on presenting ankle series radiographs. RESULTS A total of 23 patients were identified. Eleven patients had a traumatic type VII ankle fracture and 12 had trauma associated with an os subfibulare on initial radiographs. The history and clinical presentations were similar and were nondiagnostic. The ratio of the width of the fibula at its largest point on the anterior posterior view to the width of the fibular fragment was significantly larger in the type VII ankle fractures (P=0.05). All os subfibulare were located within the inferior third of the epiphysis, whereas all type VII fractures were either at the equator or within the middle third of the fibular epiphysis. CONCLUSIONS Radiographs, not clinical presentation, can differentiate an os subfibulare from a type VII transepiphyseal fracture. Children with type VII fractures have a long, irregular fracture line within the middle third of the distal fibular epiphysis. Those with an ankle sprain and os subfibulare have a smooth-edged ossicle of relatively short length located within the inferior pole of the epiphysis. Furthermore, the radiographic width of the fragment in the type VII fractures is significantly larger in width than the os subfibulare. LEVEL OF EVIDENCE Level II.
Collapse
|