51
|
Zhao F, Li G, Hu P, Zhao X, Li L, Wei W, Feng J, Zhou H. Identification of basic/helix-loop-helix transcription factors reveals candidate genes involved in anthocyanin biosynthesis from the strawberry white-flesh mutant. Sci Rep 2018; 8:2721. [PMID: 29426907 PMCID: PMC5807450 DOI: 10.1038/s41598-018-21136-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/30/2018] [Indexed: 12/03/2022] Open
Abstract
As the second largest transcription factor family in plant, the basic helix-loop-helix (bHLH) transcription factor family, characterized by the conserved bHLH domain, plays a central regulatory role in many biological process. However, the bHLH transcription factor family of strawberry has not been systematically identified, especially for the anthocyanin biosynthesis. Here, we identified a total of 113 bHLH transcription factors and described their chromosomal distribution and bioinformatics for the diploid woodland strawberry Fragaria vesca. In addition, transcription profiles of 113 orthologous bHLH genes from various tissues were analyzed for the cultivar 'Benihoppe', its white-flesh mutant 'Xiaobai', and the 'Snow Princess' from their fruit development to the ripening, as well as those under either the ABA or Eth treatment. Both the RT-PCR and qRT-PCR results show that seven selected FabHLH genes (FabHLH17, FabHLH25, FabHLH27, FabHLH29, FabHLH40, FabHLH80, FabHLH98) are responsive to the fruit anthocyanin biosynthesis and hormone signaling according to transcript profiles where three color modes are observed for strawberry's fruit skin and flesh. Further, prediction for the protein interaction network reveals that four bHLHs (FabHLH25, FabHLH29, FabHLH80, FabHLH98) are involved in the fruit anthocyanin biosynthesis and hormone signaling transduction. These bioinformatics and expression profiles provide a good basis for a further investigation of strawberry bHLH genes.
Collapse
Affiliation(s)
- Fengli Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Key Laboratory of Fruit Breeding Technology, Ministry of Agriculture of China, Zhengzhou, China
| | - Gang Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Key Laboratory of Fruit Breeding Technology, Ministry of Agriculture of China, Zhengzhou, China
| | - Panpan Hu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Key Laboratory of Fruit Breeding Technology, Ministry of Agriculture of China, Zhengzhou, China
| | - Xia Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Key Laboratory of Fruit Breeding Technology, Ministry of Agriculture of China, Zhengzhou, China
| | - Liangjie Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Key Laboratory of Fruit Breeding Technology, Ministry of Agriculture of China, Zhengzhou, China
| | - Wei Wei
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Jiayue Feng
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Houcheng Zhou
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China.
- Key Laboratory of Fruit Breeding Technology, Ministry of Agriculture of China, Zhengzhou, China.
| |
Collapse
|
52
|
İlhan E, Büyük İ, İnal B. Transcriptome - Scale characterization of salt responsive bean TCP transcription factors. Gene 2017; 642:64-73. [PMID: 29129811 DOI: 10.1016/j.gene.2017.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 10/22/2017] [Accepted: 11/07/2017] [Indexed: 11/26/2022]
Abstract
TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) proteins are important regulators of growth and developmental processes including branching, floral organ morphogenesis and leaf growth as well as stress response. This study identified 27 TCP genes of Phaseolus vulgaris (common bean), which were divided into three clusters based on phylogenetic relationship. In addition, this study showed that some of TCP genes such as Pvul-TCP-4 and Pvul-TCP-15 located on chromosomes 3 and 7, Pvul-TCP-7 and Pvul-TCP-20 located on chromosome 7 and 9, were segmentally duplicated. On the other hand, a total of 20 Pvul-TCP genes have predicted to be targeted by microRNAs (miRNA). Most of the miRNA-target genes were Pvul-TCP-1, -11, -13 and -27, which were targeted by 13, 17, 22 and 13 plant miRNAs, respectively. miR319 was one of the highly represented regulatory miRNAs to target TCP transcripts. Promoter region analysis of TCP genes resulted that the GT-1 motif, which was related to salt stress, was found in 14 different Pvul-TCP genes. Expression profiling of 10 Pvul-TCP genes based on RNA-sequencing data further confirmed with quantitative real-time RT-PCR measurements identified that Pvul-TCP genes under salt stress are expressed in a cultivar- and tissue-specific manner.
Collapse
Affiliation(s)
- Emre İlhan
- Depart. of Molecular Bio. and Genetics, Erzurum Technical University, Erzurum, Turkey.
| | - İlker Büyük
- Depart. of Biology, Ankara University, Ankara, Turkey; Depart. of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Behcet İnal
- Depart. of Agricultural Biotechnology, Siirt University, Siirt, Turkey
| |
Collapse
|
53
|
Lei N, Yu X, Li S, Zeng C, Zou L, Liao W, Peng M. Phylogeny and expression pattern analysis of TCP transcription factors in cassava seedlings exposed to cold and/or drought stress. Sci Rep 2017; 7:10016. [PMID: 28855620 PMCID: PMC5577251 DOI: 10.1038/s41598-017-09398-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/26/2017] [Indexed: 12/21/2022] Open
Abstract
The TCP transcription factors usually act as integrators of multiple growth regulatory and environmental stimuli. However, little is known about this gene family in the important tropical crop cassava (Manihot esculenta). In this study, 36 TCP genes were identified and renamed based on cassava whole-genome sequence and their sequence similarity with Arabidopsis TCPs. Typical TCP domains were detected in these proteins by multiple sequence alignment analysis. Evolutionary analysis indicated that MeTCPs could be divided into 8 subgroups, which was further supported by gene structure and conserved motif analyses. qRT-PCR analysis revealed tissue-specific and hormone-responsive expression patterns of MeTCP genes. Moreover, with global expression and promoter analysis, we found that MeTCPs showed similar or distinct expression patterns under cold and/or drought stress, suggesting that they might participate in distinct signaling pathways. Our study provides the first comprehensive analysis of TCP gene family in the cassava genome. The data will be useful for uncovering the potential functions of MeTCP genes, and their possible roles in mediating hormone and abiotic stress responses in cassava.
Collapse
Affiliation(s)
- Ning Lei
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Xiang Yu
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.,Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shuxia Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Changying Zeng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Liangping Zou
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Wenbin Liao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Ming Peng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
54
|
Wei W, Chai Z, Xie Y, Gao K, Cui M, Jiang Y, Feng J. Bioinformatics identification and transcript profile analysis of the mitogen-activated protein kinase gene family in the diploid woodland strawberry Fragaria vesca. PLoS One 2017; 12:e0178596. [PMID: 28562633 PMCID: PMC5451138 DOI: 10.1371/journal.pone.0178596] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/16/2017] [Indexed: 11/21/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) play essential roles in mediating biotic and abiotic stress responses in plants. However, the MAPK gene family in strawberry has not been systematically characterized. Here, we performed a genome-wide survey and identified 12 MAPK genes in the Fragaria vesca genome. Protein domain analysis indicated that all FvMAPKs have typical protein kinase domains. Sequence alignments and phylogenetic analysis classified the FvMAPK genes into four different groups. Conserved motif and exon-intron organization supported the evolutionary relationships inferred from the phylogenetic analysis. Analysis of the stress-related cis-regulatory element in the promoters and subcellular localization predictions of FvMAPKs were also performed. Gene transcript profile analysis showed that the majority of the FvMAPK genes were ubiquitously transcribed in strawberry leaves after Podosphaera aphanis inoculation and after treatment with cold, heat, drought, salt and the exogenous hormones abscisic acid, ethephon, methyl jasmonate, and salicylic acid. RT-qPCR showed that six selected FvMAPK genes comprehensively responded to various stimuli. Additionally, interaction networks revealed that the crucial signaling transduction controlled by FvMAPKs may be involved in the biotic and abiotic stress responses. Our results may provide useful information for future research on the function of the MAPK gene family and the genetic improvement of strawberry resistance to environmental stresses.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Zhuangzhuang Chai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yinge Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Kuan Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Mengyuan Cui
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Ying Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Jiayue Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
- * E-mail:
| |
Collapse
|
55
|
Samad S, Kurokura T, Koskela E, Toivainen T, Patel V, Mouhu K, Sargent DJ, Hytönen T. Additive QTLs on three chromosomes control flowering time in woodland strawberry ( Fragaria vesca L.). HORTICULTURE RESEARCH 2017; 4:17020. [PMID: 28580150 PMCID: PMC5442962 DOI: 10.1038/hortres.2017.20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 05/18/2023]
Abstract
Flowering time is an important trait that affects survival, reproduction and yield in both wild and cultivated plants. Therefore, many studies have focused on the identification of flowering time quantitative trait locus (QTLs) in different crops, and molecular control of this trait has been extensively investigated in model species. Here we report the mapping of QTLs for flowering time and vegetative traits in a large woodland strawberry mapping population that was phenotyped both under field conditions and in a greenhouse after flower induction in the field. The greenhouse experiment revealed additive QTLs in three linkage groups (LG), two on both LG4 and LG7, and one on LG6 that explain about half of the flowering time variance in the population. Three of the QTLs were newly identified in this study, and one co-localized with the previously characterized FvTFL1 gene. An additional strong QTL corresponding to previously mapped PFRU was detected in both field and greenhouse experiments indicating that gene(s) in this locus can control the timing of flowering in different environments in addition to the duration of flowering and axillary bud differentiation to runners and branch crowns. Several putative flowering time genes were identified in these QTL regions that await functional validation. Our results indicate that a few major QTLs may control flowering time and axillary bud differentiation in strawberries. We suggest that the identification of causal genes in the diploid strawberry may enable fine tuning of flowering time and vegetative growth in the closely related octoploid cultivated strawberry.
Collapse
Affiliation(s)
- Samia Samad
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
- Fondazione Edmund Mach, Research and Innovation Centre, San Michele All'adige, 38010 TN, Italy
| | - Takeshi Kurokura
- Faculty of Agriculture, Utsunomiya University, Tochigi, 321-8505, Japan
| | - Elli Koskela
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Tuomas Toivainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Vipul Patel
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Katriina Mouhu
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Daniel James Sargent
- Fondazione Edmund Mach, Research and Innovation Centre, San Michele All'adige, 38010 TN, Italy
- Driscoll’s Genetics Limited, East Malling Enterprise Centre, East Malling, Kent ME19 6BJ, UK
| | - Timo Hytönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
- Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
- ()
| |
Collapse
|