51
|
Zhai L, Lu J, Cao X, Zhang J, Yin Y, Tian H. Association Between the Variability of Glycated Hemoglobin and Retinopathy in Patients with Type 2 Diabetes Mellitus: A Meta-Analysis. Horm Metab Res 2023; 55:103-113. [PMID: 36223803 DOI: 10.1055/a-1931-4400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Visit-to-visit variability of glycated hemoglobin (HbA1c) is a marker of long-term glycemic fluctuation, which has been related to increased risk of macrovascular complications in patients with type 2 diabetes mellitus (T2DM). The association between HbA1c variability and retinopathy in patients with T2DM, however, has been inconsistent in previous studies. In order to fully evaluate the above association, we conducted a meta-analysis. Observational studies related to the aim of the meta-analysis were identified by search of PubMed, Web of Science, and Embase databases. Studies with HbA1c variability evaluated as the standard deviation (SD) and/or the coefficients of variation (CV) of HbA1c were included. The results were analyzed using a random-effects model that incorporated potential heterogeneity between studies. Twelve observational studies involving 44 662 T2DM patients contributed to the meta-analysis. Overall, 5150 (11.5%) patients developed retinopathy. Pooled results showed that compared to patients with lower HbA1c variability, T2DM patients with higher HbA1c-SD (relative risk [RR]: 1.48, 95% confidence interval [CI]: 1.24 to 1.78, p<0.001, I2=34%) and higher HbA1c-CV (RR: 1.29, 95% CI: 1.05 to 1.59, p=0.02, I2=0%) were both associated with higher risk of DR. For studies with HbA1c-SD, the association was not significantly affected by study characteristics such as country, study design, mean age, disease duration, adjustment of mean HbA1c, or quality scores (p for subgroup difference all>0.05). In conclusion, higher HbA1c variability may be associated with an increased risk of retinopathy in patients with T2DM.
Collapse
Affiliation(s)
- Liping Zhai
- Department of Endocrinology, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, China
| | - Jun Lu
- Department of Ophthalmology, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, China
| | - Xinjian Cao
- Department of Clinical Medicine, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, China
| | - Jun Zhang
- Department of Clinical Medicine, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, China
| | - Yong Yin
- Department of Clinical Medicine, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, China
| | - Hu Tian
- Department of Clinical Medicine, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, China
| |
Collapse
|
52
|
Li Y, Chai JL, Shi X, Feng Y, Li JJ, Zhou LN, Cao C, Li KR. Gαi1/3 mediate Netrin-1-CD146-activated signaling and angiogenesis. Theranostics 2023; 13:2319-2336. [PMID: 37153740 PMCID: PMC10157725 DOI: 10.7150/thno.80749] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/08/2023] [Indexed: 05/10/2023] Open
Abstract
Netrin-1 binds to the high-affinity receptor CD146 to activate downstream signaling and angiogenesis. Here, we examine the role and underlying mechanisms of G protein subunit alpha i1 (Gαi1) and Gαi3 in Netrin-1-induced signaling and pro-angiogenic activity. In mouse embryonic fibroblasts (MEFs) and endothelial cells, Netrin-1-induced Akt-mTOR (mammalian target of rapamycin) and Erk activation was largely inhibited by silencing or knockout of Gαi1/3, whereas signaling was augmented following Gαi1/3 overexpression. Netrin-1 induced Gαi1/3 association with CD146, required for CD146 internalization, Gab1 (Grb2 associated binding protein 1) recruitment and downstream Akt-mTOR and Erk activation. Netrin-1-induced signaling was inhibited by CD146 silencing, Gab1 knockout, or Gαi1/3 dominant negative mutants. Netrin-1-induced human umbilical vein endothelial cell (HUVEC) proliferation, migration and tube formation were inhibited by Gαi1/3 short hairpin RNA (shRNA), but were potentiated by ectopic Gαi1/3 overexpression. In vivo, intravitreous injection of Netrin-1 shRNA adeno-associated virus (AAV) significantly inhibited Akt-mTOR and Erk activation in murine retinal tissues and reduced retinal angiogenesis. Endothelial knockdown of Gαi1/3 significantly inhibited Netrin1-induced signaling and retinal angiogenesis in mice. Netrin-1 mRNA and protein expression were significantly elevated in retinal tissues of diabetic retinopathy (DR) mice. Importantly, silence of Netrin-1, by intravitreous Netrin-1 shRNA AAV injection, inhibited Akt-Erk activation, pathological retinal angiogenesis and retinal ganglion cells degeneration in DR mice. Lastly, Netrin-1 and CD146 expression is significantly increased in the proliferative retinal tissues of human proliferative diabetic retinopathy patients. Together, Netrin-1 induces CD146-Gαi1/3-Gab1 complex formation to mediate downstream Akt-mTOR and Erk activation, important for angiogenesis in vitro and in vivo.
Collapse
Affiliation(s)
- Ya Li
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University and North District, The Municipal Hospital of Suzhou, Gusu School, Nanjing Medical University, Suzhou, China
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Jin-long Chai
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University and North District, The Municipal Hospital of Suzhou, Gusu School, Nanjing Medical University, Suzhou, China
| | - Xin Shi
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University and North District, The Municipal Hospital of Suzhou, Gusu School, Nanjing Medical University, Suzhou, China
| | - Yu Feng
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jia-jun Li
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Li-na Zhou
- Department of Radiotherapy and Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, China
| | - Cong Cao
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University and North District, The Municipal Hospital of Suzhou, Gusu School, Nanjing Medical University, Suzhou, China
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- ✉ Corresponding authors: Prof. Cong Cao, Clinical Research Center of Neurological Disease of the Second Affiliated Hospital of Soochow University.199Ren-ai Road, Suzhou, Jiangsu 215123, China. E-mail: . Prof. Ke-ran Li, The Affiliated Eye Hospital, Nanjing Medical University,138 Hanzhong Rd, Nanjing, Jiangsu, 210029, China. E-mail:
| | - Ke-ran Li
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- ✉ Corresponding authors: Prof. Cong Cao, Clinical Research Center of Neurological Disease of the Second Affiliated Hospital of Soochow University.199Ren-ai Road, Suzhou, Jiangsu 215123, China. E-mail: . Prof. Ke-ran Li, The Affiliated Eye Hospital, Nanjing Medical University,138 Hanzhong Rd, Nanjing, Jiangsu, 210029, China. E-mail:
| |
Collapse
|
53
|
Liu M, Huang Y, Tao C, Yang W, Chen J, Zhu L, Pan T, Narain R, Nan K, Chen Y. Self-Healing Alginate Hydrogel Formed by Dynamic Benzoxaborolate Chemistry Protects Retinal Pigment Epithelium Cells against Oxidative Damage. Gels 2022; 9:gels9010024. [PMID: 36661792 PMCID: PMC9857501 DOI: 10.3390/gels9010024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
Oxidative stress is considered as a major factor causing retinal pigment epithelium (RPE) dysfunction and finally leading to retinal diseases such as age-related macular degeneration (AMD). Developing hydrogels for RPE cell delivery, especially those with antioxidant feature, is emerging as a promising approach for AMD treatment. Herein, a readily prepared antioxidant alginate-based hydrogel was developed to serve as a cytoprotective agent for RPE cells against oxidative damage. Alg-BOB was synthesized via conjugation of benzoxaborole (BOB) to the polysaccharide backbone. Hydrogels were formed through self-crosslinking of Alg-BOB based on benzoxaborole-diol complexation. The resulting hydrogel showed porous micro-structure, pH dependent mechanical strength and excellent self-healing, remolding, and injectable properties. Moreover, the hydrogel exhibited excellent cytocompatibility and could efficiently scavenge reactive oxygen species (ROS) to achieve an enhanced viability of ARPE-19 cells under oxidative condition. Altogether, our study reveals that the antioxidant Alg-BOB hydrogel represents an eligible candidate for RPE delivery and AMD treatment.
Collapse
Affiliation(s)
- Minhua Liu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Yate Huang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Chunwen Tao
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Weijia Yang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Junrong Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Li Zhu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Tonghe Pan
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2G6, Canada
- Correspondence: (R.N.); (K.N.); (Y.C.)
| | - Kaihui Nan
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Affiliated Eye Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Correspondence: (R.N.); (K.N.); (Y.C.)
| | - Yangjun Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Affiliated Eye Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Correspondence: (R.N.); (K.N.); (Y.C.)
| |
Collapse
|
54
|
Yan Z, Zhang Y, Wang C, Li Y, Su Q, Cao J, Cao X. Withaferin a Attenuates Retinal Ischemia-Reperfusion Injury via Akt-Dependent Inhibition of Oxidative Stress. Cells 2022; 11:cells11193113. [PMID: 36231074 PMCID: PMC9563317 DOI: 10.3390/cells11193113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Retinal ischemia-reperfusion (I/R) injury often results in intractable visual impairments. The survival of retinal capillary endothelial cells is crucial for the treatment of retinal I/R injury. How to protect retinal endothelia from damage is a challenging work. Withaferin A, a small molecule derived from plants, has antibacterial and anti-inflammatory effects and has been used for about millennia in traditional medicine. The present study aimed to investigate the potential protective effect of withaferin A on retinal I/R injury. Methods: The drug-likeness of withaferin A was evaluated by the SwissADME web tool. The potential protective effect of withaferin A on the I/R-induced injury of human retinal microvascular endothelial cells (HRMECs) was investigated using multiple approaches. RNA sequencing was performed and associated mechanistic signaling pathways were analyzed based on the Kyoto Encyclopedia of Genes and Genomes data. The analytical results of RNA sequencing data were further validated by in vitro and in vivo experiments. Results: Withaferin A reduced the I/R injury-induced apoptotic death of HRMECs in vitro with a good drug-like property. RNA sequencing and experimental validation results indicated that withaferin A increased the production of the crucial antioxidant molecules heme oxygenase 1 (HO-1) and peroxiredoxin 1 (Prdx-1) during I/R. In addition, withaferin A activated the Akt signaling pathway and increased the expression of HO-1 and Prdx-1, thereby exerting an antioxidant effect, attenuated the retinal I/R injury, and decreased the apoptosis of HRMECs. The blockade of Akt completely abolished the effects of withaferin A. Conclusions: The study identified for the first time that withaferin A can protect against the I/R-induced apoptosis of human microvascular retinal endothelial cells via increasing the production of the antioxidants Prdx-1 and HO-1. Results suggest that withaferin A is a promising drug candidate for the treatment of retinal I/R injury.
Collapse
Affiliation(s)
- Zheyi Yan
- Department of Ophthalmology, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Yuanlin Zhang
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan 030619, China
| | - Chunfang Wang
- Department of Ophthalmology, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Yanjie Li
- Department of Ophthalmology, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Qiang Su
- Department of Ophthalmology, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Jimin Cao
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Xiaoming Cao
- Department of Orthopedics, Shanxi Medical University Second Affiliated Hospital, Taiyuan 030000, China
- Correspondence:
| |
Collapse
|
55
|
Manai F, Amadio M. Dimethyl Fumarate Triggers the Antioxidant Defense System in Human Retinal Endothelial Cells through Nrf2 Activation. Antioxidants (Basel) 2022; 11:antiox11101924. [PMID: 36290650 PMCID: PMC9598343 DOI: 10.3390/antiox11101924] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 12/06/2022] Open
Abstract
Dimethyl fumarate (DMF) is a well-known activator of Nrf2 (NF-E2-related factor 2), used in the treatment of psoriasis and multiple sclerosis. The mechanism of action consists in the modification of the cysteine residues on the Nrf2-inhibitor Keap1, thus leading to the dissociation of these two proteins and the consequent activation of Nrf2. Considering the paucity of evidence of DMF effects in the context of retinal endothelium, this in vitro study investigated the role of DMF in human retinal endothelial cells (HREC). Here, we show for the first time in HREC that DMF activates the Nrf2 pathway, thus leading to an increase in HO-1 protein levels and a decrease in intracellular ROS levels. Furthermore, this molecule also shows beneficial properties in a model of hyperglucose stress, exerting cytoprotective prosurvival effects. The overall collected results suggest that DMF-mediated activation of the Nrf2 pathway may also be a promising strategy in ocular diseases characterized by oxidative stress. This study opens a new perspective on DMF and suggests its potential repositioning in a broader therapeutical context.
Collapse
Affiliation(s)
- Federico Manai
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Marialaura Amadio
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382-987888
| |
Collapse
|
56
|
Tang TJ, Wang X, Wang L, Chen M, Cheng J, Zuo MY, Gu JF, Ding R, Zhou P, Huang JL. Liquiritin inhibits H 2 O 2 -induced oxidative stress injury in H9c2 cells via the AMPK/SIRT1/NF-κB signaling pathway. J Food Biochem 2022; 46:e14351. [PMID: 35929638 DOI: 10.1111/jfbc.14351] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 11/26/2022]
Abstract
Heart failure (HF) is a serious disease with high mortality. Oxidative stress plays a vital role in its occurrence and development. Licorice is commonly used to treat HF in traditional Chinese medicine. Liquiritin, the main ingredient of licorice, has antioxidant and anti-inflammatory properties, but the mechanism against oxidative stress in cardiomyocytes has not been reported. Establishment of oxidative damage model in H9c2 cells by hydrogen peroxide (H2 O2 ). Liquiritin (5, 10, 20 μmol/L) could significantly prevent the loss of cell viability and decrease the apoptosis rate. It can reduce the levels of reactive oxygen species (ROS), malonedialdehyde (MDA), lactate dehydrogenase (LDH), tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and increase the activity of ATP, superoxidedismutase (SOD), glutathione peroxide (GSH-px), glutathione reductase (GR) and catalase (CAT) to alleviate oxidative stress and inflammation in a dose-dependent manner. Liquiritin was found to be related to AMP-Activated Protein Kinase (AMPK) pathway by molecular docking. Western blotting (WB) and quantitative reverse transcription PCR (RT-qPCR) confirmed that liquiritin could promote AMPKα phosphorylation and sirtuin 1 (SIRT1) protein expression, and inhibit phosphorylation of nuclear factor kappa B p65 (NF-κB p65). Compound C, EX 527, and PDTC can reverse the effects of liquiritin, indicating that its antioxidant effect is achieved by regulating AMPK/SIRT1/NF-κB signaling pathway. PRACTICAL APPLICATIONS: Heart failure is one of the most common cardiovascular diseases, and its treatment remains a worldwide problem. Licorice is a food and dietary supplement that has been used widely in traditional Chinese medicine (TCM). Liquiritin is one of the main active components of licorice, which has antioxidant and anti-inflammatory pharmacological effects. This study revealed the mechanism of licorice against oxidative damage of H9c2 cardiomyocytes, and provided a scientific basis for liquiritin as an antioxidant in the treatment of heart failure.
Collapse
Affiliation(s)
- Tong-Juan Tang
- Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | | | - Liang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui Academy of Chinese Medicine, Hefei, China
| | - Ming Chen
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui Academy of Chinese Medicine, Hefei, China
| | - Jing Cheng
- School of Nursing, Anhui University of Chinese Medicine, Hefei, China
| | - Meng-Yu Zuo
- Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Jin-Fan Gu
- Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Rui Ding
- Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Peng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui Academy of Chinese Medicine, Hefei, China
| | - Jin-Ling Huang
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui Academy of Chinese Medicine, Hefei, China
| |
Collapse
|
57
|
Pulgar VM, Cruz-Diaz N, Westwood BM, Chappell MC. Angiotensinogen uptake and stimulation of oxidative stress in human pigment retinal epithelial cells. Peptides 2022; 152:170770. [PMID: 35183655 PMCID: PMC11718714 DOI: 10.1016/j.peptides.2022.170770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 12/27/2022]
Abstract
We previously reported that isolated proximal tubules (PT) internalize the precursor protein angiotensinogen and that the 125Iodine-labeled protein accumulated in the nuclear and mitochondrial fractions of the PT cells; however, whether internalization of angiotensinogen occurs in non-renal epithelial cells is unknown. Therefore, the present study assessed the cellular uptake of 125I-angiotensinogen in human retinal pigment ARPE-19 epithelial cells, a widely utilized cell model for the assessment of retinal injury, inflammation and oxidative stress. ARPE-19 cells, maintained in serum-free media to remove extracellular sources of bovine serum angiotensinogen and renin, were incubated with 125Iodine-angiotensinogen at 37 °C and revealed the time-dependent uptake of angiotensinogen over 24 h. In contrast, incubation with labelled Ang II, Ang-(1-7) or Ang I revealed minimal cellular uptake. Subcellular fractionation following a 4-hour uptake of 125I-angiotensinogen revealed that the majority of the labeled protein localized to the nuclear fraction with lower accumulation in the mitochondrial and cytosolic fractions. Finally, we show that addition of angiotensinogen (2 nM) to the ARPE-19 cells increased oxidative stress as assessed by DCF fluorescence that was blocked by pretreatment of the cells with either the NADPH oxidase 1/4 inhibitor GKT137831, apocynin or atorvastatin, but not the AT1 receptor antagonist losartan. In contrast, treatment of the cells with Angiotensin II at an equivalent dose to angiotensinogen failed to stimulate oxidative stress. We conclude that human retinal pigment cells internalize angiotensinogen to elicit an increase in oxidative stress through a pathway that appears distinct from the Ang II-AT1 receptor axis.
Collapse
Affiliation(s)
- Victor M Pulgar
- Department of Pharmaceutical Sciences, Campbell University, Buies-Creek, NC, United States; Hypertension & Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC,United States
| | - Nildris Cruz-Diaz
- Hypertension & Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC,United States
| | - Brian M Westwood
- Hypertension & Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC,United States
| | - Mark C Chappell
- Hypertension & Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC,United States.
| |
Collapse
|
58
|
Yang J, Liu Z. Mechanistic Pathogenesis of Endothelial Dysfunction in Diabetic Nephropathy and Retinopathy. Front Endocrinol (Lausanne) 2022; 13:816400. [PMID: 35692405 PMCID: PMC9174994 DOI: 10.3389/fendo.2022.816400] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/28/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetic nephropathy (DN) and diabetic retinopathy (DR) are microvascular complications of diabetes. Microvascular endothelial cells are thought to be the major targets of hyperglycemic injury. In diabetic microvasculature, the intracellular hyperglycemia causes damages to the vascular endothelium, via multiple pathophysiological process consist of inflammation, endothelial cell crosstalk with podocytes/pericytes and exosomes. In addition, DN and DR diseases development are involved in several critical regulators including the cell adhesion molecules (CAMs), the vascular endothelial growth factor (VEGF) family and the Notch signal. The present review attempts to gain a deeper understanding of the pathogenesis complexities underlying the endothelial dysfunction in diabetes diabetic and retinopathy, contributing to the development of new mechanistic therapeutic strategies against diabetes-induced microvascular endothelial dysfunction.
Collapse
Affiliation(s)
- Jing Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhangsuo Liu
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
59
|
Yang X, Zou R, Dai X, Wu X, Yuan F, Feng Y. YAP is critical to inflammation, endothelial-mesenchymal transition and subretinal fibrosis in experimental choroidal neovascularization. Exp Cell Res 2022; 417:113221. [PMID: 35623419 DOI: 10.1016/j.yexcr.2022.113221] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/15/2022]
Abstract
Subretinal fibrosis causes local damage to the retina and irreversible vision loss, as the final stage of neovascular age-related macular degeneration (nAMD). More recently, the endothelial-to-mesenchymal transition (EndoMT) has been considered one of the most significant sources of myofibroblasts in subretinal fibrosis, though the underpinning molecular mechanisms remain unclear. In this study, a series of experiments were performed to test the hypothesis that Yes-associated protein (YAP) may be involved in EndoMT and subretinal fibrosis. We demonstrated that transforming growth factor (TGF)-β2 stimulation induces YAP dephosphorylation (activated) and nuclear transcription in human umbilical vein endothelial cells (HUVECs) by increasing reactive oxygen species (ROS) levels. Moreover, TGF-β2-mediated EndoMT and proinflammatory cytokine production in HUVECs were reduced by ROS clearance or YAP knockdown. Furthermore, the severity of subretinal fibrosis was markedly relieved by intravitreal administration of a small interfering RNA targeting YAP in the mouse laser-induced choroidal neovascularization (CNV) model. Our findings provide novel insights into a previously unknown effect of YAP on the EndoMT process and reveal YAP as a potential target for suppressing CNV-related subretinal fibrosis and protect vision.
Collapse
Affiliation(s)
- Xi Yang
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Rong Zou
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaochan Dai
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xinyuan Wu
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fei Yuan
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Yifan Feng
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
60
|
Reactive Oxygen Species and Oxidative Stress in Vascular-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7906091. [PMID: 35419169 PMCID: PMC9001081 DOI: 10.1155/2022/7906091] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/21/2022] [Indexed: 12/14/2022]
Abstract
Oxidative stress (OS) refers to the enhancement of oxidation and the decreased of related antioxidant enzymes activity under pathological conditions, resulting in relatively excess reactive oxygen species (ROS), causing cytotoxicity, which leads to tissue damage and is linked to neurodegenerative diseases, cardiovascular diseases, diabetes, cancers, and many other pathologies. As an important intracellular signaling molecule, ROS can regulate numerous physiological actions, such as vascular reactivity and neuronal function. According to several studies, the uncontrolled production of ROS is related to vascular injury. The growing evidence revealing how traditional risk factors translate into ROS and lead to vasculitis and other vascular diseases. In this review, we sought to mainly discuss the role of ROS and antioxidant mechanisms in vascular-related diseases, especially cardiovascular and common macrovascular diseases.
Collapse
|
61
|
Santos FM, Mesquita J, Castro-de-Sousa JP, Ciordia S, Paradela A, Tomaz CT. Vitreous Humor Proteome: Targeting Oxidative Stress, Inflammation, and Neurodegeneration in Vitreoretinal Diseases. Antioxidants (Basel) 2022; 11:505. [PMID: 35326156 PMCID: PMC8944522 DOI: 10.3390/antiox11030505] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is defined as an unbalance between pro-oxidants and antioxidants, as evidenced by an increase in reactive oxygen and reactive nitrogen species production over time. It is important in the pathophysiology of retinal disorders such as diabetic retinopathy, age-related macular degeneration, retinal detachment, and proliferative vitreoretinopathy, which are the focus of this article. Although the human organism's defense mechanisms correct autoxidation caused by endogenous or exogenous factors, this may be insufficient, causing an imbalance in favor of excessive ROS production or a weakening of the endogenous antioxidant system, resulting in molecular and cellular damage. Furthermore, modern lifestyles and environmental factors contribute to increased chemical exposure and stress induction, resulting in oxidative stress. In this review, we discuss the current information about oxidative stress and the vitreous proteome with a special focus on vitreoretinal diseases. Additionally, we explore therapies using antioxidants in an attempt to rescue the body from oxidation, restore balance, and maximize healthy body function, as well as new investigational therapies that have shown significant therapeutic potential in preclinical studies and clinical trial outcomes, along with their goals and strategic approaches to combat oxidative stress.
Collapse
Affiliation(s)
- Fátima Milhano Santos
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-001 Covilhã, Portugal; or (J.P.C.-d.-S.)
- Unidad de Proteomica, Centro Nacional de Biotecnología, CSIC, Campus de Cantoblanco, 28049 Madrid, Spain; (S.C.); (A.P.)
- C4-UBI, Cloud Computing Competence Centre, University of Beira Interior, 6200-501 Covilhã, Portugal
| | - Joana Mesquita
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-001 Covilhã, Portugal; or (J.P.C.-d.-S.)
| | - João Paulo Castro-de-Sousa
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-001 Covilhã, Portugal; or (J.P.C.-d.-S.)
- Department of Ophthalmology, Centro Hospitalar de Leiria, 2410-197 Leiria, Portugal
| | - Sergio Ciordia
- Unidad de Proteomica, Centro Nacional de Biotecnología, CSIC, Campus de Cantoblanco, 28049 Madrid, Spain; (S.C.); (A.P.)
| | - Alberto Paradela
- Unidad de Proteomica, Centro Nacional de Biotecnología, CSIC, Campus de Cantoblanco, 28049 Madrid, Spain; (S.C.); (A.P.)
| | - Cândida Teixeira Tomaz
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-001 Covilhã, Portugal; or (J.P.C.-d.-S.)
- C4-UBI, Cloud Computing Competence Centre, University of Beira Interior, 6200-501 Covilhã, Portugal
- Chemistry Department, Faculty of Sciences, University of Beira Interior, 6201-001 Covilhã, Portugal
| |
Collapse
|
62
|
Ou K, Li Y, Liu L, Li H, Cox K, Wu J, Liu J, Dick AD. Recent developments of neuroprotective agents for degenerative retinal disorders. Neural Regen Res 2022; 17:1919-1928. [PMID: 35142668 PMCID: PMC8848613 DOI: 10.4103/1673-5374.335140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Retinal degeneration is a debilitating ocular complication characterized by the progressive loss of photoreceptors and other retinal neurons, which are caused by a group of retinal diseases affecting various age groups, and increasingly prevalent in the elderly. Age-related macular degeneration, diabetic retinopathy and glaucoma are among the most common complex degenerative retinal disorders, posing significant public health problems worldwide largely due to the aging society and the lack of effective therapeutics. Whilst pathoetiologies vary, if left untreated, loss of retinal neurons can result in an acquired degeneration and ultimately severe visual impairment. Irrespective of underlined etiology, loss of neurons and supporting cells including retinal pigment epithelium, microvascular endothelium, and glia, converges as the common endpoint of retinal degeneration and therefore discovery or repurposing of therapies to protect retinal neurons directly or indirectly are under intensive investigation. This review overviews recent developments of potential neuroprotectants including neuropeptides, exosomes, mitochondrial-derived peptides, complement inhibitors, senolytics, autophagy enhancers and antioxidants either still experimentally or in clinical trials. Effective treatments that possess direct or indirect neuroprotective properties would significantly lift the burden of visual handicap.
Collapse
Affiliation(s)
- Kepeng Ou
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, China; Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Youjian Li
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, China; Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ling Liu
- Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Hua Li
- Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Katherine Cox
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jiahui Wu
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK; Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Liu
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Andrew D Dick
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol; Institute of Ophthalmology, University College London, London; National Institute for Health Research Biomedical Research Centre, Moorfields Eye Hospital, London, UK
| |
Collapse
|
63
|
Lu BW, Chao GJ, Wu GP, Xie LK. In depth understanding of retinitis pigmentosa pathogenesis through optical coherence tomography angiography analysis: a narrative review. Int J Ophthalmol 2021; 14:1979-1985. [PMID: 34926217 DOI: 10.18240/ijo.2021.12.25] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Retinitis pigmentosa (RP) is the most recognized inherited retinal disorder involving progressive photoreceptors degeneration which eventually causes blindness. However, the pathogenesis of RP is still unclear, making it difficult to establish satisfying treatments. Evidence have been found to support the theory that vascular dysfunction is associated with the progression of RP. Optical coherence tomography angiography (OCTA) is a newly developed technology that enables visualization as well as quantitative assessment of retinal and choroidal vasculature non-invasively. Advances in OCTA have opened a window for in-depth understanding of RP pathogenesis. Here, we propose a hypothesis of RP pathogenesis based on the current OCTA findings in RP, which includes four stages and two important key factors, vascular dysfunction and microglia activation. Further, we discuss the future animal experiments needed and how advanced OCTA technology can help to further verity the hypothesis. The final goal is to explore potential treatment options with enhanced understanding of RP pathogenesis.
Collapse
Affiliation(s)
- Bing-Wen Lu
- Department of Ophthalmology, Ophthalmology Hospital of China Academy of Traditional Chinese Medicine, Beijing 100040, China
| | - Guo-Jun Chao
- Department of Ophthalmology, Ophthalmology Hospital of China Academy of Traditional Chinese Medicine, Beijing 100040, China
| | - Gai-Ping Wu
- Department of Ophthalmology, Ophthalmology Hospital of China Academy of Traditional Chinese Medicine, Beijing 100040, China
| | - Li-Ke Xie
- Department of Ophthalmology, Ophthalmology Hospital of China Academy of Traditional Chinese Medicine, Beijing 100040, China
| |
Collapse
|
64
|
Ghrelin Ameliorates Diabetic Retinal Injury: Potential Therapeutic Avenues for Diabetic Retinopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8043299. [PMID: 34737846 PMCID: PMC8563120 DOI: 10.1155/2021/8043299] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/21/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023]
Abstract
Ghrelin has anti-inflammatory, antioxidant, and antiapoptotic effects, and it may be beneficial for the treatment of many ophthalmic diseases, such as cataract, uveitis, and glaucoma. Our previous work proved that ghrelin pretreatment reduced the apoptosis of lens epithelial cells induced by hydrogen peroxide, reduced the accumulation of reactive oxygen species (ROS), and effectively maintained the transparency of lens tissue. However, no study has yet investigated the effect of ghrelin on retina. In this study, we conducted in vitro and in vivo experiments to explore the effect of ghrelin on high-glucose- (HG-) induced ARPE-19 cell damage and diabetic retinopathy in streptozotocin-induced diabetic rats. ARPE-19 cells were incubated in a normal or an HG (30 mM glucose) medium with or without ghrelin. Cell viability was measured by 3-(4, 5-dimethylthiazol-3-yl)-2,5-diphenyl tetrazolium bromide assay, and apoptosis was detected by the Hoechst–PI staining assay. Intracellular reactive oxygen species (ROS) production levels within cells were measured using 2′,7′-dichlorofluorescein diacetate staining, and the contents of superoxide dismutase and malondialdehyde were measured using relevant detection kits. The expression levels of IL-1β and IL-18 were measured using an enzyme-linked immunosorbent assay, and those of NLRP3, IL-1β, and IL-18 were measured using Western blotting. The rat diabetes models were induced using a single intraperitoneal injection of streptozotocin (80 mg/kg). The morphological and histopathological changes in the retinal tissues were examined. The results indicated that ghrelin reduced ROS generation, inhibited cell apoptosis and the activation of NLRP3 inflammasome, inhibited the apoptosis of retinal cells in diabetic rats, and protected the retina against HG-induced dysfunction. In conclusion, ghrelin may play a role in the treatment of ocular diseases involving diabetic retinopathy.
Collapse
|
65
|
Short-term high-fat feeding exacerbates degeneration in retinitis pigmentosa by promoting retinal oxidative stress and inflammation. Proc Natl Acad Sci U S A 2021; 118:2100566118. [PMID: 34667124 DOI: 10.1073/pnas.2100566118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2021] [Indexed: 12/22/2022] Open
Abstract
A high-fat diet (HFD) can induce hyperglycemia and metabolic syndromes that, in turn, can trigger visual impairment. To evaluate the acute effects of HFD feeding on retinal degeneration, we assessed retinal function and morphology, inflammatory state, oxidative stress, and gut microbiome in dystrophic retinal degeneration 10 (rd10) mice, a model of retinitis pigmentosa, fed an HFD for 2 to 3 wk. Short-term HFD feeding impaired retinal responsiveness and visual acuity and enhanced photoreceptor degeneration, microglial cell activation, and Müller cell gliosis. HFD consumption also triggered the expression of inflammatory and oxidative markers in rd10 retinas. Finally, an HFD caused gut microbiome dysbiosis, increasing the abundance of potentially proinflammatory bacteria. Thus, HFD feeding drives the pathological processes of retinal degeneration by promoting oxidative stress and activating inflammatory-related pathways. Our findings suggest that consumption of an HFD could accelerate the progression of the disease in patients with retinal degenerative disorders.
Collapse
|
66
|
Musayeva A, Unkrig JC, Zhutdieva MB, Manicam C, Ruan Y, Laspas P, Chronopoulos P, Göbel ML, Pfeiffer N, Brochhausen C, Daiber A, Oelze M, Li H, Xia N, Gericke A. Betulinic Acid Protects from Ischemia-Reperfusion Injury in the Mouse Retina. Cells 2021; 10:cells10092440. [PMID: 34572088 PMCID: PMC8469383 DOI: 10.3390/cells10092440] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/16/2022] Open
Abstract
Ischemia/reperfusion (I/R) events are involved in the pathophysiology of numerous ocular diseases. The purpose of this study was to test the hypothesis that betulinic acid protects from I/R injury in the mouse retina. Ocular ischemia was induced in mice by increasing intraocular pressure (IOP) to 110 mm Hg for 45 min, while the fellow eye served as a control. One group of mice received betulinic acid (50 mg/kg/day p.o. once daily) and the other group received the vehicle solution only. Eight days after the I/R event, the animals were killed and the retinal wholemounts and optic nerve cross-sections were prepared and stained with cresyl blue or toluidine blue, respectively, to count cells in the ganglion cell layer (GCL) of the retina and axons in the optic nerve. Retinal arteriole responses were measured in isolated retinas by video microscopy. The levels of reactive oxygen species (ROS) were assessed in retinal cryosections and redox gene expression was determined in isolated retinas by quantitative PCR. I/R markedly reduced cell number in the GCL and axon number in the optic nerve of the vehicle-treated mice. In contrast, only a negligible reduction in cell and axon number was observed following I/R in the betulinic acid-treated mice. Endothelial function was markedly reduced and ROS levels were increased in retinal arterioles of vehicle-exposed eyes following I/R, whereas betulinic acid partially prevented vascular endothelial dysfunction and ROS formation. Moreover, betulinic acid boosted mRNA expression for the antioxidant enzymes SOD3 and HO-1 following I/R. Our data provide evidence that betulinic acid protects from I/R injury in the mouse retina. Improvement of vascular endothelial function and the reduction in ROS levels appear to contribute to the neuroprotective effect.
Collapse
Affiliation(s)
- Aytan Musayeva
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (A.M.); (J.C.U.); (M.B.Z.); (C.M.); (Y.R.); (P.L.); (P.C.); (M.L.G.); (N.P.)
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Johanna C. Unkrig
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (A.M.); (J.C.U.); (M.B.Z.); (C.M.); (Y.R.); (P.L.); (P.C.); (M.L.G.); (N.P.)
| | - Mayagozel B. Zhutdieva
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (A.M.); (J.C.U.); (M.B.Z.); (C.M.); (Y.R.); (P.L.); (P.C.); (M.L.G.); (N.P.)
| | - Caroline Manicam
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (A.M.); (J.C.U.); (M.B.Z.); (C.M.); (Y.R.); (P.L.); (P.C.); (M.L.G.); (N.P.)
| | - Yue Ruan
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (A.M.); (J.C.U.); (M.B.Z.); (C.M.); (Y.R.); (P.L.); (P.C.); (M.L.G.); (N.P.)
| | - Panagiotis Laspas
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (A.M.); (J.C.U.); (M.B.Z.); (C.M.); (Y.R.); (P.L.); (P.C.); (M.L.G.); (N.P.)
| | - Panagiotis Chronopoulos
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (A.M.); (J.C.U.); (M.B.Z.); (C.M.); (Y.R.); (P.L.); (P.C.); (M.L.G.); (N.P.)
| | - Marie L. Göbel
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (A.M.); (J.C.U.); (M.B.Z.); (C.M.); (Y.R.); (P.L.); (P.C.); (M.L.G.); (N.P.)
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (A.M.); (J.C.U.); (M.B.Z.); (C.M.); (Y.R.); (P.L.); (P.C.); (M.L.G.); (N.P.)
| | - Christoph Brochhausen
- Institute of Pathology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany;
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Andreas Daiber
- Department of Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center, Johannes Gutenberg University Mainz, Building 605, Langenbeckstrasse 1, 55131 Mainz, Germany; (A.D.); (M.O.)
| | - Matthias Oelze
- Department of Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center, Johannes Gutenberg University Mainz, Building 605, Langenbeckstrasse 1, 55131 Mainz, Germany; (A.D.); (M.O.)
| | - Huige Li
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (H.L.); (N.X.)
| | - Ning Xia
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (H.L.); (N.X.)
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (A.M.); (J.C.U.); (M.B.Z.); (C.M.); (Y.R.); (P.L.); (P.C.); (M.L.G.); (N.P.)
- Correspondence: ; Tel.: +49-613-117-8276
| |
Collapse
|
67
|
Marchesi N, Fahmideh F, Boschi F, Pascale A, Barbieri A. Ocular Neurodegenerative Diseases: Interconnection between Retina and Cortical Areas. Cells 2021; 10:2394. [PMID: 34572041 PMCID: PMC8469605 DOI: 10.3390/cells10092394] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022] Open
Abstract
The possible interconnection between the eye and central nervous system (CNS) has been a topic of discussion for several years just based on fact that the eye is properly considered an extension of the brain. Both organs consist of neurons and derived from a neural tube. The visual process involves photoreceptors that receive light stimulus from the external environment and send it to retinal ganglionic cells (RGC), one of the cell types of which the retina is composed. The retina, the internal visual membrane of the eye, processes the visual stimuli in electric stimuli to transfer it to the brain, through the optic nerve. Retinal chronic progressive neurodegeneration, which may occur among the elderly, can lead to different disorders of the eye such as glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy (DR). Mainly in the elderly population, but also among younger people, such ocular pathologies are the cause of irreversible blindness or impaired, reduced vision. Typical neurodegenerative diseases of the CSN are a group of pathologies with common characteristics and etiology not fully understood; some risk factors have been identified, but they are not enough to justify all the cases observed. Furthermore, several studies have shown that also ocular disorders present characteristics of neurodegenerative diseases and, on the other hand, CNS pathologies, i.e., Alzheimer disease (AD) and Parkinson disease (PD), which are causes of morbidity and mortality worldwide, show peculiar alterations at the ocular level. The knowledge of possible correlations could help to understand the mechanisms of onset. Moreover, the underlying mechanisms of these heterogeneous disorders are still debated. This review discusses the characteristics of the ocular illnesses, focusing on the relationship between the eye and the brain. A better comprehension could help in future new therapies, thus reducing or avoiding loss of vision and improve quality of life.
Collapse
Affiliation(s)
| | | | | | | | - Annalisa Barbieri
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy; (N.M.); (F.F.); (F.B.); (A.P.)
| |
Collapse
|
68
|
Kwong JMK, Caprioli J, Sze YH, Yu FJ, Li KK, To CH, Lam TC. Differential Retinal Protein Expression in Primary and Secondary Retinal Ganglion Cell Degeneration Identified by Integrated SWATH and Target-Based Proteomics. Int J Mol Sci 2021; 22:ijms22168592. [PMID: 34445296 PMCID: PMC8395271 DOI: 10.3390/ijms22168592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 12/15/2022] Open
Abstract
To investigate the retinal proteins associated with primary and secondary retinal ganglion cell (RGC) degeneration and explore their molecular pathways, SWATH label-free and target-based mass spectrometry was employed to identify the proteomes in various retinal locations in response to localized optic nerve injury. Unilateral partial optic nerve transection (pONT) was performed on adult Wistar rats and their retinas were harvested 2 weeks later. To confirm the separation of primary and secondary RGC degeneration, immunohistochemistry of RNA binding protein with multiple splicing (RBPMS) and glial fibrillary acidic protein (GFAP) was performed on retinal whole-mounts. Retinal proteomes in the temporal and nasal quadrants were evaluated with high resolution hybrid quadrupole time-of-flight mass spectrometry (QTOF-MS), and SWATH-based acquisition, and their expression was compared to the corresponding retinal quadrant in contralateral control eyes and further validated by multiple reaction monitoring mass spectrometry (MRM-MS). A total of 3641 proteins (FDR < 1%) were identified using QTOF-MS. The raw data are available via ProteomeXchange with the identifier PXD026783. Bioinformatics data analysis showed that there were 37 upregulated and 25 downregulated proteins in the temporal quadrant, whereas 20 and five proteins were upregulated and downregulated, respectively, in the nasal quadrant, respectively (n = 4, p < 0.05; fold change ≥ 1.4-fold or ≤0.7). Six proteins were regulated in both the temporal and the nasal quadrants, including CLU, GFAP, GNG5, IRF2BPL, L1CAM, and CPLX1. Linear regression analysis indicated a strong association between the data obtained by means of SWATH-MS and MRM-MS (temporal, R2 = 0.97; nasal, R2 = 0.96). Gene ontology analysis revealed statistically significant changes in the biological processes and cellular components of primary RGC degeneration. The majority of the significant changes in structural, signaling, and cell death proteins were associated with the loss of RGCs in the area of primary RGC degeneration. The combined use of SWATH-MS and MRM-MS methods detects and quantifies regional changes of retinal protein expressions after localized injury. Future investigation with this integrated approach will significantly increase the understanding of diverse processes of progressive RGC degeneration from a proteomic prospective.
Collapse
Affiliation(s)
- Jacky M. K. Kwong
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Correspondence: (J.M.K.K.); (T.C.L.)
| | - Joseph Caprioli
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - Ying H. Sze
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong 999077, China; (Y.H.S.); (F.J.Y.); (K.K.L.); (C.H.T.)
- Centre for Eye and Vision Science, School of Optometry, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Feng J. Yu
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong 999077, China; (Y.H.S.); (F.J.Y.); (K.K.L.); (C.H.T.)
- Centre for Eye and Vision Science, School of Optometry, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - King K. Li
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong 999077, China; (Y.H.S.); (F.J.Y.); (K.K.L.); (C.H.T.)
- Centre for Eye and Vision Science, School of Optometry, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Chi H. To
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong 999077, China; (Y.H.S.); (F.J.Y.); (K.K.L.); (C.H.T.)
- Centre for Eye and Vision Science, School of Optometry, The Hong Kong Polytechnic University, Hong Kong 999077, China
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518052, China
| | - Thomas C. Lam
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong 999077, China; (Y.H.S.); (F.J.Y.); (K.K.L.); (C.H.T.)
- Centre for Eye and Vision Science, School of Optometry, The Hong Kong Polytechnic University, Hong Kong 999077, China
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518052, China
- Correspondence: (J.M.K.K.); (T.C.L.)
| |
Collapse
|
69
|
Endothelial BBSome is essential for vascular, metabolic, and retinal functions. Mol Metab 2021; 53:101308. [PMID: 34303879 PMCID: PMC8379702 DOI: 10.1016/j.molmet.2021.101308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/29/2021] [Accepted: 07/19/2021] [Indexed: 11/21/2022] Open
Abstract
Objectives Endothelial cells that line the entire vascular system play a pivotal role in the control of various physiological processes, including metabolism. Additionally, endothelial dysfunction is associated with many pathological conditions, including obesity. Here, we assessed the role of the BBSome, a protein complex composed of eight Bardet-Biedl syndrome (BBS) proteins in endothelial cells. Methods We studied the effects of BBSome disruption in endothelial cells on vascular function, body weight, glucose homeostasis, and the liver and retina. For this, we generated mice with selective BBSome disruption in endothelial cells through Bbs1 gene deletion. Results We found that endothelial cell–specific BBSome disruption causes endothelial dysfunction, as indicated by the impaired acetylcholine-induced vasorelaxation in both the aorta and mesenteric artery. This was associated with an increase in the contractile response to thromboxane A2 receptor agonist (U46619) in the mesenteric artery. Mechanistically, we demonstrated that mice lacking the Bbs1 gene in endothelial cells show elevated vascular angiotensinogen gene expression, implicating renin-angiotensin system activation in the vascular changes evoked by endothelial BBSome deficiency. Strikingly, our data indicate that endothelial BBSome deficiency increases body weight and fat mass and causes hepatosteatosis along with alterations in hepatic expression of lipid metabolism–related genes and metabolomics profile. In addition, electroretinogram and optical coherence tomography analyses revealed functional and structural abnormalities in the retina, evoked by absence of the endothelial BBSome. Conclusions Our findings demonstrate that the BBSome in endothelial cells is required for the regulation of vascular function, adiposity, hepatic lipid metabolism, and retinal function. Disruption of the BBSome in endothelial cells alters vascular reactivity. Loss of the BBSome in endothelial cells increases vascular angiotensinogen gene expression. Endothelial BBSome deficiency increases body weight and fat mass and causes hepatosteatosis. Absence of the endothelial BBSome induces functional and structural abnormalities in the retina.
Collapse
|
70
|
Blasiak J, Szczepanska J, Fila M, Pawlowska E, Kaarniranta K. Potential of Telomerase in Age-Related Macular Degeneration-Involvement of Senescence, DNA Damage Response and Autophagy and a Key Role of PGC-1α. Int J Mol Sci 2021; 22:ijms22137194. [PMID: 34281248 PMCID: PMC8268995 DOI: 10.3390/ijms22137194] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
Age-related macular degeneration (AMD), the main cause of vision loss in the elderly, is associated with oxidation in the retina cells promoting telomere attrition. Activation of telomerase was reported to improve macular functions in AMD patients. The catalytic subunit of human telomerase (hTERT) may directly interact with proteins important for senescence, DNA damage response, and autophagy, which are impaired in AMD. hTERT interaction with mTORC1 (mTOR (mechanistic target of rapamycin) complex 1) and PINK1 (PTEN-induced kinase 1) activates macroautophagy and mitophagy, respectively, and removes cellular debris accumulated over AMD progression. Ectopic expression of telomerase in retinal pigment epithelium (RPE) cells lengthened telomeres, reduced senescence, and extended their lifespan. These effects provide evidence for the potential of telomerase in AMD therapy. Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) may be involved in AMD pathogenesis through decreasing oxidative stress and senescence, regulation of vascular endothelial growth factor (VEGF), and improving autophagy. PGC-1α and TERT form an inhibitory positive feedback loop. In conclusion, telomerase activation and its ectopic expression in RPE cells, as well as controlled clinical trials on the effects of telomerase activation in AMD patients, are justified and should be assisted by PGC-1α modulators to increase the therapeutic potential of telomerase in AMD.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
- Correspondence: (J.B.); (K.K.)
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, 92-217 Lodz, Poland;
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, 70210 Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, 70210 Kuopio, Finland
- Correspondence: (J.B.); (K.K.)
| |
Collapse
|
71
|
Feng Y, Prokosch V, Liu H. Current Perspective of Hydrogen Sulfide as a Novel Gaseous Modulator of Oxidative Stress in Glaucoma. Antioxidants (Basel) 2021; 10:antiox10050671. [PMID: 33925849 PMCID: PMC8146617 DOI: 10.3390/antiox10050671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/16/2022] Open
Abstract
Glaucoma is a group of diseases characterized by the progressive loss of retinal ganglion cells and their axons. Elevated intraocular pressure (IOP) is the main clinical manifestation of glaucoma. Despite being in the focus of the studies for decades, the characteristic and the exact pathology of neurodegeneration in glaucoma remains unclear. Oxidative stress is believed to be one of the main risk factors in neurodegeneration, especially its damage to the retinal ganglion cells. Hydrogen sulfide (H2S), the recently recognized gas signaling molecule, plays a pivotal role in the nervous system, vascular system, and immune system. It has also shown properties in regulating oxidative stress through different pathways in vivo. In this review, we summarize the distribution and the properties of H2S within the eye with an emphasis on its role in modulating oxidative stress in glaucoma.
Collapse
Affiliation(s)
| | | | - Hanhan Liu
- Correspondence: ; Tel.: +49-(0)-221-478-96996
| |
Collapse
|
72
|
Antioxidant Activity and Neuroprotective Role of Docosahexaenoic Acid (DHA) Supplementation in Eye Diseases That Can Lead to Blindness: A Narrative Review. Antioxidants (Basel) 2021; 10:antiox10030386. [PMID: 33807538 PMCID: PMC8000043 DOI: 10.3390/antiox10030386] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/13/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
The objective of this narrative review is to provide updated evidence, based on data from experimental and clinical studies, of the prominent role of omega-3 polyunsaturated fatty acids (n-3 PUFAs) for a number of crucial mechanisms involved in counteracting cell damage induced by oxidative stress in eye diseases. This article is focused on the antioxidant and neuroprotective effects of docosahexaenoic acid (DHA), which have been assessed in different experimental models and clinical studies, particularly in proliferative diabetic retinopathy, age-related macular degeneration and glaucoma that are the most common eye diseases leading to severe vision loss. The mechanisms involved in the role of DHA in protecting human retinal pigment epithelial cells from oxidative stress as well as the interaction with glutathione (GSH) are also described. The review is intended to provide novel and salient findings supporting the rationale of the use of dietary supplementation with high-dose DHA (1050 mg/day) in the form of triglyceride as a potent antioxidant compound for improving the eye health. However, the overall clinical evidence for the use of dietary strategies based on supplementation with n-3 PUFAs in eye diseases linked to oxidative stress other than high-dose DHA triglyceride is both limited and inconsistent.
Collapse
|
73
|
Fan Gaskin JC, Shah MH, Chan EC. Oxidative Stress and the Role of NADPH Oxidase in Glaucoma. Antioxidants (Basel) 2021; 10:antiox10020238. [PMID: 33557289 PMCID: PMC7914994 DOI: 10.3390/antiox10020238] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 02/08/2023] Open
Abstract
Glaucoma is characterised by loss of retinal ganglion cells, and their axons and many pathophysiological processes are postulated to be involved. It is increasingly understood that not one pathway underlies glaucoma aetiology, but rather they occur as a continuum that ultimately results in the apoptosis of retinal ganglion cells. Oxidative stress is recognised as an important mechanism of cell death in many neurodegenerative diseases, including glaucoma. NADPH oxidase (NOX) are enzymes that are widely expressed in vascular and non-vascular cells, and they are unique in that they primarily produce reactive oxygen species (ROS). There is mounting evidence that NOX are an important source of ROS and oxidative stress in glaucoma and other retinal diseases. This review aims to provide a perspective on the complex role of oxidative stress in glaucoma, in particular how NOX expression may influence glaucoma pathogenesis as illustrated by different experimental models of glaucoma and highlights potential therapeutic targets that may offer a novel treatment option to glaucoma patients.
Collapse
Affiliation(s)
- Jennifer C Fan Gaskin
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
| | - Manisha H Shah
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
| | - Elsa C Chan
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
- Department of Medicine, University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
74
|
Strunz T, Kiel C, Sauerbeck BL, Weber BHF. Learning from Fifteen Years of Genome-Wide Association Studies in Age-Related Macular Degeneration. Cells 2020; 9:E2267. [PMID: 33050425 PMCID: PMC7650698 DOI: 10.3390/cells9102267] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022] Open
Abstract
Over the last 15 years, genome-wide association studies (GWAS) have greatly advanced our understanding of the genetic landscape of complex phenotypes. Nevertheless, causal interpretations of GWAS data are challenging but crucial to understand underlying mechanisms and pathologies. In this review, we explore to what extend the research community follows up on GWAS data. We have traced the scientific activities responding to the two largest GWAS conducted on age-related macular degeneration (AMD) so far. Altogether 703 articles were manually categorized according to their study type. This demonstrates that follow-up studies mainly involve "Review articles" (33%) or "Genetic association studies" (33%), while 19% of publications report on findings from experimental work. It is striking to note that only three of 16 AMD-associated loci described de novo in 2016 were examined in the four-year follow-up period after publication. A comparative analysis of five studies on gene expression regulation in AMD-associated loci revealed consistent gene candidates for 15 of these loci. Our random survey highlights the fact that functional follow-up studies on GWAS results are still in its early stages hampering a significant refinement of the vast association data and thus a more accurate insight into mechanisms and pathways.
Collapse
Affiliation(s)
- Tobias Strunz
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany; (T.S.); (C.K.); (B.L.S.)
| | - Christina Kiel
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany; (T.S.); (C.K.); (B.L.S.)
| | - Bastian L. Sauerbeck
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany; (T.S.); (C.K.); (B.L.S.)
| | - Bernhard H. F. Weber
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany; (T.S.); (C.K.); (B.L.S.)
- Institute of Clinical Human Genetics, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
75
|
Suppression of Oxidative Stress as Potential Therapeutic Approach for Normal Tension Glaucoma. Antioxidants (Basel) 2020; 9:antiox9090874. [PMID: 32947996 PMCID: PMC7554707 DOI: 10.3390/antiox9090874] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Glaucoma is a neurodegenerative disease of the eye, which involves degeneration of retinal ganglion cells (RGCs): the output neurons of the retina to the brain, which with their axons comprise the optic nerve. Recent studies have shown the possible involvement of oxidative stress in the pathogenesis of glaucoma, especially in the subtype of normal tension glaucoma. Basic experiments utilizing rodent and primate models of glaucoma revealed that antioxidants protect RGCs under various pathological conditions including glutamate neurotoxicity and optic nerve injury. These results suggested that existing drugs and food factors may be useful for prevention and hence therapy of glaucoma. In this review, we highlight some therapeutic candidates, particularly those with antioxidant properties, and discuss the therapeutic potential of RGC protection by modulating gene expressions that prevent and ameliorate glaucoma.
Collapse
|