51
|
Yoo Y, Lee J, Cho J, Yoon Y. Antimicrobial properties of Limosilactobacillus reuteri strains for control of Escherichia coli and Salmonella strains, diarrhoea cause in weaning pigs. VET MED-CZECH 2023; 68:191-199. [PMID: 37982025 PMCID: PMC10581512 DOI: 10.17221/112/2022-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/10/2023] [Indexed: 11/21/2023] Open
Abstract
This study aimed to use lactic acid bacteria isolated from piglet faeces to develop probiotics, allowing for the effective control of Escherichia coli and Salmonella. Lactic acid bacteria were isolated from the faeces of suckling piglets and identified by 16S rRNA sequencing, then examined for haemolysis; gelatinase activity; and resistance to acid, bile, and pancreatin. The antimicrobial activity of selected lactic acid bacteria isolates was examined for 8 E. coli and 7 Salmonella strains. One-hundred and sixty-four lactic acid bacteria isolates were identified from 118 piglet faecal samples, and 13 lactic acid bacteria isolates were selected from analyses of haemolysis; gelatinase activity; and resistance to acid, bile, and pancreatin. Of the selected 13 lactic acid bacteria isolates, Limosilactobacillus reuteri PF20-3 and PF30-3 strains had the highest antibacterial activity against E. coli and Salmonella.
Collapse
Affiliation(s)
- Yoonjeong Yoo
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Jihwan Lee
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Jinho Cho
- Department of Animal Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Yohan Yoon
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul, Republic of Korea
- Risk Analysis Research Center, Sookmyung Women’s University, Seoul, Republic of Korea
| |
Collapse
|
52
|
Zhao X, Liu Z, Chen T. Potential Role of Vaginal Microbiota in Ovarian Cancer Carcinogenesis, Progression and Treatment. Pharmaceutics 2023; 15:pharmaceutics15030948. [PMID: 36986809 PMCID: PMC10056320 DOI: 10.3390/pharmaceutics15030948] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Ovarian cancer represents one of the most challenging gynecologic cancers which still has numerous unknowns on the underlying pathogenesis. In addition to the verified contributors such as genomic predisposition and medical history in the carcinogenesis, emerging evidence points out the potential role of vaginal microbiota in ovarian cancer. Recent studies have underlined the presence of vaginal microbial dysbiosis in cancer cases. Increasing research also indicates the potential correlations between vaginal microbes and cancer carcinogenesis, progression and treatment. Currently, compared with other gynecologic cancers, reports on the roles of vaginal microbiota in ovarian cancer remain scarce and fragmentary. Therefore, in this review, we summarize the roles of vaginal microbiota in various gynecologic diseases, particularly focusing on the potential mechanisms and possible applications of vaginal microbiota in ovarian cancer, giving insight into the involvement of vaginal microbiota in gynecologic cancer treatment.
Collapse
Affiliation(s)
- Xiumiao Zhao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Zhaoxia Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Correspondence: (Z.L.); (T.C.)
| | - Tingtao Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
- Correspondence: (Z.L.); (T.C.)
| |
Collapse
|
53
|
Extraction and Characterization of Cocoa Bean Shell Cell Wall Polysaccharides. Polymers (Basel) 2023; 15:polym15030745. [PMID: 36772046 PMCID: PMC9921167 DOI: 10.3390/polym15030745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Cocoa bean shells (CBS), a by-product of the cocoa industry, from two cacao varieties and obtained after selected processing conditions (fermentation, drying, roasting) were characterized in terms of their chemical composition, where they were found to be a great source of carbohydrates, specifically dietary fiber, protein, ash, and polyphenols, namely quercetin, epicatechin, and catechin. Cell wall polysaccharides were isolated by alkaline extraction (0.5 M or 4 M KOH) and were found to be enriched primarily in pectic polysaccharides (80.6-86%) namely rhamnogalacturonan and arabinogalactan as well as hemi- cellulosic polysaccharides (13.9-19.4%). Overall, 0.5 M KOH polysaccharides were favored having provided a diverse profile of neutral sugars and uronic acids. When tested for the promotion of the growth of selected probiotic strains, CBS cell wall polysaccharides performed similarly or more than inulin and rhamnogalacturonan based on the prebiotic activity scores. The short-chain fatty acid profiles were characterized by high amounts of lactic acid, followed by acetic and propionic acid.
Collapse
|
54
|
Phaengphairee P, Boontiam W, Wealleans A, Hong J, Kim YY. Dietary supplementation with full-fat Hermetia illucens larvae and multi-probiotics, as a substitute for antibiotics, improves the growth performance, gut health, and antioxidative capacity of weaned pigs. BMC Vet Res 2023; 19:7. [PMID: 36631776 PMCID: PMC9832753 DOI: 10.1186/s12917-022-03550-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/12/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Dietary supplementation of full-fat black soldier fly larvae (BSFL full-fat meal; alone or in combination with multi-probiotics) was tested as an alternative to dietary antibiotics in weaning piglets. We also tested the effects of these diets on growth performance, nutrient digestibility coefficients, immune status, oxidative stress, intestinal histomorphology, and rectal microbial modulations in weaned pigs. A total of 80 piglets [(Landrace × Large White) × Duroc] of both sexes (a ratio of gilts and barrows; 1:1), were randomly allotted to four diet groups: positive control (PC) diet supplemented with 0.02% amoxicillin; negative control (NC) diet without supplement addition; BSFL12 diet (NC + 12% BSFL full-fat meal); and BSFL + Pro diet (BSFL full-fat meal + 0.1% multi-probiotics, including Bacillus subtilis, B. licheniformis, and Saccharomyces cerevisiae). All groups had five replicates, with four piglets per replicate. RESULTS Dietary BSFL + Pro improved the overall average daily gain (P = 0.013), and gain-to-feed ratio (P = 0.032). The BSFL12 and BSFL + Pro diets improved nutrient digestibility and increased the serum levels of immunoglobulin A and glutathione peroxidase, while reducing the levels of pro-inflammatory cytokines. The spleen weight was higher and caecal pH was lower in pigs fed the BSFL + Pro diet than in those fed the NC diet (P = 0.011 and P = 0.021, respectively). Pigs fed the BSFL diets had longer duodenal villi, a higher villus height-to-crypt depth ratio (P = 0.004), and shorter crypt depth (P = 0.017) than those fed NC. The BSFL + Pro diet also increased faecal Lactobacillus spp. count (P = 0.008) and reduced Escherichia coli (P = 0.021) counts compared with that seen with PC and NC diets, respectively. CONCLUSIONS Dietary supplementation with BSFL or BSFL + multi-probiotics can improve the growth performance and intestinal health of pigs and may be an effective strategy to replace antibiotics for weaned pigs.
Collapse
Affiliation(s)
- Pheeraphong Phaengphairee
- grid.9786.00000 0004 0470 0856Division of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Waewaree Boontiam
- grid.9786.00000 0004 0470 0856Division of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Alexandra Wealleans
- Kemin Europa N.V., Animal Nutrition and Health EMENA, Toekomstlaan 42, 2200 Herentals, Belgium
| | - Jinsu Hong
- grid.263791.80000 0001 2167 853XDepartment of Animal Science, South Dakota State University, Brookings, SD 57007 USA
| | - Yoo Yong Kim
- grid.31501.360000 0004 0470 5905School of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Gangnam-ru, Seoul, 135-754 South Korea
| |
Collapse
|
55
|
Lee SM, Keum HL, Sul WJ. Bacterial Crosstalk via Antimicrobial Peptides on the Human Skin: Therapeutics from a Sustainable Perspective. J Microbiol 2023; 61:1-11. [PMID: 36719618 DOI: 10.1007/s12275-022-00002-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 02/01/2023]
Abstract
The skin's epidermis is an essential barrier as the first guard against invading pathogens, and physical protector from external injury. The skin microbiome, which consists of numerous bacteria, fungi, viruses, and archaea on the epidermis, play a key role in skin homeostasis. Antibiotics are a fast-acting and effective treatment method, however, antibiotic use is a nuisance that can disrupt skin homeostasis by eradicating beneficial bacteria along with the intended pathogens and cause antibiotic-resistant bacteria spread. Increased numbers of antimicrobial peptides (AMPs) derived from humans and bacteria have been reported, and their roles have been well defined. Recently, modulation of the skin microbiome with AMPs rather than artificially synthesized antibiotics has attracted the attention of researchers as many antibiotic-resistant strains make treatment mediation difficult in the context of ecological problems. Herein, we discuss the overall insights into the skin microbiome, including its regulation by different AMPs, as well as their composition and role in health and disease.
Collapse
Affiliation(s)
- Seon Mi Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Hye Lim Keum
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Woo Jun Sul
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
56
|
Al-Najjar Y, Arabi M, Paul P, Chaari A. Can probiotic, prebiotic, and synbiotic supplementation modulate the gut-liver axis in type 2 diabetes? A narrative and systematic review of clinical trials. Front Nutr 2022; 9:1052619. [PMID: 36532552 PMCID: PMC9751375 DOI: 10.3389/fnut.2022.1052619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/16/2022] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Type 2 diabetes, one of the most common noncommunicable diseases, is a metabolic disorder that results in failed homeostatic control in several body systems, including hepatic function. Due to the gut microbiome's potential role in diabetes' pathogenesis, prebiotics, probiotics, and synbiotics have been proposed as complimentary therapeutic approaches aimed at microbiota readjustment. METHODS A systematic review was conducted on PubMed, Scopus, Web of Science, Embase, and the Cochrane Library examining the effect of probiotics, prebiotics, and synbiotics on hepatic biomarkers in patients with diabetes. RESULTS From 9,502 search hits, 10 studies met the inclusion criteria and were included in this review. A total of 816 participants (460 intervention and 356 control) were investigated for the effects of nine different hepatic biomarker measurements including aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total protein, bilirubin, liver steatosis, liver stiffness, fatty liver index, and gamma-glutamyl transferase levels. Of the 13 intervention groups analyzed from the 10 studies, 3 were prebiotic interventions, 3 were single species probiotic interventions, 3 were multi-species probiotic interventions, and 4 were synbiotic interventions. Nutraceuticals used in these trials included six genera of bacteria (Lactobacillus, Bifidobacterium, Streptococcus, Acetobacter, Lactococcus, and Propionibacterium), five different prebiotic formulations (inulin, inulin and beta carotene, chicory inulin enriched with oligofructose, galacto-oligosaccharides syrup, and powdered cinnamon), or a combination of these to form multi-species probiotics or synbiotics. CONCLUSION Although some studies showed insignificant changes in hepatic biomarkers, generally the results yielded a decrease in liver damage due to reduced oxidative stress, pro-inflammatory cytokines, gut dysbiosis, and insulin resistance which led to improvements in hepatic biomarker levels.
Collapse
Affiliation(s)
- Yousef Al-Najjar
- Medical Education Division, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation – Education City, Doha, Qatar
| | - Maryam Arabi
- Medical Education Division, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation – Education City, Doha, Qatar
| | - Pradipta Paul
- Medical Education Division, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation – Education City, Doha, Qatar
| | - Ali Chaari
- Premedical Division, Weill Cornell Medicine-Qatar, Qatar Foundation – Education City, Doha, Qatar
| |
Collapse
|
57
|
Puvanasundram P, Chong CM, Sabri S, Yusoff MSM, Lim KC, Karim M. Efficacy of Single and Multi-Strain Probiotics on In Vitro Strain Compatibility, Pathogen Inhibition, Biofilm Formation Capability, and Stress Tolerance. BIOLOGY 2022; 11:biology11111644. [PMID: 36358345 PMCID: PMC9687211 DOI: 10.3390/biology11111644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/19/2022] [Accepted: 11/05/2022] [Indexed: 11/12/2022]
Abstract
Compatibility of each strain in a multi-strain probiotic (MSP), along with its properties, becomes a strong base for its formulation. In this study, single-strain probiotics (SSPs) and multi-strain probiotics (MSPs) were evaluated in vitro for strain compatibility, microbial antagonism, biofilm formation capacity, and stress tolerance. Bacillus amyloliquefaciens L11, Enterococcus hirae LAB3, and Lysinibacillus fusiformis SPS11 were chosen as MSP1 candidates because they showed much stronger antagonism to Aeromonas hydrophila and Streptococcus agalactiae than a single probiotic. MSP 2 candidates were Lysinibacillus fusiformis strains SPS11, A1, and Lysinibacillus sphaericus strain NAS32 because the inhibition zone produced by MSP 2 against Vibrio harveyi and Vibrio parahaemolyticus was much higher than that produced by its constituent SSPs. MSP1 in the co-culture assay reduced (p < 0.05) A. hydrophila count from 9.89 ± 0.1 CFU mL−1 to 2.14 ± 0.2 CFU mL−1. The biofilm formation of both MSPs were significantly higher (p < 0.05) than its constituent SSPs and the pathogens. The SSPs in both MSPs generally showed resistance to high temperatures (80, 90, and 100 °C) and a wide range of pH (2 to 9). This in vitro assessment study demonstrates that MSP1 and 2 have the potential to be further explored as multi-strain probiotics on selected aquatic species.
Collapse
Affiliation(s)
- Puvaneswari Puvanasundram
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Biosciences, University Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Aquaculture, Faculty of Agriculture, University Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Chou Min Chong
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Biosciences, University Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Aquaculture, Faculty of Agriculture, University Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Suriana Sabri
- Enzyme and Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Md Sabri Mohd Yusoff
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Keng Chin Lim
- Department of Aquaculture, Faculty of Agriculture, University Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Murni Karim
- Department of Aquaculture, Faculty of Agriculture, University Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Laboratory of Sustainable Aquaculture, International Institute of Aquaculture and Aquatic Sciences, University Putra Malaysia, Port Dickson 71050, Negeri Sembilan, Malaysia
- Correspondence:
| |
Collapse
|
58
|
Functional response to a microbial synbiotic in the gastrointestinal system of children: a randomized clinical trial. Pediatr Res 2022:10.1038/s41390-022-02289-0. [PMID: 36319696 DOI: 10.1038/s41390-022-02289-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/23/2022] [Accepted: 07/29/2022] [Indexed: 03/05/2023]
Abstract
BACKGROUND Oral microbial therapy has been studied as an intervention for a range of gastrointestinal disorders. Though research suggests that microbial exposure may affect the gastrointestinal system, motility, and host immunity in a pediatric population, data have been inconsistent, with most prior studies being in neither a randomized nor placebo-controlled setting. The aim of this randomized, placebo-controlled study was to evaluate the efficacy of a synbiotic on increasing weekly bowel movements (WBMs) in constipated children. METHODS Sixty-four children (3-17 years of age) were randomized to receive a synbiotic (n = 33) comprising mixed-chain length oligosaccharides and nine microbial strains, or placebo (n = 31) for 84 days. Stool microbiota was analyzed on samples collected at baseline and completion. The primary outcome was a change from baseline of WBMs in the treatment group compared to placebo. RESULTS Treatment increased (p < 0.05) the number of WBMs in children with low baseline WBMs, despite broadly distinctive baseline microbiome signatures. Sequencing revealed that low baseline microbial richness in the treatment group significantly anticipated improvements in constipation (p = 0.00074). CONCLUSIONS These findings suggest the potential for (i) multi-species-synbiotic interventions to improve digestive health in a pediatric population and (ii) bioinformatics-based methods to predict response to microbial interventions in children. IMPACT Synbiotic microbial treatment improved the number of spontaneous weekly bowel movements in children compared to placebo. Intervention induced an increased abundance of bifidobacteria in children, compared to placebo. All administered probiotic species were enriched in the gut microbiome of the intervention group compared to placebo. Baseline microbial richness demonstrated potential as a predictive biomarker for response to intervention.
Collapse
|
59
|
Mitelmão FCR, Häckel K, Bergamaschi CDC, Gerenutti M, Silva MT, Balcão VM, Vila MMDC. The effect of probiotics on functional constipation in adults: A randomized, double-blind controlled trial. Medicine (Baltimore) 2022; 101:e31185. [PMID: 36316826 PMCID: PMC9622669 DOI: 10.1097/md.0000000000031185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Two formulations were developed in the form of an oral sachet containing probiotics, and their efficacy and safety were evaluated in adults with functional constipation. METHODS One formulation with Lactobacillus acidophilus, Bifidobacterium bifidum and Lactobacillus rhamnosus (3 billion Colony Forming Units - CFU); and another with Lactobacillus acidophilus, Bifidobacterium bifidum, Lactobacillus rhamnosus, Lactobacillus paracasei, Bifidobacterium longum, Bifidobacterium lactis, Lactobacillus casei, Bifidobacterium animallis (8 billion CFU). The participants were randomized in a 3-arm parallel study and one oral sachet was auto-administered once a day for 30 days. RESULTS Primary outcomes were improvement in increasing the frequency of weekly bowel movements and improvement in stool quality. Secondary outcomes were number of adverse events. In the first week one observed an increase in stool frequency and in the quality of stools, showing an improvement in constipation. No statistically significant differences were observed between the three treatment groups in relation to these outcomes (P ≥ .05). Only one adverse event was observed in a patient of group 2, related to abdominal pain. CONCLUSION The two probiotic cocktails were effective in improving the symptoms of functional constipation, by increasing both the weekly frequency of evacuation and stool quality, and were deemed safe. Clinicaltrials.gov number: NCT04437147.
Collapse
Affiliation(s)
| | - Karin Häckel
- Clinic of Gastroenterology Dr Karin Häckel, Sorocaba/SP, Brazil
| | | | - Marli Gerenutti
- Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba/SP, Brazil
| | - Marcus Tolentino Silva
- PhageLab - Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba/SP, Brazil
| | - Victor Manuel Balcão
- PhageLab - Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba/SP, Brazil
- Department of Biology and CESAM, University of Aveiro, Campus Universitário DE Santiago, Aveiro, Portugal
| | - Marta Maria Duarte Carvalho Vila
- PhageLab - Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba/SP, Brazil
- *Correspondence: Marta Maria Duarte Carvalho Vila, University of Sorocaba, Rodovia RaposoTavares Km 92.5, Sorocaba/SP, Brazil (e-mail: )
| |
Collapse
|
60
|
Sheldon JM, Alonso N. The Therapeutic Benefits of Single and Multi-Strain Probiotics on Mean Daily Crying Time and Key Inflammatory Markers in Infantile Colic. Cureus 2022; 14:e28363. [PMID: 36168359 PMCID: PMC9506670 DOI: 10.7759/cureus.28363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Infantile colic is a functional gastrointestinal disorder in which a healthy infant displays paroxysms of intense crying or fussiness. Although this condition is self-limited, it causes significant distress for parents and may be linked to long-term health concerns for children. The microbiome of infants with colic has been correlated with increased dysbiosis or imbalance of commensal bacteria. This dysbiosis may ultimately lead to changes in infants’ immunological profiles, favoring markers linked to inflammation, including specific cytokines, calprotectin, and genetic markers. Therapeutic regimens such as probiotics may be helpful in modifying the gut microbial composition, thereby influencing the presence of inflammatory markers and potentially reducing colic symptoms in infants. This review provides a summary of the findings from 10 randomized, placebo-controlled, double-blinded studies conducted in the past five years with the aim of examining the potential therapeutic benefits of probiotics in infantile colic. The articles were selected through PubMed and Google Scholar using the keywords infantile colic, microbiome, probiotics, cytokines, dysbiosis, inflammatory markers, and lactobacilli. We summarize the results of these studies to explore the potential anti-inflammatory therapeutic benefits of single and multi-strain probiotic formulations on daily crying time and key inflammatory markers in infants with colic. The research largely shows the beneficial role of probiotics, largely of the lactobacillus genus, in the reduction of colic symptoms and the reduction of key inflammatory markers. However, some studies demonstrated an insignificant effect of certain probiotic strains in symptom management. Further research is necessary to better understand the anti-inflammatory properties of probiotics and determine the role this could have on the manifestation of colic in infants.
Collapse
|
61
|
Chen AC, Fang TJ, Ho HH, Chen JF, Kuo YW, Huang YY, Tsai SY, Wu SF, Lin HC, Yeh YT. A multi-strain probiotic blend reshaped obesity-related gut dysbiosis and improved lipid metabolism in obese children. Front Nutr 2022; 9:922993. [PMID: 35990345 PMCID: PMC9386160 DOI: 10.3389/fnut.2022.922993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/01/2022] [Indexed: 11/15/2022] Open
Abstract
Background and aims Obese children are more prone to becoming obese adults, and excess adiposity consequently increases the risk of many complications, such as metabolic syndromes, non-alcoholic fatty liver disease, cardiovascular disease, etc. This study aimed to evaluate the effects of multi-strain probiotics on the gut microbiota and weight control in obese children. Methods A double-blind, randomized, placebo-controlled trial was carried out on overweight and obese children. Subjects received 12 weeks of treatment with supplementary probiotics that contained three strains: Lactobacillus salivarius AP-32, L. rhamnosus bv-77, and Bifidobacterium animalis CP-9, plus diet and exercise guidance. A total of 82 children were enrolled, and 53 children completed the study. Results The supplementation of multi-strain probiotics resulted in a significant effect demonstrating high-density lipoprotein (HDL) and adiponectin elevation. At the same time, body mass index (BMI) and serum total cholesterol, low-density lipoprotein (LDL), leptin, and tumor necrosis factor-alpha (TNF-α) levels were reduced. Lactobacillus spp. and B. animalis were particularly increased in subjects who received probiotic supplements. The abundance of Lactobacillus spp. was inversely correlated with the ether lipid metabolism pathway, while that of B. animalis was positively correlated with serum adiponectin levels. Conclusion Our results show that obesity-related gut dysbiosis can be reshaped by the supplementation of a multi-strain probiotic to improve lipid metabolism. The regular administration of a multi-strain probiotic supplement may be helpful for weight control and health management in overweight and obese children.
Collapse
Affiliation(s)
- An-Chyi Chen
- Division of Pediatric Gastroenterology, China Medical University Children's Hospital, Taichung City, Taiwan.,School of Medicine, China Medical University, Taichung City, Taiwan
| | - Tzu-Jung Fang
- College of Medicine, Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan.,Division of Geriatrics and Gerontology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
| | - Hsieh-Hsun Ho
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Jui-Fen Chen
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Yi-Wei Kuo
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Yen-Yu Huang
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Shin-Yu Tsai
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Shu-Fen Wu
- Division of Pediatric Gastroenterology, China Medical University Children's Hospital, Taichung City, Taiwan.,School of Medicine, China Medical University, Taichung City, Taiwan
| | - Hung-Chih Lin
- Division of Neonatology, China Medical University Children's Hospital, Taichung City, Taiwan.,School of Chinese Medicine, China Medical University, Taichung City, Taiwan.,Asia University Hospital, Asia University, Taichung City, Taiwan
| | - Yao-Tsung Yeh
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung City, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung City, Taiwan
| |
Collapse
|
62
|
Kwoji ID, Okpeku M, Adeleke MA, Aiyegoro OA. Formulation of Chemically Defined Media and Growth Evaluation of Ligilactobacillus salivarius ZJ614 and Limosilactobacillus reuteri ZJ625. Front Microbiol 2022; 13:865493. [PMID: 35602032 PMCID: PMC9121020 DOI: 10.3389/fmicb.2022.865493] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/04/2022] [Indexed: 01/12/2023] Open
Abstract
Lactic acid bacteria are increasingly becoming important dietary supplements due to their health benefits when consumed in adequate quantity. The increasing attention on these important microbes has necessitated an in-depth understanding of their physiological processes, such as nutritional requirements and growth patterns, to better harness their probiotic potentials. This study was carried out to determine the nutritional requirements for the growth of L. salivarius ZJ614 and L. reuteri ZJ625 from a chemically defined medium and evaluate growth kinetics by fitting different sigmoidal growth models. The complete CDM contains 49 nutritional ingredients such as glucose, Tween 80®, mineral salts, buffers, amino acids, vitamins, and nucleotides at defined concentrations. In addition, the minimal nutritional requirements of the isolates were determined in a series of single-omission experiments (SOEs) to compose the MDM. Growth curve data were generated by culturing in an automated 96-well micro-plate reader at 37°C for 36 h, and photometric readings (optical density: OD600) were taken. The data were summarized in tables and charts using Microsoft Excel, while growth evaluation was carried out using open-source software (Curveball) on Python. The results revealed that omission of the amino acids, vitamins, and nucleotides groups resulted in 2.0, 20.17, and 60.24% (for L. salivarius ZJ614) and 0.95, 42.7, and 70.5% (for L. reuteri ZJ625) relative growths, respectively. Elimination of the individual CDM components also indicates varying levels of growth by the strains. The growth curve data revealed LogisticLag2 and Baranyi–Roberts models as the best fits for L. reuteri ZJ625 and L. salivarius ZJ614, respectively. All the strains showed appreciable growth on the CDM and MDM as observed in de Man–Rogosa–Sharpe (MRS) broth. We also described the growth kinetics of L. reuteri ZJ625 and L. salivarius ZJ614 in the CDM, and the best models revealed the estimated growth parameters.
Collapse
Affiliation(s)
- Iliya Dauda Kwoji
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal Westville Campus, Durban, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal Westville Campus, Durban, South Africa
| | - Matthew Adekunle Adeleke
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal Westville Campus, Durban, South Africa
- *Correspondence: Matthew Adekunle Adeleke
| | - Olayinka Ayobami Aiyegoro
- Gastrointestinal Microbiology and Biotechnology Unit, Agricultural Research Council-Animal Production Institute Irene, Pretoria, South Africa
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
63
|
Zhong Y, Fu D, Deng Z, Tang W, Mao J, Zhu T, Zhang Y, Liu J, Wang H. Lactic Acid Bacteria Mixture Isolated From Wild Pig Alleviated the Gut Inflammation of Mice Challenged by Escherichia coli. Front Immunol 2022; 13:822754. [PMID: 35154141 PMCID: PMC8825813 DOI: 10.3389/fimmu.2022.822754] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
Wild pigs usually showed high tolerance and resistance to several diseases in the wild environment, suggesting that the gut bacteria of wild pigs could be a good source for discovering potential probiotic strains. In our study, wild pig feces were sequenced and showed a higher relative abundance of the genus Lactobacillus (43.61% vs. 2.01%) than that in the domestic pig. A total of 11 lactic acid bacteria (LAB) strains including two L. rhamnosus, six L. mucosae, one L. fermentum, one L. delbrueckii, and one Enterococcus faecalis species were isolated. To investigate the synergistic effects of mixed probiotics strains, the mixture of 11 LAB strains from an intestinal ecology system was orally administrated in mice for 3 weeks, then the mice were challenged with Escherichia coli ATCC 25922 (2 × 109 CFU) and euthanized after challenge. Mice administrated with LAB strains showed higher (p < 0.05) LAB counts in feces and ileum. Moreover, alterations of specific bacterial genera occurred, including the higher (p < 0.05) relative abundance of Butyricicoccus and Clostridium IV and the lower (p < 0.05) abundance of Enterorhabdus in mice fed with mixed LAB strains. Mice challenged with Escherichia coli showed vacuolization of the liver, lower GSH in serum, and lower villus to the crypt proportion and Claudin-3 level in the gut. In contrast, administration of mixed LAB strains attenuated inflammation of the liver and gut, especially the lowered IL-6 and IL-1β levels (p < 0.05) in the gut. Our study highlighted the importance of gut bacterial diversity and the immunomodulation effects of LAB strains mixture from wild pig in gut health.
Collapse
Affiliation(s)
- Yifan Zhong
- College of Animal Science, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Dongyan Fu
- College of Animal Science, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Zhaoxi Deng
- College of Animal Science, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Wenjie Tang
- College of Animal Science, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Jiangdi Mao
- College of Animal Science, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Tao Zhu
- College of Animal Science, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Yu Zhang
- College of Animal Science, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Jianxin Liu
- College of Animal Science, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Haifeng Wang
- College of Animal Science, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| |
Collapse
|
64
|
Protective Effects of Fermented Soybeans ( Cheonggukjang) on Dextran Sodium Sulfate (DSS)-Induced Colitis in a Mouse Model. Foods 2022; 11:foods11060776. [PMID: 35327199 PMCID: PMC8947378 DOI: 10.3390/foods11060776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease, and the incidence of IBD is increasing every year owing to changes in dietary structure. Although the exact pathogenesis of IBD is still unclear, recent evidence suggests that gut dysbiosis is closely associated with IBD pathogenesis. Cheonggukjang is a traditional Korean fermented soybean paste produced using traditional and industrial methods, and contains probiotics, which affect the gut microbiota composition. However, the protective effect of Cheonggukjang against IBD is unknown. In this study, we investigated the bacterial community structure of traditional and commercial Cheonggukjang samples, as well as the protective effect of Cheonggukjang on a dextran sulfate sodium (DSS)-induced colitis mouse model. Traditional and commercial Cheonggukjang were found to contain various type of useful probiotics in their bacterial community structure. Cheonggukjang reduced the progression of DSS-induced symptoms, such as body weight loss, colonic shortening, disease activity index, and histological changes. Further, Cheonggukjang improved the intestinal epithelial barrier integrity on DSS-induced colitis mice. In addition, Cheonggukjang suppressed the expression of proinflammatory cytokines and inflammatory mediators through the inactivation of NF-κB and MAPK signaling pathways. These results indicate that Cheonggukjang exerts protective effects against DSS-induced colitis, suggesting its possible application as a functional food for improving inflammatory diseases.
Collapse
|
65
|
Kocot AM, Jarocka-Cyrta E, Drabińska N. Overview of the Importance of Biotics in Gut Barrier Integrity. Int J Mol Sci 2022; 23:ijms23052896. [PMID: 35270039 PMCID: PMC8911280 DOI: 10.3390/ijms23052896] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Increased gut permeability is suggested to be involved in the pathogenesis of a growing number of disorders. The altered intestinal barrier and the subsequent translocation of bacteria or bacterial products into the internal milieu of the human body induce the inflammatory state. Gut microbiota maintains intestinal epithelium integrity. Since dysbiosis contributes to increased gut permeability, the interventions that change the gut microbiota and correct dysbiosis are suggested to also restore intestinal barrier function. In this review, the current knowledge on the role of biotics (probiotics, prebiotics, synbiotics and postbiotics) in maintaining the intestinal barrier function is summarized. The potential outcome of the results from in vitro and animal studies is presented, and the need for further well-designed randomized clinical trials is highlighted. Moreover, we indicate the need to understand the mechanisms by which biotics regulate the function of the intestinal barrier. This review is concluded with the future direction and requirement of studies involving biotics and gut barrier.
Collapse
Affiliation(s)
- Aleksandra Maria Kocot
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Tuwima 10, 10-748 Olsztyn, Poland;
| | - Elżbieta Jarocka-Cyrta
- Department of Pediatrics, Gastroenterology and Nutrition, School of Medicine, Collegium Medicum University of Warmia and Mazury, Regional Specialized Children’s Hospital, Żołnierska St. 18A, 10-561 Olsztyn, Poland;
| | - Natalia Drabińska
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
- Correspondence:
| |
Collapse
|
66
|
Comparative effects of feeding single- and multi-strain probiotics to commercial layers on the productive performance and egg quality indices. J APPL POULTRY RES 2022. [DOI: 10.1016/j.japr.2022.100257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
67
|
Aziz G, Zaidi A, Tariq M. Compositional Quality and Possible Gastrointestinal Performance of Marketed Probiotic Supplements. Probiotics Antimicrob Proteins 2022; 14:288-312. [PMID: 35199309 DOI: 10.1007/s12602-022-09931-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 12/15/2022]
Abstract
The local pharmacies and shops are brimming with various probiotic products that herald a range of health benefits. The poor quality of probiotic products in both dosage and species is symptomatic of this multi-billion-dollar market making it difficult for consumers to single out reliable ones. This study aims to fill the potential gap in the labeling accuracy of probiotic products intended for human consumption. We describe a combinatorial approach using classical culture-dependent technique to quantify and molecular techniques (16 s rRNA gene sequencing, multilocus sequence, and ribotyping) for strain recognition of the microbial contents. The full gamut of probiotic characteristics including acid, bile and lysozyme tolerances, adhesiveness, anti-pathogenicity, and degree of safeness were performed. Their capacity to endure gastro-intestinal (GIT) stresses and select drugs was assessed in vitro. Our results forced us to declare that the local probiotic market is essentially unregulated. Almost none of the probiotic products tested met the label claim. Some (11%) have no viable cells, and a quarter (27%) showing significant inter-batch variation. A lower microbial count was typical with undesirables constituting a quarter of the total (~ 27%). Half of the products contained antibiotic-resistant strains; the unregulated use of these probiotics carries the risk of spreading antibiotic resistance to gut pathobionts. Poor tolerance to gut conditions and mediocre functionalism make the case worse. The current regulatory systems do not take this discrepancy into account. We recommend an evidence-based regular market surveillance of marketed probiotics to ensure the authenticity of the claims and product effectiveness.
Collapse
Affiliation(s)
- Ghazal Aziz
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C)-PIEAS, Faisalabad, 38000, Punjab, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650, ICT, Pakistan
| | - Arsalan Zaidi
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C)-PIEAS, Faisalabad, 38000, Punjab, Pakistan.
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650, ICT, Pakistan.
| | - Muhammad Tariq
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C)-PIEAS, Faisalabad, 38000, Punjab, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650, ICT, Pakistan
| |
Collapse
|
68
|
Athalye-Jape G, Esvaran M, Patole S, Simmer K, Nathan E, Doherty D, Keil A, Rao S, Chen L, Chandrasekaran L, Kok C, Schuster S, Conway P. Effect of single versus multistrain probiotic in extremely preterm infants: a randomised trial. BMJ Open Gastroenterol 2022; 9:bmjgast-2021-000811. [PMID: 35185013 PMCID: PMC8860036 DOI: 10.1136/bmjgast-2021-000811] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/12/2022] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVE Evidence indicates that multistrain probiotics benefit preterm infants more than single-strain (SS) probiotics. We assessed the effects of SS versus triple-strain (TS) probiotic supplementation (PS) in extremely preterm (EP) infants. DESIGN EP infants (gestational age (GA) <28 weeks) were randomly allocated to TS or SS probiotic, assuring blinding. Reference (REF) group was EP infants in the placebo arm of our previous probiotic trial. PS was commenced with feeds and continued until 37 weeks' corrected GA. Primary outcome was time to full feed (TFF: 150 mL/kg/day). Secondary outcomes included short-chain fatty acids and faecal microbiota collected at T1 (first week) and T2 (after 3 weeks of PS) using 16S ribosomal RNA gene sequencing. RESULTS 173 EP (SS: 86, TS: 87) neonates with similar GA and birth weight (BW) were randomised. Median TFF was comparable (11 (IQR 8-16) vs 10 (IQR 8-16) days, p=0.92). Faecal propionate (SS, p<0.001, and TS, p=0.0009) and butyrate levels (TS, p=0.029) were significantly raised in T2 versus T1 samples. Secondary clinical outcomes were comparable. At T2, alpha diversity was comparable (p>0.05) between groups, whereas beta-diversity analysis revealed significant differences between PS and REF groups (both p=0.001). Actinobacteria were higher (both p<0.01), and Proteobacteria, Firmicutes and Bacteroidetes were lower in PS versus REF. Gammaproteobacteria, Clostridia and Negativicutes were lower in both PS versus REF. CONCLUSION TFF in EP infants was similar between SS and TS probiotics. Both probiotics were effective in reducing dysbiosis (higher bifidobacteria and lower Gammaproteobacteria). Long-term significance of increased propionate and butyrate needs further studies. TRIAL REGISTRATION NUMBER ACTRN 12615000940572.
Collapse
Affiliation(s)
- Gayatri Athalye-Jape
- Neonatology directorate, King Edward Memorial Hospital for Women Perth, Subiaco, Western Australia, Australia
| | - Meera Esvaran
- Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Sanjay Patole
- Neonatal Clinical Care Unit, King Edward Memorial Hospital, Subiaco, Western Australia, Australia
| | - Karen Simmer
- Neonatal Clinical Care Unit, King Edward Memorial Hospital, Subiaco, Western Australia, Australia
| | - Elizabeth Nathan
- Biostatistics, Women and Infants Research Foundation Western Australia, Subiaco, Western Australia, Australia
| | - Dorota Doherty
- Biostatistics, Women and Infants Research Foundation Western Australia, Subiaco, Western Australia, Australia
| | - Anthony Keil
- Microbiology, PathWest Laboratory Medicine Western Australia, Nedlands, Western Australia, Australia
| | - Shripada Rao
- Neonatal Clinical Care Unit, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Liwei Chen
- Genomics and Bioinformatics, Nanyang Technological University, Singapore
| | | | - Chooi Kok
- Neonatal Clinical Care Unit, King Edward Memorial Hospital, Subiaco, Western Australia, Australia
| | - Stephan Schuster
- Genomics and Bioinformatics, Nanyang Technological University, Singapore
| | - Patricia Conway
- Genomics and Bioinformatics, Nanyang Technological University, Singapore
| |
Collapse
|
69
|
Andreev V, Stetsiouk OU, Andreeva IV. Probiotics: controversial issues. CLINICAL MICROBIOLOGY AND ANTIMICROBIAL CHEMOTHERAPY 2022; 24:345-360. [DOI: 10.36488/cmac.2022.4.345-360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Recent studies have strongly confirmed the health benefits of a variety of probiotic microorganisms. However, some issues regarding the use of probiotics currently remain unresolved or ambiguous. This article highlights some controversial issues of probiotic use in clinical practice such as regulatory status of probiotics, co-administration of probiotics and antibiotics, potential impact of probiotics on antimicrobial resistance emergence and spread, dosing and duration of probiotic use, contraindications and some other debatable topics.
Collapse
Affiliation(s)
- V.A. Andreev
- Smolensk State Medical University (Smolensk, Russia)
| | | | | |
Collapse
|
70
|
Lambo MT, Chang X, Liu D. The Recent Trend in the Use of Multistrain Probiotics in Livestock Production: An Overview. Animals (Basel) 2021; 11:2805. [PMID: 34679827 PMCID: PMC8532664 DOI: 10.3390/ani11102805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 01/16/2023] Open
Abstract
It has been established that introducing feed additives to livestock, either nutritional or non-nutritional, is beneficial in manipulating the microbial ecosystem to maintain a balance in the gut microbes and thereby improving nutrient utilization, productivity, and health status of animals. Probiotic use has gained popularity in the livestock industry, especially since antimicrobial growth promoter's use has been restricted due to the challenge of antibiotic resistance in both animals and consumers of animal products. Their usage has been linked to intestinal microbial balance and improved performance in administered animals. Even though monostrain probiotics could be beneficial, multistrain probiotics containing two or more species or strains have gained considerable attention. Combining different strains has presumably achieved several health benefits over single strains due to individual isolates' addition and positive synergistic adhesion effects on animal health and performance. However, there has been inconsistency in the effects of the probiotic complexes in literature. This review discusses multistrain probiotics, summarizes selected literature on their effects on ruminants, poultry, and swine productivity and the various modes by which they function.
Collapse
Affiliation(s)
- Modinat Tolani Lambo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (M.T.L.); (X.C.)
| | - Xiaofeng Chang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (M.T.L.); (X.C.)
| | - Dasen Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (M.T.L.); (X.C.)
- College of Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
71
|
Opportunities for Nanomedicine in Clostridioides difficile Infection. Antibiotics (Basel) 2021; 10:antibiotics10080948. [PMID: 34438998 PMCID: PMC8388953 DOI: 10.3390/antibiotics10080948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022] Open
Abstract
Clostridioides difficile, a spore-forming bacterium, is a nosocomial infectious pathogen which can be found in animals as well. Although various antibiotics and disinfectants were developed, C. difficile infection (CDI) remains a serious health problem. C. difficile spores have complex structures and dormant characteristics that contribute to their resistance to harsh environments, successful transmission and recurrence. C. difficile spores can germinate quickly after being exposed to bile acid and co-germinant in a suitable environment. The vegetative cells produce endospores, and the mature spores are released from the hosts for dissemination of the pathogen. Therefore, concurrent elimination of C. difficile vegetative cells and inhibition of spore germination is essential for effective control of CDI. This review focused on the molecular pathogenesis of CDI and new trends in targeting both spores and vegetative cells of this pathogen, as well as the potential contribution of nanotechnologies for the effective management of CDI.
Collapse
|