51
|
Abedi F, Rezaee R, Hayes AW, Nasiripour S, Karimi G. MicroRNAs and SARS-CoV-2 life cycle, pathogenesis, and mutations: biomarkers or therapeutic agents? Cell Cycle 2021; 20:143-153. [PMID: 33382348 PMCID: PMC7889196 DOI: 10.1080/15384101.2020.1867792] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
To date, proposed therapies and antiviral drugs have been failed to cure coronavirus disease 2019 (COVID-19) patients. However, at least two drug companies have applied for emergency use authorization with the United States Food and Drug Administration for their coronavirus vaccine candidates and several other vaccines are in various stages of development to determine safety and efficacy. Recently, some studies have shown the role of different human and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) microRNAs (miRNAs) in the pathophysiology of COVID-19. miRNAs are non-coding single-stranded RNAs, which are involved in several physiological and pathological conditions, such as cell proliferation, differentiation, and metabolism. They act as negative regulators of protein synthesis through binding to the 3' untranslated region (3' UTR) of the complementary target mRNA, leading to mRNA degradation or inhibition. The databases of Google Scholar, Scopus, PubMed, and Web of Science were searched for literature regarding the importance of miRNAs in the SARS-CoV-2 life cycle, pathogenesis, and genomic mutations. Furthermore, promising miRNAs as a biomarker or antiviral agent in COVID-19 therapy are reviewed.
Collapse
Affiliation(s)
- Farshad Abedi
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A. Wallace Hayes
- University of South Florida, Tampa, FL, USA
- Michigan State University, East Lansing, MI, USA
| | - Somayyeh Nasiripour
- Department of Clinical Pharmacy, School of Pharmacy, Iran University of Medical Sciences, Iran
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
52
|
Shabalala SC, Dludla PV, Mabasa L, Kappo AP, Basson AK, Pheiffer C, Johnson R. The effect of adiponectin in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) and the potential role of polyphenols in the modulation of adiponectin signaling. Biomed Pharmacother 2020; 131:110785. [PMID: 33152943 DOI: 10.1016/j.biopha.2020.110785] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 02/08/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide, as it affects up to 30 % of adults in Western countries. Moreover, NAFLD is also considered an independent risk factor for cardiovascular diseases. Insulin resistance and inflammation have been identified as key factors in the pathophysiology of NAFLD. Although the mechanisms associated with the development of NAFLD remain to be fully elucidated, a complex interaction between adipokines and cytokines appear to play a crucial role in the development of this condition. Adiponectin is the most common adipokine known to be inversely linked with insulin resistance, lipid accumulation, inflammation and NAFLD. Consequently, the focus has been on the use of new therapies that may enhance hepatic expression of adiponectin downstream targets or increase the serum levels of adiponectin in the treatment NAFLD. While currently used therapies show limited efficacy in this aspect, accumulating evidence suggest that various dietary polyphenols may stimulate adiponectin levels, offering potential protection against the development of insulin resistance, inflammation and NAFLD as well as associated conditions of metabolic syndrome. As such, this review provides a better understanding of the role polyphenols play in modulating adiponectin signaling to protect against NAFLD. A brief discussion on the regulation of adiponectin during disease pathophysiology is also covered to underscore the potential protective effects of polyphenols against NAFLD. Some of the prominent polyphenols described in the manuscript include aspalathin, berberine, catechins, chlorogenic acid, curcumin, genistein, piperine, quercetin, and resveratrol.
Collapse
Affiliation(s)
- Samukelisiwe C Shabalala
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa; Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa, 3886, South Africa
| | - Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa; Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Lawrence Mabasa
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa
| | - Abidemi P Kappo
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Albertus K Basson
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa, 3886, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa; Department of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa; Department of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa.
| |
Collapse
|
53
|
Hypothyroidism-Induced Nonalcoholic Fatty Liver Disease (HIN): Mechanisms and Emerging Therapeutic Options. Int J Mol Sci 2020; 21:ijms21165927. [PMID: 32824723 PMCID: PMC7460638 DOI: 10.3390/ijms21165927] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is an emerging worldwide problem and its association with other metabolic pathologies has been one of the main research topics in the last decade. The aim of this review article is to provide an up-to-date correlation between hypothyroidism and NAFLD. We followed evidence regarding epidemiological impact, immunopathogenesis, thyroid hormone-liver axis, lipid and cholesterol metabolism, insulin resistance, oxidative stress, and inflammation. After evaluating the influence of thyroid hormone imbalance on liver structure and function, the latest studies have focused on developing new therapeutic strategies. Thyroid hormones (THs) along with their metabolites and thyroid hormone receptor β (THR-β) agonist are the main therapeutic targets. Other liver specific analogs and alternative treatments have been tested in the last few years as potential NAFLD therapy. Finally, we concluded that further research is necessary as well as the need for an extensive evaluation of thyroid function in NAFLD/NASH patients, aiming for better management and outcome.
Collapse
|
54
|
Martínez Coria A, Estrada-Cruz NA, Ordoñez MIP, Montes-Cortes DH, Manuel-Apolinar L. Echography analysis of musculoskeletal, heart and liver alterations associated with endothelial dysfunction in obese rats. BMC Endocr Disord 2020; 20:124. [PMID: 32795274 PMCID: PMC7427751 DOI: 10.1186/s12902-020-00603-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 07/30/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Modern imaging plays a central role in the care of obese patients, and there is an integral focus on its use and accessibility in individuals who have alterations of various in various organs. The objective in this study was to perform an echographic analysis of musculoskeletal system disorders, endothelial dysfunction and the left ventricle (LV) in obese rats. METHODS Sprague Dawley rats (250 ± 5 g) were obtained and divided into two groups: the control (C) group was fed with a standard diet, and the obese (Ob) group was fed hyper caloric diet with a high fructose-fat content for 4 months. Body weight, cholesterol, triglycerides, glucose, inflammatory cytokines and adhesion molecules (ICAM-1, VCAM-1) were measured. Additionally, two-dimensional echocardiography, abdominal ultrasound and musculoskeletal system studies were performed in the lower extremities. RESULTS The body weight in the Ob group was increased compared to that in the control group, (p < 0.001); in addition, increased glucose, cholesterol and triglyceride concentrations (p < 0.05) as well as increased levels of the adhesion molecules ICAM-1 and, VCAM-1 (p < 0.01) were found in the Ob group vs the C group. On ultrasound, 75% of the Ob group presented fatty liver and distal joint abnormalities. CONCLUSION Obese rats exhibit endothelial dysfunction and musculoskeletal changes, also, fatty liver and articular cysts in the posterior region of the distal lower- extremity joints.
Collapse
Affiliation(s)
- Alejandra Martínez Coria
- Hospital de Cardiología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Norma Angélica Estrada-Cruz
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, C.P. 06720, Ciudad de México, Mexico
| | - María Inés Pérez Ordoñez
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, C.P. 06720, Ciudad de México, Mexico
| | - Daniel H Montes-Cortes
- Departamento de Urgencias Adultos, Hospital General Centro Médico Nacional "La Raza", Instituto Mexicano del Seguro Social/Coordinación de Enseñanza e Investigación, Hospital Regional 1° de Octubre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Mexico City, Mexico
| | - Leticia Manuel-Apolinar
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, C.P. 06720, Ciudad de México, Mexico.
| |
Collapse
|
55
|
Artimani T, Najafi R. APPL1 as an important regulator of insulin and adiponectin‐signaling pathways in the PCOS: A narrative review. Cell Biol Int 2020; 44:1577-1587. [DOI: 10.1002/cbin.11367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/09/2020] [Accepted: 04/25/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Tayebe Artimani
- Endometrium and Endometriosis Research CenterHamadan University of Medical Sciences Hamadan Iran
| | - Rezvan Najafi
- Research Center for Molecular MedicineHamadan University of Medical Sciences Hamadan Iran
| |
Collapse
|
56
|
Abstract
BACKGROUND Adiponectin is the most abundant adipokines that plays critical roles in the maintenance of energy homeostasis as well as inflammation regulation. The half-life of adiponectin is very short and the small-molecule adiponectin receptor agonist has been synthesized recently. In the present study, the potential roles of AdipoRon, an adiponectin receptor agonist, in a mouse model of lipopolysaccharide (LPS)/D-galactosamine (D-Gal)-induced acute hepatitis was explored. METHODS BALB/c mice (n = 144, male) were divided into three sets. In set 1, 32 mice were randomized into four groups: the control group, the AdipoRon group, the LPS/D-Gal group, and the AdipoRon + LPS/D-Gal group. The mice in set 1 were sacrificed after LPS/D-Gal treatment, and the plasma samples were collected for detection of tumor necrosis factor-alpha (TNF-α). In set 2, the 32 mice were also divided into four groups similar to that of set 1. The mice were sacrificed 6 h after LPS/D-Gal injection and plasma samples and liver were collected. In set 3, 80 mice (divided into four groups, n = 20) were used for survival observation. The survival rate, plasma aminotransferases, histopathological damage were measured and compared between these four groups. RESULTS AdipoRon suppressed the elevation of plasma aminotransferases (from 2106.3 ± 781.9 to 286.8 ± 133.1 U/L for alanine aminotransferase, P < 0.01; from 566.5 ± 243.4 to 180.1 ± 153.3 U/L for aspartate aminotransferase, P < 0.01), attenuated histopathological damage and improved the survival rate (from 10% to 60%) in mice with LPS/D-Gal-induced acute hepatitis. Additionally, AdipoRon down-regulated the production of TNF-α (from 328.6 ± 121.2 to 213.4 ± 52.2 pg/mL, P < 0.01), inhibited the activation of caspase-3 (from 2.04-fold to 1.34-fold of the control), caspase-8 (from 2.03-fold to 1.31-fold of the control), and caspase-9 (from 2.14-fold to 1.43-fold of the control), and decreased the level of cleaved caspase-3 (0.28-fold to that of the LPS/D-Gal group). The number of terminal deoxynucleotidyl transferase-mediated nucleotide nick-end labeling-positive apoptotic hepatocytes in LPS/D-Gal-exposed mice also reduced. CONCLUSIONS These data indicated that LPS/D-Gal-induced acute hepatitis was effectively attenuated by the adiponectin receptor agonist AdipoRon, implying that AdipoRon might become a new reagent for treatment of acute hepatitis.
Collapse
|
57
|
Shepard CR. TLR9 in MAFLD and NASH: At the Intersection of Inflammation and Metabolism. Front Endocrinol (Lausanne) 2020; 11:613639. [PMID: 33584545 PMCID: PMC7880160 DOI: 10.3389/fendo.2020.613639] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
Toll-Like Receptor 9 (TLR9) is an ancient receptor integral to the primordial functions of inflammation and metabolism. TLR9 functions to regulate homeostasis in a healthy system under acute stress. The literature supports that overactivation of TLR9 under the chronic stress of obesity is a critical driver of the pathogenesis of NASH and NASH-associated fibrosis. Research has focused on the core contributions of the parenchymal and non-parenchymal cells in the liver, adipose, and gut compartments. TLR9 is activated by endogenous circulating mitochondrial DNA (mtDNA). Chronically elevated circulating levels of mtDNA, caused by the stress of overnutrition, are observed in obesity, metabolic dysfunction-associated fatty liver disease (MAFLD), and NASH. Clinical evidence is supportive of TLR9 overactivation as a driver of disease. The role of TLR9 in metabolism and energy regulation may have an underappreciated contribution in the pathogenesis of NASH. Antagonism of TLR9 in NASH and NASH-associated fibrosis could be an effective therapeutic strategy to target both the inflammatory and metabolic components of such a complex disease.
Collapse
|
58
|
Liu Q, Niu CY. From "two hit theory" to "multiple hit theory": Implications of evolution of pathogenesis concepts for treatment of non-alcoholic fatty liver disease. Shijie Huaren Xiaohua Zazhi 2019; 27:1171-1178. [DOI: 10.11569/wcjd.v27.i19.1171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is becoming a burgeoning and burdensome public health problem worldwide, along with diabetes and metabolic syndrome. In the NAFLD spectrum, non-alcoholic steatohepatitis can progress to hepatic fibrosis, especially progressive fibrosis, which can lead to cirrhosis or even hepatocellular carcinoma. However, the pathogenesis of NAFLD is extremely complex and has not yet been fully elucidated, thus there is a lack of effective treatment. In recent years, the classic "two-hit" hypothesis has been gradually surpassed and supplemented by a great deal of findings, and the "multiple hit" hypothesis has been proposed and is being accepted. The study on the interaction among cellular and molecular mechanisms, environmental and genetic factors has revealed a number of critical targets in the pathogenesis of NAFLD, providing broad directions for the development of diagnostic markers and targeted therapeutic drugs. Here we elaborate the latest advances in understanding the pathogenesis of NAFLD from multiple perspectives, in order to analyze and evaluate the prospect of developing diagnostic biomarkers and therapeutic targets based on those pathogeneses.
Collapse
Affiliation(s)
- Qin Liu
- Department of Gastroenterology, Xiang'an Hospital of Xiamen University, Xiamen 361101, Fujian Province, China
| | - Chun-Yan Niu
- Department of Gastroenterology, Xiang'an Hospital of Xiamen University, Xiamen 361101, Fujian Province, China,Department of Gastroenterology, the First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi Province, China
| |
Collapse
|
59
|
Liu X, Pan JP, Bauman WA, Cardozo CP. AdipoRon prevents myostatin-induced upregulation of fatty acid synthesis and downregulation of insulin activity in a mouse hepatocyte line. Physiol Rep 2019; 7:e14152. [PMID: 31250564 PMCID: PMC6597868 DOI: 10.14814/phy2.14152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023] Open
Abstract
Liver diseases such as non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are characterized by excess hepatic accumulation of lipid droplets and triglycerides which are associated with defective insulin action. Myostatin (Mstn) and adiponectin, secreted by muscle cells and adipocytes, respectively, play important roles in regulating insulin signaling and energy metabolism. The mechanisms underlying the actions of Mstn and adiponectin remain largely unknown. Moreover, the interactions between Mstn and adiponectin in regulating gene expression critical for fatty acid metabolism and insulin action in hepatocytes have not been investigated. The effects of Mstn and AdipoRon, a synthetic adiponectin receptor agonist that is orally active, alone or in combination, on hepatic gene expression and function was investigated. While Mstn increased fatty acid (FA) accumulation and desensitized cellular responses to insulin, AdipoRon protected against Mstn-induced defects in hepatic gene expression and function. In addition, these effects of Mstn were associated with reduced AMPK and PPARα activities which were reversed by AdipoRon. Finally, AdipoRon was able to prevent Mstn-induced activation of the Smad2/3 pathway. These data suggest crosstalk between Mstn-induced Smad2/3 and adiponectin-induced AMPK/PPARα pathways, which may play important roles in the regulation of hepatic gene expression critical for FA metabolism and insulin signaling. In addition, the data suggest that AdipoRon, as an adiponectin receptor agonist, may serve a therapeutic role to reduce the hepatic contribution to the disorders of fat metabolism and insulin action.
Collapse
Affiliation(s)
- Xin‐Hua Liu
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peter VA Medical CenterBronxNew York
- Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNew York
| | - Jiang Ping Pan
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peter VA Medical CenterBronxNew York
| | - William A. Bauman
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peter VA Medical CenterBronxNew York
- Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNew York
- Department of Rehabilitation MedicineIcahn School of Medicine at Mount SinaiNew YorkNew York
| | - Christopher P. Cardozo
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peter VA Medical CenterBronxNew York
- Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNew York
- Department of Rehabilitation MedicineIcahn School of Medicine at Mount SinaiNew YorkNew York
| |
Collapse
|
60
|
Affiliation(s)
- Christine Beedham
- Honorary Senior Lecturer, Faculty of Life Sciences, School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
61
|
Mahmoud AA, Moghazy HM, Yousef LM, Mohammad AN. Adiponectin rs2241766 and rs266729 gene polymorphisms in non-alcoholic fatty liver disease. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
62
|
Yang Y, Yang S, Jiao X, Li J, Wu H, Sun H, Yang Y, Zhang M, Wei Y, Qin Y. Targeted sequencing analysis of the adiponectin gene identifies variants associated with obstructive sleep apnoea in Chinese Han population. Medicine (Baltimore) 2019; 98:e15219. [PMID: 31008949 PMCID: PMC6494215 DOI: 10.1097/md.0000000000015219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Obstructive sleep apnoea (OSA) is a prevalent sleep disorder considered as an independent risk factor for cardiovascular consequences. It has a strong genetic background and is associated with hypoadiponectinaemia.Target sequencing of whole ADIPONQ gene was performed in 340 participants including 247 patients with OSA and 93 non-OSA participants. Polysomnography was used to diagnose OSA. The associations between variants and OSA were determined by multivariate regression analysis.Thirteen single nucleotide polymorphisms of ADIPOQ were identified in all subjects. Genotype frequencies at rs4686803 (P = .034), rs3774262 (P = .034), and rs2082940 (P = .045) were significantly different between OSA and non-OSA groups. Individuals carrying the CT/TT genotypes of rs4686803, GA/AA genotypes of rs3774262, and CT/TT genotypes of rs1063537 were associated with 2.295-, 2.295- and 2.155-fold increased risk of OSA respectively in dominant model, after adjusting for confounding effects. The subjects with the rs2082940 CC genotype were associated with decreased risk of OSA (OR: 0.455) in recessive model. Additionally, the apnoea-hypopnea index (AHI) was significantly increased in rs3774262 (GA/AA) (P = .001), rs4686803 (CT/TT) (P = .001), and rs1063537 (CT/TT) (P = .004) genotype individuals than those with rs3774262 (GG), rs4686803 (CC), and rs1063537 (CC) genotypes, respectively. The AHI was significantly decreased in individuals with ADIPOQ rs2082940 CC genotypes than in those with the CT and TT genotype (P = .007). Moreover, the stratified analysis found that the genotype of rs3774262 (GA/AA), rs4686803 (CT/TT), and rs1063537 (CT/TT) variants were associated with increased risk of OSA by 2.935-, 2.935- and 2.786-fold in overweight participants. The genotype of rs2082940 CC variants was associated with decreased risk of OSA (OR: 0.373) in overweight participants compared with rs2082940 CT/ TT genotypes.ADIPOQ variants rs3774262, rs4686803, rs1063537, and rs2082940 were associated with the prevalence of OSA in Chinese Han individuals.
Collapse
Affiliation(s)
- Yunyun Yang
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases
| | - Song Yang
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases
| | - Xiaolu Jiao
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases
| | - Juan Li
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases
| | - Hao Wu
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases
- Otolaryngological Department of Beijing Anzhen Hospital, Capital Medical University
| | - Haili Sun
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases
- Otolaryngological Department of Beijing Anzhen Hospital, Capital Medical University
| | - Yunxiao Yang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ming Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yongxiang Wei
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases
- Otolaryngological Department of Beijing Anzhen Hospital, Capital Medical University
| | - Yanwen Qin
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases
| |
Collapse
|
63
|
Bashir KMI, Mohibbullah M, An JH, Choi JY, Hong YK, Sohn JH, Kim JS, Choi JS. In vivo antioxidant activity of mackerel ( Scomber japonicus) muscle protein hydrolysate. PeerJ 2018; 6:e6181. [PMID: 30595992 PMCID: PMC6305115 DOI: 10.7717/peerj.6181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/28/2018] [Indexed: 12/23/2022] Open
Abstract
Pacific chub mackerel (Scomber japonicus) is an important fish throughout the world, especially in East Asian countries, including Korea, China, and Japan. Protein hydrolysates from marine sources are commonly used as nutritional supplements, functional ingredients, and flavor enhancers in the food, beverage, and pharmaceutical industries. Antioxidants isolated from fish are relatively easy to prepare, are cost effective, and have no reported side effects. Hence, the present study aimed to investigate the in vivo antioxidant activities of mackerel muscle protein hydrolysate (MMPH) prepared using Protamex. The in vivo bioactivities of MMPH were investigated in alcoholic fatty liver mice (C57BL/6). Serum alanine aminotransferase and aspartate aminotransferase levels were comparable in test and control mice, whereas serum triglyceride and lipid peroxidation levels significantly (p < 0.05; p < 0.001) decreased after administration of MMPH (100-500 mg kg-1), especially at a concentration of 100 mg kg-1. A significant (p < 0.05) reduction in xanthine oxidase activity was observed in all groups treated with MMPH (100-500 mg kg-1), as compared with the control group. Significantly (p < 0.05) higher superoxide dismutase (SOD) activity/protein expression and regulated catalase (CAT) activity/protein expression levels were observed in groups administered MMPH (100-500 mg kg-1), especially at a concentration of 100 mg kg-1. These results show that the abundant amino acids of S. japonicus play an important role in the cytosol of the liver cells by directly participating in the expression of xanthine oxidase and the detoxifying SOD and CAT proteins, thereby enhancing antioxidant ability and ultimately, inhibiting lipid peroxidation. This study demonstrated that muscle protein hydrolysate from S. japonicus has strong antioxidant activities.
Collapse
Affiliation(s)
- Khawaja Muhammad Imran Bashir
- Seafood Research Center, IACF, Silla University, Busan, Republic of Korea.,Research Center for Extremophiles and Microbiology, College of Medical and Life Sciences, Silla University, Busan, Republic of Korea
| | - Md Mohibbullah
- Department of Fisheries and Marine Bioscience, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Jeong Hyeon An
- Seafood Research Center, IACF, Silla University, Busan, Republic of Korea
| | - Ji-Yeon Choi
- Southeast Medi-Chem Institute, Busan, Republic of Korea
| | - Yong-Ki Hong
- Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, Busan, Republic of Korea
| | - Jae Hak Sohn
- Seafood Research Center, IACF, Silla University, Busan, Republic of Korea.,Department of Food Biotechnology, Division of Bioindustry, College of Medical and Life Sciences, Silla University, Busan, Republic of Korea
| | - Jin-Soo Kim
- Department of Seafood and Aquaculture Science, Gyeongsang National University, Tongyeong-si, Gyeongsangnam-do, Republic of Korea
| | - Jae-Suk Choi
- Seafood Research Center, IACF, Silla University, Busan, Republic of Korea.,Department of Food Biotechnology, Division of Bioindustry, College of Medical and Life Sciences, Silla University, Busan, Republic of Korea
| |
Collapse
|
64
|
Naraoka Y, Yamaguchi T, Hu A, Akimoto K, Kobayashi H. SHORT CHAIN FATTY ACIDS UPREGULATE ADIPOKINE PRODUCTION IN TYPE 2 DIABETES-DERIVED HUMAN ADIPOCYTES. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2018; 14:287-293. [PMID: 31149273 PMCID: PMC6525780 DOI: 10.4183/aeb.2018.287] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Short chain fatty acids (SCFAs) play a major regulatory role in adipocyte function and metabolism. The aim of this study was to investigate the effects of SCFAs on adiponectin and leptin expression in adipocytes, and also to determine whether the effects of SCFA treatment in visceral adipocytes obtained from healthy subjects are different relative to the effects in adipocytes from patients with type 2 diabetes. MATERIALS AND METHODS Human pericardiac preadipocytes and human pericardiac preadipocytes type 2 diabetes were differentiated into adipocytes for 21 days in 48-well plates. After differentiation, two kinds of mature adipocytes, human pericardiac adipocytes (HPAd) and human pericardiac adipocytes-type 2 diabetes (HPAd-T2D) were incubated with or without 1 mM of acetic acid (AA), butyrate acid (BA), and propionic acid (PA). After 48 hours of incubation, intracellular lipid accumulation was measured using oil red staining. In addition, mRNA levels of adiponectin, leptin and Peroxisome Proliferator-Activated Receptor γ (PPARγ) were determined by Real-Time PCR system. RESULTS In HPAd, SCFA supplementation did not inhibit lipid accumulation. By contrast, both AA (p<0.01) and PA (p<0.01) significantly inhibited lipid accumulation in HPAd-T2D. Regarding mRNA levels of adiponectin, no significant changes were found in HPAd, while all three types of SCFAs significantly increased (p<0.05) adiponectin expression in HPAd-T2D. Leptin mRNA expression levels were significantly increased by treatment with all three types of SCFAs in both HPAd (p<0.05) and HPAd-T2D (p<0.05). CONCLUSION SCFAs inhibited lipid droplet accumulation and increased mRNA expression of adiponectin and leptin in T2D-derived adipocytes.
Collapse
Affiliation(s)
- Y. Naraoka
- Juntendo University, Graduate School of Medicine, Department of Hospital Administration, Tokyo, Japan
| | - T. Yamaguchi
- Juntendo University, Graduate School of Medicine, Center for Advanced Kampo Medicine and Clinical Research, Tokyo, Japan
| | - A. Hu
- Juntendo University, Graduate School of Medicine, Center for Advanced Kampo Medicine and Clinical Research, Tokyo, Japan
| | - K. Akimoto
- Juntendo University, Graduate School of Medicine, Department of Hospital Administration, Tokyo, Japan
| | - H. Kobayashi
- Juntendo University, Graduate School of Medicine, Department of Hospital Administration, Tokyo, Japan
- Juntendo University, Graduate School of Medicine, Center for Advanced Kampo Medicine and Clinical Research, Tokyo, Japan
| |
Collapse
|