51
|
Shao W, Wang X, Liu Z, Song X, Wang F, Liu X, Yu Z. Cyperotundone combined with adriamycin induces apoptosis in MCF-7 and MCF-7/ADR cancer cells by ROS generation and NRF2/ARE signaling pathway. Sci Rep 2023; 13:1384. [PMID: 36697441 PMCID: PMC9877033 DOI: 10.1038/s41598-022-26767-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/20/2022] [Indexed: 01/26/2023] Open
Abstract
Breast cancer has become the most prevalent cancer, globally. Adriamycin is a first-line chemotherapeutic agent, however, cancer cells acquire resistance to it, which is one of the most common causes of treatment failure. ROS and NRF2 are essential oxidative stress factors that play a key role in the oxidative stress process and are associated with cancer. Our goal is to create novel therapeutic drugs or chemical sensitizers that will improve chemotherapy sensitivity. The optimal concentration and duration for MCF-7 and MCF-7/ADR cells in ADR and CYT were determined using the CCK-8 assay. We found that ADR + CYT inhibited the activity of MCF-7 and MCF-7/ADR cells in breast cancer, as well as causing apoptosis in MCF-7 and MCF-7/ADR cells and blocking the cell cycle in the G0/G1 phase. ADR + CYT induces apoptosis in MCF-7 and MCF-7/ADR cells through ROS generation and the P62/NRF2/HO-1 signaling pathway. In breast cancer-bearing nude mice, ADR + CYT effectively suppressed tumor development in vivo. Overall, our findings showed that CYT in combination with ADR has potent anti-breast cancer cell activity both in vivo and in vitro, suggesting CYT as the main drug used to improve chemosensitivity.
Collapse
Affiliation(s)
- Wenna Shao
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, People's Republic of China.,Breast Cancer CenterShandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, 250117, Shandong, People's Republic of China
| | - Xinzhao Wang
- Breast Cancer CenterShandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, 250117, Shandong, People's Republic of China.,RemeGen, Ltd, 58 Middle Beijing Road, Yantai Economic & Technological Development Area, Yantai, 264006, Shandong, People's Republic of China
| | - Zhaoyun Liu
- Breast Cancer CenterShandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, 250117, Shandong, People's Republic of China
| | - Xiang Song
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, People's Republic of China.,Breast Cancer CenterShandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, 250117, Shandong, People's Republic of China
| | - Fukai Wang
- Breast Cancer CenterShandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, 250117, Shandong, People's Republic of China
| | - Xiaoyu Liu
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, People's Republic of China.,Breast Cancer CenterShandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, 250117, Shandong, People's Republic of China
| | - Zhiyong Yu
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, People's Republic of China. .,Breast Cancer CenterShandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, 250117, Shandong, People's Republic of China.
| |
Collapse
|
52
|
High p62 expression suppresses the NLRP1 inflammasome and increases stress resistance in cutaneous SCC cells. Cell Death Dis 2022; 13:1077. [PMID: 36581625 PMCID: PMC9800582 DOI: 10.1038/s41419-022-05530-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022]
Abstract
NLRP1 is the primary inflammasome sensor in human keratinocytes. Sensing of UVB radiation by NLRP1 is believed to underlie the induction of sunburn. Although constitutive NLRP1 activation causes skin inflammation and predisposes patients to the development of cutaneous SCCs, the NLRP1 pathway is suppressed in established SCCs. Here, we identified high levels of the autophagy receptor p62 in SCC cells lines and SCC tumors. Increased NF-κB activity in SCC cells causes p62 up-regulation. Suppression of p62 expression rescues UVB-induced NLRP1 inflammasome activation in early-stage SCC cells. p62 expression protects SCC cells from cytotoxic drugs, whereas NLRP1 sensitizes them. In summary, we identify p62 as a novel negative regulator of the NLRP1 inflammasome in human cutaneous SCC cells, in which suppression of NLRP1 by increased levels of p62 supports stress resistance of skin cancer cells.
Collapse
|
53
|
Chen J, Gao Z, Li X, Shi Y, Tang Z, Liu W, Zhang X, Huang A, Luo X, Gao Q, Ding G, Song K, Zhou J, Fan J, Fu X, Ding Z. SQSTM1/p62 in intrahepatic cholangiocarcinoma promotes tumor progression via epithelial-mesenchymal transition and mitochondrial function maintenance. Cancer Med 2022; 12:459-471. [PMID: 35676831 PMCID: PMC9844629 DOI: 10.1002/cam4.4908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND SQSTM1/p62 is a selective autophagy receptor that regulates multiple signaling pathways participating in the initiation and progression of tumors. Metastasis is still the main cause for intrahepatic cholangiocarcinoma (ICC)-associated mortality. Hence, this study aimed to explore the mechanism of p62 promoting the progression of ICC. METHODS Western blotting and immunohistochemical analyses were conducted to detect the expression level of protein p62 in ICC tissues and its correlation with prognosis. Subsequently, the loss-of-function experiments in vitro and in vivo were performed to define the role of p62 in ICC cell proliferation, invasion, and metastasis. Then, the effect of p62 knockdown on mitochondrial function and mitophagy was evaluated by measuring the oxygen consumption rate, and using immunofluorescence and western blotting analyses. RESULTS The expression of p62 was significantly upregulated in ICC specimens compared with normal tissues. We further illustrated that p62 expression positively correlated with lymph node metastasis and poor prognosis. The loss-of-function assays revealed that p62 not only promoted ICC cell proliferation, migration, and invasive capacities in vitro, but also induced lung metastasis in the xenograft mouse model. Mechanistically, high expression of p62-induced epithelial-mesenchymal transition (EMT) with the upregulation of Snail, vimentin, N-cadherin, and downregulation of E-cadherin. Moreover, the autophagy-dependent function of p62 might play a vital role in maintaining the mitochondrial function of ICC by mitophagy which might further promote EMT. CONCLUSION These data provided new evidence for the mechanism by which abundant p62 expression promoted ICC progression, suggesting a promising therapeutic target for antimetastatic strategies in patients with ICC.
Collapse
Affiliation(s)
- Jiafeng Chen
- Department of Liver Surgery & Transplantation, Liver Cancer InstituteZhongshan Hospital, Fudan UniversityShanghaiChina,Key Laboratory of Carcinogenesis and Cancer InvasionChinese Ministry of EducationShanghaiChina
| | - Zheng Gao
- Department of Liver Surgery & Transplantation, Liver Cancer InstituteZhongshan Hospital, Fudan UniversityShanghaiChina,Key Laboratory of Carcinogenesis and Cancer InvasionChinese Ministry of EducationShanghaiChina
| | - Xiaogang Li
- Department of Liver Surgery & Transplantation, Liver Cancer InstituteZhongshan Hospital, Fudan UniversityShanghaiChina,Key Laboratory of Carcinogenesis and Cancer InvasionChinese Ministry of EducationShanghaiChina
| | - Yinghong Shi
- Department of Liver Surgery & Transplantation, Liver Cancer InstituteZhongshan Hospital, Fudan UniversityShanghaiChina,Key Laboratory of Carcinogenesis and Cancer InvasionChinese Ministry of EducationShanghaiChina
| | - Zheng Tang
- Department of Liver Surgery & Transplantation, Liver Cancer InstituteZhongshan Hospital, Fudan UniversityShanghaiChina,Key Laboratory of Carcinogenesis and Cancer InvasionChinese Ministry of EducationShanghaiChina
| | - Weiren Liu
- Department of Liver Surgery & Transplantation, Liver Cancer InstituteZhongshan Hospital, Fudan UniversityShanghaiChina,Key Laboratory of Carcinogenesis and Cancer InvasionChinese Ministry of EducationShanghaiChina
| | - Xin Zhang
- Department of Liver Surgery & Transplantation, Liver Cancer InstituteZhongshan Hospital, Fudan UniversityShanghaiChina,Key Laboratory of Carcinogenesis and Cancer InvasionChinese Ministry of EducationShanghaiChina
| | - Ao Huang
- Department of Liver Surgery & Transplantation, Liver Cancer InstituteZhongshan Hospital, Fudan UniversityShanghaiChina,Key Laboratory of Carcinogenesis and Cancer InvasionChinese Ministry of EducationShanghaiChina
| | - Xuanming Luo
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, Fudan UniversityShanghaiChina
| | - Qiang Gao
- Department of Liver Surgery & Transplantation, Liver Cancer InstituteZhongshan Hospital, Fudan UniversityShanghaiChina,Key Laboratory of Carcinogenesis and Cancer InvasionChinese Ministry of EducationShanghaiChina
| | - Guangyu Ding
- Department of Liver Surgery & Transplantation, Liver Cancer InstituteZhongshan Hospital, Fudan UniversityShanghaiChina,Key Laboratory of Carcinogenesis and Cancer InvasionChinese Ministry of EducationShanghaiChina
| | - Kang Song
- Department of Liver Surgery & Transplantation, Liver Cancer InstituteZhongshan Hospital, Fudan UniversityShanghaiChina,Key Laboratory of Carcinogenesis and Cancer InvasionChinese Ministry of EducationShanghaiChina
| | - Jian Zhou
- Department of Liver Surgery & Transplantation, Liver Cancer InstituteZhongshan Hospital, Fudan UniversityShanghaiChina,Key Laboratory of Carcinogenesis and Cancer InvasionChinese Ministry of EducationShanghaiChina,Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, Fudan UniversityShanghaiChina
| | - Jia Fan
- Department of Liver Surgery & Transplantation, Liver Cancer InstituteZhongshan Hospital, Fudan UniversityShanghaiChina,Key Laboratory of Carcinogenesis and Cancer InvasionChinese Ministry of EducationShanghaiChina
| | - Xiutao Fu
- Department of Liver Surgery & Transplantation, Liver Cancer InstituteZhongshan Hospital, Fudan UniversityShanghaiChina,Key Laboratory of Carcinogenesis and Cancer InvasionChinese Ministry of EducationShanghaiChina
| | - Zhenbin Ding
- Department of Liver Surgery & Transplantation, Liver Cancer InstituteZhongshan Hospital, Fudan UniversityShanghaiChina,Key Laboratory of Carcinogenesis and Cancer InvasionChinese Ministry of EducationShanghaiChina,Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
54
|
Autophagy and cellular senescence in classical Hodgkin lymphoma. Pathol Res Pract 2022; 236:153964. [DOI: 10.1016/j.prp.2022.153964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/28/2022] [Indexed: 11/20/2022]
|
55
|
Liu D, Zhong Z, Karin M. NF-κB: A Double-Edged Sword Controlling Inflammation. Biomedicines 2022; 10:1250. [PMID: 35740272 PMCID: PMC9219609 DOI: 10.3390/biomedicines10061250] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023] Open
Abstract
Inflammation, when properly mounted and precisely calibrated, is a beneficial process that enables the rapid removal of invading pathogens and/or cellular corpses and promotes tissue repair/regeneration to restore homeostasis after injury. Being a paradigm of a rapid response transcription factor, the nuclear factor-kappa B (NF-κB) transcription factor family plays a central role in amplifying inflammation by inducing the expression of inflammatory cytokines and chemokines. Additionally, NF-κB also induces the expression of pro-survival and -proliferative genes responsible for promoting tissue repair and regeneration. Paradoxically, recent studies have suggested that the NF-κB pathway can also exert inhibitory effects on pro-inflammatory cytokine production to temper inflammation. Here, we review our current understanding about the pro- and anti-inflammatory roles of NF-κB and discuss the implication of its dichotomous inflammation-modulating activity in the context of inflammasome activation and tumorigenesis.
Collapse
Affiliation(s)
- Danhui Liu
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Zhenyu Zhong
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
56
|
Kumar AV, Mills J, Lapierre LR. Selective Autophagy Receptor p62/SQSTM1, a Pivotal Player in Stress and Aging. Front Cell Dev Biol 2022; 10:793328. [PMID: 35237597 PMCID: PMC8883344 DOI: 10.3389/fcell.2022.793328] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/19/2022] [Indexed: 12/29/2022] Open
Abstract
Efficient proteostasis is crucial for somatic maintenance, and its decline during aging leads to cellular dysfunction and disease. Selective autophagy is a form of autophagy mediated by receptors that target specific cargoes for degradation and is an essential process to maintain proteostasis. The protein Sequestosome 1 (p62/SQSTM1) is a classical selective autophagy receptor, but it also has roles in the ubiquitin-proteasome system, cellular metabolism, signaling, and apoptosis. p62 is best known for its role in clearing protein aggregates via aggrephagy, but it has recently emerged as a receptor for other forms of selective autophagy such as mitophagy and lipophagy. Notably, p62 has context-dependent impacts on organismal aging and turnover of p62 usually reflects active proteostasis. In this review, we highlight recent advances in understanding the role of p62 in coordinating the ubiquitin-proteasome system and autophagy. We also discuss positive and negative effects of p62 on proteostatic status and their implications on aging and neurodegeneration. Finally, we relate the link between defective p62 and diseases of aging and examine the utility of targeting this multifaceted protein to achieve proteostatic benefits.
Collapse
Affiliation(s)
| | | | - Louis R. Lapierre
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| |
Collapse
|
57
|
The Role of Macroautophagy and Chaperone-Mediated Autophagy in the Pathogenesis and Management of Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14030760. [PMID: 35159028 PMCID: PMC8833636 DOI: 10.3390/cancers14030760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is a major health problem with the second highest mortality among all cancers and a continuous increase worldwide. HCC is highly resistant to available chemotherapeutic agents, leaving patients with no effective therapeutic option and a poor prognosis. Although an increasing number of studies have elucidated the potential role of autophagy underlying HCC, the complete regulation is far from understood. The different forms of autophagy constitute important cell survival mechanisms that could prevent hepatocarcinogenesis by limiting hepatocyte death and the associated hepatitis and fibrosis at early stages of chronic liver diseases. On the other hand, at late stages of hepatocarcinogenesis, they could support the malignant transformation of (pre)neoplastic cells by facilitating their survival. Abstract Hepatocarcinogenesis is a long process with a complex pathophysiology. The current therapeutic options for HCC management, during the advanced stage, provide short-term survival ranging from 10–14 months. Autophagy acts as a double-edged sword during this process. Recently, two main autophagic pathways have emerged to play critical roles during hepatic oncogenesis, macroautophagy and chaperone-mediated autophagy. Mounting evidence suggests that upregulation of macroautophagy plays a crucial role during the early stages of carcinogenesis as a tumor suppressor mechanism; however, it has been also implicated in later stages promoting survival of cancer cells. Nonetheless, chaperone-mediated autophagy has been elucidated as a tumor-promoting mechanism contributing to cancer cell survival. Moreover, the autophagy pathway seems to have a complex role during the metastatic stage, while induction of autophagy has been implicated as a potential mechanism of chemoresistance of HCC cells. The present review provides an update on the role of autophagy pathways in the development of HCC and data on how the modulation of the autophagic pathway could contribute to the most effective management of HCC.
Collapse
|
58
|
Pesce NA, Canovai A, Plastino F, Lardner E, Kvanta A, Cammalleri M, André H, Dal Monte M. An imbalance in autophagy contributes to retinal damage in a rat model of oxygen-induced retinopathy. J Cell Mol Med 2021; 25:10480-10493. [PMID: 34623024 PMCID: PMC8581343 DOI: 10.1111/jcmm.16977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 01/18/2023] Open
Abstract
In retinopathy of prematurity (ROP), the abnormal retinal neovascularization is often accompanied by retinal neuronal dysfunction. Here, a rat model of oxygen‐induced retinopathy (OIR), which mimics the ROP disease, was used to investigate changes in the expression of key mediators of autophagy and markers of cell death in the rat retina. In addition, rats were treated from birth to postnatal day 14 and 18 with 3‐methyladenine (3‐MA), an inhibitor of autophagy. Immunoblot and immunofluorescence analysis demonstrated that autophagic mechanisms are dysregulated in the retina of OIR rats and indicated a possible correlation between autophagy and necroptosis, but not apoptosis. We found that 3‐MA acts predominantly by reducing autophagic and necroptotic markers in the OIR retinas, having no effects on apoptotic markers. However, 3‐MA does not ameliorate retinal function, which results compromised in this model. Taken together, these results revealed the crucial role of autophagy in retinal cells of OIR rats. Thus, inhibiting autophagy may be viewed as a putative strategy to counteract ROP.
Collapse
Affiliation(s)
- Noemi Anna Pesce
- Department of Biology, University of Pisa, Pisa, Italy.,Department of Clinical Neuroscience, Division of Eye and Vision, St Erik Eye Hospital, Karolinska Institutet, Solna, Sweden
| | | | - Flavia Plastino
- Department of Clinical Neuroscience, Division of Eye and Vision, St Erik Eye Hospital, Karolinska Institutet, Solna, Sweden
| | - Emma Lardner
- Department of Clinical Neuroscience, Division of Eye and Vision, St Erik Eye Hospital, Karolinska Institutet, Solna, Sweden
| | - Anders Kvanta
- Department of Clinical Neuroscience, Division of Eye and Vision, St Erik Eye Hospital, Karolinska Institutet, Solna, Sweden
| | | | - Helder André
- Department of Clinical Neuroscience, Division of Eye and Vision, St Erik Eye Hospital, Karolinska Institutet, Solna, Sweden
| | | |
Collapse
|
59
|
Watanabe A, Mizoguchi I, Hasegawa H, Katahira Y, Inoue S, Sakamoto E, Furusaka Y, Sekine A, Miyakawa S, Murakami F, Xu M, Yoneto T, Yoshimoto T. A Chaperone-Like Role for EBI3 in Collaboration With Calnexin Under Inflammatory Conditions. Front Immunol 2021; 12:757669. [PMID: 34603342 PMCID: PMC8484754 DOI: 10.3389/fimmu.2021.757669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/02/2021] [Indexed: 01/31/2023] Open
Abstract
The interleukin-6 (IL-6)/IL-12 family of cytokines plays critical roles in the induction and regulation of innate and adaptive immune responses. Among the various cytokines, only this family has the unique characteristic of being composed of two distinct subunits, α- and β-subunits, which form a heterodimer with subunits that occur in other cytokines as well. Recently, we found a novel intracellular role for one of the α-subunits, Epstein-Barr virus-induced gene 3 (EBI3), in promoting the proper folding of target proteins and augmenting its expression at the protein level by binding to its target protein and a well-characterized lectin chaperone, calnexin, presumably through enhancing chaperone activity. Because calnexin is ubiquitously and constitutively expressed but EBI3 expression is inducible, these results could open an avenue to establish a new paradigm in which EBI3 plays an important role in further increasing the expression of target molecules at the protein level in collaboration with calnexin under inflammatory conditions. This theory well accounts for the heterodimer formation of EBI3 with p28, and probably with p35 and p19 to produce IL-27, IL-35, and IL-39, respectively. In line with this concept, another β-subunit, p40, plays a critical role in the assembly-induced proper folding of p35 and p19 to produce IL-12 and IL-23, respectively. Thus, chaperone-like activities in proper folding and maturation, which allow the secretion of biologically active heterodimeric cytokines, have recently been highlighted. This review summarizes the current understanding of chaperone-like activities of EBI3 to form heterodimers and other associations together with their possible biological implications.
Collapse
Affiliation(s)
- Aruma Watanabe
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Izuru Mizoguchi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Hideaki Hasegawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Yasuhiro Katahira
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Shinya Inoue
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Eri Sakamoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Yuma Furusaka
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Ami Sekine
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Satomi Miyakawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Fumihiro Murakami
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Mingli Xu
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Toshihiko Yoneto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|