51
|
Pastor-Fernández G, Mariblanca IR, Navarro MN. Decoding IL-23 Signaling Cascade for New Therapeutic Opportunities. Cells 2020; 9:cells9092044. [PMID: 32906785 PMCID: PMC7563346 DOI: 10.3390/cells9092044] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/24/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
The interleukin 23 (IL-23) is a key pro-inflammatory cytokine in the development of chronic inflammatory diseases, such as psoriasis, inflammatory bowel diseases, multiple sclerosis, or rheumatoid arthritis. The pathological consequences of excessive IL-23 signaling have been linked to its ability to promote the production of inflammatory mediators, such as IL-17, IL-22, granulocyte-macrophage colony-stimulating (GM-CSF), or the tumor necrosis factor (TNFα) by target populations, mainly Th17 and IL-17-secreting TCRγδ cells (Tγδ17). Due to their pivotal role in inflammatory diseases, IL-23 and its downstream effector molecules have emerged as attractive therapeutic targets, leading to the development of neutralizing antibodies against IL-23 and IL-17 that have shown efficacy in different inflammatory diseases. Despite the success of monoclonal antibodies, there are patients that show no response or partial response to these treatments. Thus, effective therapies for inflammatory diseases may require the combination of multiple immune-modulatory drugs to prevent disease progression and to improve quality of life. Alternative strategies aimed at inhibiting intracellular signaling cascades using small molecule inhibitors or interfering peptides have not been fully exploited in the context of IL-23-mediated diseases. In this review, we discuss the current knowledge about proximal signaling events triggered by IL-23 upon binding to its membrane receptor to bring to the spotlight new opportunities for therapeutic intervention in IL-23-mediated pathologies.
Collapse
|
52
|
Yang PL, Liu LX, Li EM, Xu LY. STAT3, the Challenge for Chemotherapeutic and Radiotherapeutic Efficacy. Cancers (Basel) 2020; 12:cancers12092459. [PMID: 32872659 PMCID: PMC7564975 DOI: 10.3390/cancers12092459] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 02/05/2023] Open
Abstract
Chemoradiotherapy is one of the most effective and extensively used strategies for cancer treatment. Signal transducer and activator of transcription 3 (STAT3) regulates vital biological processes, such as cell proliferation and cell growth. It is constitutively activated in various cancers and limits the application of chemoradiotherapy. Accumulating evidence suggests that STAT3 regulates resistance to chemotherapy and radiotherapy and thereby impairs therapeutic efficacy by mediating its feedback loop and several target genes. The alternative splicing product STAT3β is often identified as a dominant-negative regulator, but it enhances sensitivity to chemotherapy and offers a new and challenging approach to reverse therapeutic resistance. We focus here on exploring the role of STAT3 in resistance to receptor tyrosine kinase (RTK) inhibitors and radiotherapy, outlining the potential of targeting STAT3 to overcome chemo(radio)resistance for improving clinical outcomes, and evaluating the importance of STAT3β as a potential therapeutic approach to overcomes chemo(radio)resistance. In this review, we discuss some new insights into the effect of STAT3 and its subtype STAT3β on chemoradiotherapy sensitivity, and we explore how these insights influence clinical treatment and drug development for cancer.
Collapse
Affiliation(s)
- Ping-Lian Yang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China; (P.-L.Y.); (L.-X.L.)
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Lu-Xin Liu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China; (P.-L.Y.); (L.-X.L.)
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China; (P.-L.Y.); (L.-X.L.)
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China
- Correspondence: (E.-M.L.); (L.-Y.X.); Tel.: +86-754-88900460 (L.-Y.X.); Fax: +86-754-88900847 (L.-Y.X.)
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China; (P.-L.Y.); (L.-X.L.)
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, China
- Correspondence: (E.-M.L.); (L.-Y.X.); Tel.: +86-754-88900460 (L.-Y.X.); Fax: +86-754-88900847 (L.-Y.X.)
| |
Collapse
|
53
|
Involvement of STAT5 in Oncogenesis. Biomedicines 2020; 8:biomedicines8090316. [PMID: 32872372 PMCID: PMC7555335 DOI: 10.3390/biomedicines8090316] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 12/24/2022] Open
Abstract
Signal transducer and activator of transcription (STAT) proteins, and in particular STAT3, have been established as heavily implicated in cancer. Recently, the involvement of STAT5 signalling in the pathology of cancer has been shown to be of increasing importance. STAT5 plays a crucial role in the development of the mammary gland and the homeostasis of the immune system. However, in various cancers, aberrant STAT5 signalling promotes the expression of target genes, such as cyclin D, Bcl-2 and MMP-2, that result in increased cell proliferation, survival and metastasis. To target constitutive STAT5 signalling in cancers, there are several STAT5 inhibitors that can prevent STAT5 phosphorylation, dimerisation, or its transcriptional activity. Tyrosine kinase inhibitors (TKIs) that target molecules upstream of STAT5 could also be utilised. Consequently, since STAT5 contributes to tumour aggressiveness and cancer progression, inhibiting STAT5 constitutive activation in cancers that rely on its signalling makes for a promising targeted treatment option.
Collapse
|
54
|
Qureshy Z, Johnson DE, Grandis JR. Targeting the JAK/STAT pathway in solid tumors. JOURNAL OF CANCER METASTASIS AND TREATMENT 2020; 6:27. [PMID: 33521321 PMCID: PMC7845926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Aberrant activation of signal transducer and activator of transcription (STAT) proteins is associated with the development and progression of solid tumors. However, as transcription factors, these proteins are difficult to target directly. In this review, we summarize the role of targeting Janus kinases (JAKs), upstream activators of STATs, as a strategy for decreasing STAT activation in solid tumors. Preclinical studies in solid tumor cell line models show that JAK inhibitors decrease STAT activation, cell proliferation, and cell survival; in in vivo models, they also inhibit tumor growth. JAK inhibitors, particularly the JAK1/2 inhibitor ruxolitinib, sensitize cell lines and murine models to chemotherapy, immunotherapy, and oncolytic viral therapy. Ten JAK inhibitors have been or are actively being tested in clinical trials as monotherapy or in combination with other agents in patients with solid tumors; two of these inhibitors are already Food and Drug Administration (FDA) approved for the treatment of myeloproliferative disorders and rheumatoid arthritis, making them attractive agents for use in patients with solid tumors as they are known to be well-tolerated. Four JAK inhibitors (two of which are FDA approved for other indications) have exhibited promising anti-cancer effects in preclinical studies; however, clinical studies specifically assessing their activity against the JAK/STAT pathway in solid tumors have not yet been conducted. In summary, JAK inhibition is a viable option for targeting the JAK/STAT pathway in solid tumors and merits further testing in clinical trials.
Collapse
Affiliation(s)
- Zoya Qureshy
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco 94158, USA
| | - Daniel E Johnson
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco 94158, USA
| | - Jennifer R Grandis
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco 94158, USA
| |
Collapse
|
55
|
Conway ME, McDaniel JM, Graham JM, Guillen KP, Oliver PG, Parker SL, Yue P, Turkson J, Buchsbaum DJ, Welm BE, Myers RM, Varley KE. STAT3 and GR Cooperate to Drive Gene Expression and Growth of Basal-Like Triple-Negative Breast Cancer. Cancer Res 2020; 80:4355-4370. [PMID: 32816914 DOI: 10.1158/0008-5472.can-20-1379] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/17/2020] [Accepted: 08/13/2020] [Indexed: 11/16/2022]
Abstract
Breast cancers are divided into subtypes with different prognoses and treatment responses based on global differences in gene expression. Luminal breast cancer gene expression and proliferation are driven by estrogen receptor alpha, and targeting this transcription factor is the most effective therapy for this subtype. By contrast, it remains unclear which transcription factors drive the gene expression signature that defines basal-like triple-negative breast cancer, and there are no targeted therapies approved to treat this aggressive subtype. In this study, we utilized integrated genomic analysis of DNA methylation, chromatin accessibility, transcription factor binding, and gene expression in large collections of breast cancer cell lines and patient tumors to identify transcription factors responsible for the basal-like gene expression program. Glucocorticoid receptor (GR) and STAT3 bind to the same genomic regulatory regions, which were specifically open and unmethylated in basal-like breast cancer. These transcription factors cooperated to regulate expression of hundreds of genes in the basal-like gene expression signature, which were associated with poor prognosis. Combination treatment with small-molecule inhibitors of both transcription factors resulted in synergistic decreases in cell growth in cell lines and patient-derived organoid models. This study demonstrates that GR and STAT3 cooperate to regulate the basal-like breast cancer gene expression program and provides the basis for improved therapy for basal-like triple-negative breast cancer through rational combination of STAT3 and GR inhibitors. SIGNIFICANCE: This study demonstrates that GR and STAT3 cooperate to activate the canonical gene expression signature of basal-like triple-negative breast cancer and that combination treatment with STAT3 and GR inhibitors could provide synergistic therapeutic efficacy.
Collapse
Affiliation(s)
- Megan E Conway
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Joy M McDaniel
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama
| | - James M Graham
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Katrin P Guillen
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Patsy G Oliver
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Peibin Yue
- Department of Medicine and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - James Turkson
- Department of Medicine and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Donald J Buchsbaum
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Bryan E Welm
- Department of Surgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama
| | - Katherine E Varley
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| |
Collapse
|
56
|
La Sala G, Michiels C, Kükenshöner T, Brandstoetter T, Maurer B, Koide A, Lau K, Pojer F, Koide S, Sexl V, Dumoutier L, Hantschel O. Selective inhibition of STAT3 signaling using monobodies targeting the coiled-coil and N-terminal domains. Nat Commun 2020; 11:4115. [PMID: 32807795 PMCID: PMC7431413 DOI: 10.1038/s41467-020-17920-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/27/2020] [Indexed: 12/23/2022] Open
Abstract
The transcription factor STAT3 is frequently activated in human solid and hematological malignancies and remains a challenging therapeutic target with no approved drugs to date. Here, we develop synthetic antibody mimetics, termed monobodies, to interfere with STAT3 signaling. These monobodies are highly selective for STAT3 and bind with nanomolar affinity to the N-terminal and coiled-coil domains. Interactome analysis detects no significant binding to other STATs or additional off-target proteins, confirming their exquisite specificity. Intracellular expression of monobodies fused to VHL, an E3 ubiquitin ligase substrate receptor, results in degradation of endogenous STAT3. The crystal structure of STAT3 in complex with monobody MS3-6 reveals bending of the coiled-coil domain, resulting in diminished DNA binding and nuclear translocation. MS3-6 expression strongly inhibits STAT3-dependent transcriptional activation and disrupts STAT3 interaction with the IL-22 receptor. Therefore, our study establishes innovative tools to interfere with STAT3 signaling by different molecular mechanisms. STAT3 is an attractive therapeutic target but its homology with other STAT proteins complicates the development of selective inhibitors. Here, the authors develop monobodies with high affinity and selectivity for STAT3 and show that they can interfere with cellular STAT3 activity.
Collapse
Affiliation(s)
- Grégory La Sala
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL), Station 19, 1015, Lausanne, Switzerland
| | - Camille Michiels
- Experimental Medicine Unit, De Duve Institute, Université catholique de Louvain, 1200, Brussels, Belgium
| | - Tim Kükenshöner
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL), Station 19, 1015, Lausanne, Switzerland
| | - Tania Brandstoetter
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Barbara Maurer
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Akiko Koide
- Department of Medicine, New York University School of Medicine, 522 1st Avenue, New York, 10016, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, 522 1st Avenue, New York, 10016, NY, USA
| | - Kelvin Lau
- Protein Crystallography Core Facility, School of Life Sciences, École polytechnique fédérale de Lausanne, Station 19, 1015, Lausanne, Switzerland
| | - Florence Pojer
- Protein Crystallography Core Facility, School of Life Sciences, École polytechnique fédérale de Lausanne, Station 19, 1015, Lausanne, Switzerland
| | - Shohei Koide
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, 522 1st Avenue, New York, 10016, NY, USA.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 522 1st Avenue, New York, 10016, NY, USA
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Laure Dumoutier
- Experimental Medicine Unit, De Duve Institute, Université catholique de Louvain, 1200, Brussels, Belgium
| | - Oliver Hantschel
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL), Station 19, 1015, Lausanne, Switzerland. .,Faculty of Medicine, Institute of Physiological Chemistry, Philipps-University of Marburg, Karl-von-Frisch-Straße 1, 35032, Marburg, Germany.
| |
Collapse
|
57
|
Relation of Neutrophil Gelatinase-Associated Lipocalin Overexpression to the Resistance to Apoptosis of Tumor B Cells in Chronic Lymphocytic Leukemia. Cancers (Basel) 2020; 12:cancers12082124. [PMID: 32751884 PMCID: PMC7465759 DOI: 10.3390/cancers12082124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
The resistance to apoptosis of chronic lymphocytic leukemia (CLL) cells partly results from the deregulated production of survival signals from leukemic cells. Despite the development of new therapies in CLL, drug resistance and disease relapse still occur. Recently, neutrophil gelatinase-associated lipocalin (NGAL), a secreted glycoprotein, has been suggested to have a critical role in the biology of tumors. Thus, we investigated the relevance of NGAL in CLL pathogenesis, analyzed the expression of its cellular receptor (NGAL-R) on malignant B cells and tested whether CLL cells are resistant to apoptosis through an autocrine process involving NGAL and NGAL-R. We observed that NGAL concentrations were elevated in the serum of CLL patients at diagnosis. After treatment (and regardless of the therapeutic regimen), serum NGAL levels normalized in CLL patients in remission but not in relapsed patients. In parallel, NGAL and NGAL-R were upregulated in leukemic cells from untreated CLL patients when compared to normal peripheral blood mononuclear cells (PBMCs), and returned to basal levels in PBMCs from patients in remission. Cultured CLL cells released endogenous NGAL. Anti-NGAL-R antibodies enhanced NGAL-R+ leukemia cell death. Conversely, recombinant NGAL protected NGAL-R+ CLL cells against apoptosis by activating a STAT3/Mcl-1 signaling pathway. Our results suggest that NGAL and NGAL-R, overexpressed in untreated CLL, participate in the deregulation of the apoptotic machinery in CLL cells, and may be potential therapeutic clues for CLL treatment.
Collapse
|
58
|
de Araujo ED, Keserű GM, Gunning PT, Moriggl R. Targeting STAT3 and STAT5 in Cancer. Cancers (Basel) 2020; 12:E2002. [PMID: 32707820 PMCID: PMC7465272 DOI: 10.3390/cancers12082002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022] Open
Abstract
Insights into the mutational landscape of the human cancer genome coding regions defined about 140 distinct cancer driver genes in 2013, which approximately doubled to 300 in 2018 following advances in systems cancer biology studies [...].
Collapse
Affiliation(s)
- Elvin D. de Araujo
- Centre for Medicinal Chemistry, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada; (E.D.d.A.); (P.T.G.)
- Department of Chemical and Physical Sciences, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada
| | - György M. Keserű
- Medicinal Chemistry, Research Center for Natural Sciences, 1117 Budapest, Hungary;
| | - Patrick T. Gunning
- Centre for Medicinal Chemistry, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada; (E.D.d.A.); (P.T.G.)
- Department of Chemical and Physical Sciences, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, A-1210 Vienna, Austria
| |
Collapse
|
59
|
STAT3 Pathway in Gastric Cancer: Signaling, Therapeutic Targeting and Future Prospects. BIOLOGY 2020; 9:biology9060126. [PMID: 32545648 PMCID: PMC7345582 DOI: 10.3390/biology9060126] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
Abstract
Molecular signaling pathways play a significant role in the regulation of biological mechanisms, and their abnormal expression can provide the conditions for cancer development. The signal transducer and activator of transcription 3 (STAT3) is a key member of the STAT proteins and its oncogene role in cancer has been shown. STAT3 is able to promote the proliferation and invasion of cancer cells and induces chemoresistance. Different downstream targets of STAT3 have been identified in cancer and it has also been shown that microRNA (miR), long non-coding RNA (lncRNA) and other molecular pathways are able to function as upstream mediators of STAT3 in cancer. In the present review, we focus on the role and regulation of STAT3 in gastric cancer (GC). miRs and lncRNAs are considered as potential upstream mediators of STAT3 and they are able to affect STAT3 expression in exerting their oncogene or onco-suppressor role in GC cells. Anti-tumor compounds suppress the STAT3 signaling pathway to restrict the proliferation and malignant behavior of GC cells. Other molecular pathways, such as sirtuin, stathmin and so on, can act as upstream mediators of STAT3 in GC. Notably, the components of the tumor microenvironment that are capable of targeting STAT3 in GC, such as fibroblasts and macrophages, are discussed in this review. Finally, we demonstrate that STAT3 can target oncogene factors to enhance the proliferation and metastasis of GC cells.
Collapse
|
60
|
Zhang X, Lu T, Ma Y, Li R, Pang Y, Mao H, Liu P. Novel Nanocomplexes Targeting STAT3 Demonstrate Promising Anti-Ovarian Cancer Effects in vivo. Onco Targets Ther 2020; 13:5069-5082. [PMID: 32606729 PMCID: PMC7292488 DOI: 10.2147/ott.s247398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022] Open
Abstract
Background Cationic solid lipid nanoparticles (SLN) have attracted intensive interest as an effective gene delivery system for its high biocompatibility, stability and low cytotoxicity. In our previous study, we successfully prepared SLN-STAT3 decoy ODN complexes and made a primary study on its antitumor behavior in ovarian cancer cells in vitro. However, there is little information available so far about the effect of SLN-STAT3 decoy ODN complexes on ovarian cancer in vivo, either little information about the pharmacological toxicology in vivo. Material and Methods We applied nanotechnology to improve the gene delivery system and synthesize SLN-STAT3 decoy ODN complexes. Xenograft mouse models were established to assess the antitumor effects of SLN-STAT3 decoy ODN on the tumor growth of ovarian cancer in vivo. To analyze the mechanisms of SLN-STAT3 decoy ODN, we investigated apoptosis, autophagy, epithelial–mesenchymal transition (EMT) in tumor tissues of nude mice and investigated the effects and toxicology of SLN-STAT3 decoy ODN complexes on the vital organs of nude mice. Results The results showed that SLN-STAT3 decoy ODN complexes markedly inhibited tumor growth in vivo. SLN-STAT3 decoy ODN complexes could induce cell apoptosis through downregulating Bcl-2, survivin and pro caspase 3, but upregulating Bax and cleaved caspase 3. These complexes could also regulate autophagy through upregulating LC3A-II, LC3B-II and beclin-1, but downregulating p-Akt and p-mTOR. Moreover, these complexes could inhibit cancer cell invasion through reversing EMT. Besides, SLN-STAT3 decoy ODN complexes showed no obvious toxicity on vital organs and hematological parameters of nude mice. Conclusion The molecular mechanisms that SLN-STAT3 decoy ODN complexes inhibit tumor growth involved activating the apoptotic cascade, regulating autophagy, and reversing EMT program; and these complexes showed no obvious toxicity on nude mice. Our study indicated that the nanocomplexes SLN-STAT3 decoy ODN might be a promising therapeutic approach for ovarian cancer treatment.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| | - Tao Lu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| | - Yanhui Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| | - Rui Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| | - Yingxin Pang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| | - Hongluan Mao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| | - Peishu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| |
Collapse
|
61
|
Hu R, Han Q, Zhang J. STAT3: A key signaling molecule for converting cold to hot tumors. Cancer Lett 2020; 489:29-40. [PMID: 32522692 DOI: 10.1016/j.canlet.2020.05.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/05/2020] [Accepted: 05/23/2020] [Indexed: 12/26/2022]
Abstract
Tumors can be classified as cold or hot according to the degree of immune cell infiltration into tumor tissues; cold tumors are insensitive to either chemotherapy or immunotherapy and are associated with poor prognosis. Recent studies have shown that STAT3 signaling molecules hinder the conversion of cold to hot tumors by regulating immunosuppressive molecule secretion and immunosuppressive cell functions. This review aims to present the most recent studies on how STAT3 regulates cold tumor formation and discuss its research status in cancer therapy. We also present insight for designing new therapeutic strategies to "heat" tumors and provide a reference for tumor immunotherapy.
Collapse
Affiliation(s)
- Rui Hu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
62
|
Qi X, Li M, Zhang XM, Dai XF, Cui J, Li DH, Gu QQ, Lv ZH, Li J. Trichothecin Inhibits Cancer-Related Features in Colorectal Cancer Development by Targeting STAT3. Molecules 2020; 25:molecules25102306. [PMID: 32422984 PMCID: PMC7287781 DOI: 10.3390/molecules25102306] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/22/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that contributes to cancer progression through multiple processes of cancer development, which makes it an attractive target for cancer therapy. The IL-6/STAT3 pathway is associated with an advanced stage in colorectal cancer patients. In this study, we identified trichothecin (TCN) as a novel STAT3 inhibitor. TCN was found to bind to the SH2 domain of STAT3 and inhibit STAT3 activation and dimerization, thereby blocking STAT3 nuclear translocation and transcriptional activity. TCN did not affect phosphorylation levels of STAT1. TCN significantly inhibited cell growth, arrested cell cycle at the G0/G1 phase, and induced apoptosis in HCT 116 cells. In addition, the capacities of colony formation, migration, and invasion of HCT 116 cells were impaired upon exposure to TCN with or without IL-6 stimulation. In addition, TCN treatment abolished the tube formation of HUVEC cells in vitro. Taken together, these results highlight that TCN inhibits various cancer-related features in colorectal cancer development in vitro by targeting STAT3, indicating that TCN is a promising STAT3 inhibitor that deserves further exploration in the future.
Collapse
Affiliation(s)
- Xin Qi
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.Q.); (M.L.); (X.-m.Z.); (X.-f.D.); (J.C.); (D.-h.L.); (Q.-q.G.)
| | - Meng Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.Q.); (M.L.); (X.-m.Z.); (X.-f.D.); (J.C.); (D.-h.L.); (Q.-q.G.)
| | - Xiao-min Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.Q.); (M.L.); (X.-m.Z.); (X.-f.D.); (J.C.); (D.-h.L.); (Q.-q.G.)
| | - Xiu-fen Dai
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.Q.); (M.L.); (X.-m.Z.); (X.-f.D.); (J.C.); (D.-h.L.); (Q.-q.G.)
| | - Jian Cui
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.Q.); (M.L.); (X.-m.Z.); (X.-f.D.); (J.C.); (D.-h.L.); (Q.-q.G.)
| | - De-hai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.Q.); (M.L.); (X.-m.Z.); (X.-f.D.); (J.C.); (D.-h.L.); (Q.-q.G.)
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Qian-qun Gu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.Q.); (M.L.); (X.-m.Z.); (X.-f.D.); (J.C.); (D.-h.L.); (Q.-q.G.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Zhi-hua Lv
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.Q.); (M.L.); (X.-m.Z.); (X.-f.D.); (J.C.); (D.-h.L.); (Q.-q.G.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: (Z.-h.L.); (J.L.); Tel.: +86-532-82032096 (Z.-h.L.); +86-532-82032066 (J.L.)
| | - Jing Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.Q.); (M.L.); (X.-m.Z.); (X.-f.D.); (J.C.); (D.-h.L.); (Q.-q.G.)
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: (Z.-h.L.); (J.L.); Tel.: +86-532-82032096 (Z.-h.L.); +86-532-82032066 (J.L.)
| |
Collapse
|
63
|
Geoffroy MC, de Thé H. Classic and Variants APLs, as Viewed from a Therapy Response. Cancers (Basel) 2020; 12:E967. [PMID: 32295268 PMCID: PMC7226009 DOI: 10.3390/cancers12040967] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Most acute promyelocytic leukemia (APL) are caused by PML-RARA, a translocation-driven fusion oncoprotein discovered three decades ago. Over the years, several other types of rare X-RARA fusions have been described, while recently, oncogenic fusion proteins involving other retinoic acid receptors (RARB or RARG) have been associated to very rare cases of acute promyelocytic leukemia. PML-RARA driven pathogenesis and the molecular basis for therapy response have been the focus of many studies, which have now converged into an integrated physio-pathological model. The latter is well supported by clinical and molecular studies on patients, making APL one of the rare hematological disorder cured by targeted therapies. Here we review recent data on APL-like diseases not driven by the PML-RARA fusion and discuss these in view of current understanding of "classic" APL pathogenesis and therapy response.
Collapse
Affiliation(s)
- Marie-Claude Geoffroy
- Institut National de la Santé et de la Recherche Médicale (INSERM) U944, Equipe Labellisée par la Ligue Nationale contre le Cancer, 75010 Paris, France;
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 7212, Institut Universitaire d'Hématologie (IUH), 75010 Paris, France
- Institut de Recherche Saint-Louis, Université de Paris, 75010 Paris, France
| | - Hugues de Thé
- Institut National de la Santé et de la Recherche Médicale (INSERM) U944, Equipe Labellisée par la Ligue Nationale contre le Cancer, 75010 Paris, France;
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 7212, Institut Universitaire d'Hématologie (IUH), 75010 Paris, France
- Institut de Recherche Saint-Louis, Université de Paris, 75010 Paris, France
- Assistance Publique-Hôpitaux de Paris, Service de Biochimie, Hôpital St-Louis, 75010 Paris, France
- Collège de France, PSL Research University, INSERM U1050, CNRS UMR 7241, 75005 Paris, France
| |
Collapse
|
64
|
Khan AQ, Mohamed EAN, Hakeem I, Nazeer A, Kuttikrishnan S, Prabhu KS, Siveen KS, Nawaz Z, Ahmad A, Zayed H, Uddin S. Sanguinarine Induces Apoptosis in Papillary Thyroid Cancer Cells via Generation of Reactive Oxygen Species. Molecules 2020; 25:1229. [PMID: 32182833 PMCID: PMC7179475 DOI: 10.3390/molecules25051229] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 12/22/2022] Open
Abstract
Sanguinarine (SNG), a natural compound with an array of pharmacological activities, has promising therapeutic potential against a number of pathological conditions, including malignancies. In the present study, we have investigated the antiproliferative potential of SNG against two well-characterized papillary thyroid cancer (PTC) cell lines, BCPAP and TPC-1. SNG significantly inhibited cell proliferation of PTC cells in a dose and time-dependent manner. Western blot analysis revealed that SNG markedly attenuated deregulated expression of p-STAT3, without affecting total STAT3, and inhibited growth of PTC via activation of apoptotic and autophagy signaling cascade, as SNG treatment of PTC cells led to the activation of caspase-3 and caspase-8; cleavage of PARP and activation of autophagy markers. Further, SNG-mediated anticancer effects in PTC cells involved the generation of reactive oxygen species (ROS) as N-acetyl cysteine (NAC), an inhibitor of ROS, prevented SNG-mediated antiproliferative, apoptosis and autophagy inducing action. Interestingly, SNG also sensitized PTC cells to chemotherapeutic drug cisplatin, which was inhibited by NAC. Finally, SNG suppressed the growth of PTC thyrospheres and downregulated stemness markers ALDH2 and SOX2. Altogether, the findings of the current study suggest that SNG has anticancer potential against PTC cells as well its derived cancer stem-like cells, most likely via inactivation of STAT3 and its associated signaling molecules.
Collapse
Affiliation(s)
- Abdul Q. Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (E.A.N.M.); (I.H.); (A.N.); (S.K.); (K.S.P.); (K.S.S.)
| | - Elham A. N. Mohamed
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (E.A.N.M.); (I.H.); (A.N.); (S.K.); (K.S.P.); (K.S.S.)
- Department of Lab Medicine and Pathology, Hamad Medical Corporation, Doha 3050, Qatar;
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 3050, Qatar;
| | - Ishrat Hakeem
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (E.A.N.M.); (I.H.); (A.N.); (S.K.); (K.S.P.); (K.S.S.)
| | - Aneeza Nazeer
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (E.A.N.M.); (I.H.); (A.N.); (S.K.); (K.S.P.); (K.S.S.)
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (E.A.N.M.); (I.H.); (A.N.); (S.K.); (K.S.P.); (K.S.S.)
| | - Kirti S. Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (E.A.N.M.); (I.H.); (A.N.); (S.K.); (K.S.P.); (K.S.S.)
| | - Kodappully S. Siveen
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (E.A.N.M.); (I.H.); (A.N.); (S.K.); (K.S.P.); (K.S.S.)
| | - Zafar Nawaz
- Department of Lab Medicine and Pathology, Hamad Medical Corporation, Doha 3050, Qatar;
| | - Aamir Ahmad
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 3050, Qatar;
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (E.A.N.M.); (I.H.); (A.N.); (S.K.); (K.S.P.); (K.S.S.)
| |
Collapse
|
65
|
Teramo A, Barilà G, Calabretto G, Vicenzetto C, Gasparini VR, Semenzato G, Zambello R. Insights Into Genetic Landscape of Large Granular Lymphocyte Leukemia. Front Oncol 2020; 10:152. [PMID: 32133291 PMCID: PMC7040228 DOI: 10.3389/fonc.2020.00152] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/28/2020] [Indexed: 01/29/2023] Open
Abstract
Large granular lymphocyte leukemia (LGLL) is a chronic proliferation of clonal cytotoxic lymphocytes, usually presenting with cytopenias and yet lacking a specific therapy. The disease is heterogeneous, including different subsets of patients distinguished by LGL immunophenotype (CD8+ Tαβ, CD4+ Tαβ, Tγδ, NK) and the clinical course of the disease (indolent/symptomatic/aggressive). Even if the etiology of LGLL remains elusive, evidence is accumulating on the genetic landscape driving and/or sustaining chronic LGL proliferations. The most common gain-of-function mutations identified in LGLL patients are on STAT3 and STAT5b genes, which have been recently recognized as clonal markers and were included in the 2017 WHO classification of the disease. A significant correlation between STAT3 mutations and symptomatic disease has been highlighted. At variance, STAT5b mutations could have a different clinical impact based on the immunophenotype of the mutated clone. In fact, they are regarded as the signature of an aggressive clinical course with a poor prognosis in CD8+ T-LGLL and aggressive NK cell leukemia, while they are devoid of negative prognostic significance in CD4+ T-LGLL and Tγδ LGLL. Knowing the specific distribution of STAT mutations helps identify the discrete mechanisms sustaining LGL proliferations in the corresponding disease subsets. Some patients equipped with wild type STAT genes are characterized by less frequent mutations in different genes, suggesting that other pathogenetic mechanisms are likely to be involved. In this review, we discuss how the LGLL mutational pattern allows a more precise and detailed tumor stratification, suggesting new parameters for better management of the disease and hopefully paving the way for a targeted clinical approach.
Collapse
Affiliation(s)
- Antonella Teramo
- Hematology and Clinical Immunology Section, Department of Medicine (DIMED), Padova University School of Medicine, Padova, Italy.,Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Gregorio Barilà
- Hematology and Clinical Immunology Section, Department of Medicine (DIMED), Padova University School of Medicine, Padova, Italy.,Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Giulia Calabretto
- Hematology and Clinical Immunology Section, Department of Medicine (DIMED), Padova University School of Medicine, Padova, Italy.,Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Cristina Vicenzetto
- Hematology and Clinical Immunology Section, Department of Medicine (DIMED), Padova University School of Medicine, Padova, Italy.,Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Vanessa Rebecca Gasparini
- Hematology and Clinical Immunology Section, Department of Medicine (DIMED), Padova University School of Medicine, Padova, Italy.,Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Gianpietro Semenzato
- Hematology and Clinical Immunology Section, Department of Medicine (DIMED), Padova University School of Medicine, Padova, Italy.,Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Renato Zambello
- Hematology and Clinical Immunology Section, Department of Medicine (DIMED), Padova University School of Medicine, Padova, Italy.,Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| |
Collapse
|
66
|
Wu CJ, Sundararajan V, Sheu BC, Huang RYJ, Wei LH. Activation of STAT3 and STAT5 Signaling in Epithelial Ovarian Cancer Progression: Mechanism and Therapeutic Opportunity. Cancers (Basel) 2019; 12:cancers12010024. [PMID: 31861720 PMCID: PMC7017004 DOI: 10.3390/cancers12010024] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal of all gynecologic malignancies. Despite advances in surgical and chemotherapeutic options, most patients with advanced EOC have a relapse within three years of diagnosis. Unfortunately, recurrent disease is generally not curable. Recent advances in maintenance therapy with anti-angiogenic agents or Poly ADP-ribose polymerase (PARP) inhibitors provided a substantial benefit concerning progression-free survival among certain women with advanced EOC. However, effective treatment options remain limited in most recurrent cases. Therefore, validated novel molecular therapeutic targets remain urgently needed in the management of EOC. Signal transducer and activator of transcription-3 (STAT3) and STAT5 are aberrantly activated through tyrosine phosphorylation in a wide variety of cancer types, including EOC. Extrinsic tumor microenvironmental factors in EOC, such as inflammatory cytokines, growth factors, hormones, and oxidative stress, can activate STAT3 and STAT5 through different mechanisms. Persistently activated STAT3 and, to some extent, STAT5 increase EOC tumor cell proliferation, survival, self-renewal, angiogenesis, metastasis, and chemoresistance while suppressing anti-tumor immunity. By doing so, the STAT3 and STAT5 activation in EOC controls properties of both tumor cells and their microenvironment, driving multiple distinct functions during EOC progression. Clinically, increasing evidence indicates that the activation of the STAT3/STAT5 pathway has significant correlation with reduced survival of recurrent EOC, suggesting the importance of STAT3/STAT5 as potential therapeutic targets for cancer therapy. This review summarizes the distinct role of STAT3 and STAT5 activities in the progression of EOC and discusses the emerging therapies specifically targeting STAT3 and STAT5 signaling in this disease setting.
Collapse
Affiliation(s)
- Chin-Jui Wu
- Department of Obstetrics & Gynecology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; (C.-J.W.); (B.-C.S.)
| | - Vignesh Sundararajan
- Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, Singapore 117599, Singapore;
| | - Bor-Ching Sheu
- Department of Obstetrics & Gynecology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; (C.-J.W.); (B.-C.S.)
| | - Ruby Yun-Ju Huang
- Department of Obstetrics and Gynaecology, National University of Singapore, Singapore 119077, Singapore;
- School of Medicine, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Lin-Hung Wei
- Department of Obstetrics & Gynecology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; (C.-J.W.); (B.-C.S.)
- Correspondence: ; Tel.: +886-2-2312-3456 (ext. 71570); Fax: +886-2-2311-4965
| |
Collapse
|