51
|
Chiang C, Yang H, Zhu L, Chen C, Chen C, Zuo Y, Zheng D. The Epigenetic Regulation of Nonhistone Proteins by SETD7: New Targets in Cancer. Front Genet 2022; 13:918509. [PMID: 35812730 PMCID: PMC9256981 DOI: 10.3389/fgene.2022.918509] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/27/2022] [Indexed: 11/23/2022] Open
Abstract
Epigenetic modifications are essential mechanism by which to ensure cell homeostasis. One such modification is lysine methylation of nonhistone proteins by SETD7, a mono-methyltransferase containing SET domains. SETD7 methylates over 30 proteins and is thus involved in various classical pathways. As such, SETD7 has been implicated in both the basic functions of normal tissues but also in several pathologies, such as cancers. In this review, we summarize the current knowledge of SETD7 substrates, especially transcriptional-related proteins and enzymes, and their putative roles upon SETD7-mediated methylation. We focus on the role of SETD7 in cancers, and speculate on the possible points of intervention and areas for future research.
Collapse
Affiliation(s)
- Chengyao Chiang
- Southern University of Science and Technology, Yantian Hospital, Shenzhen, China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Cell Biology and Genetics, Department of Pharmacy, Shenzhen University International Cancer Center, School of Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Shenzhen University, Shenzhen, China
| | - Heng Yang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Cell Biology and Genetics, Department of Pharmacy, Shenzhen University International Cancer Center, School of Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Shenzhen University, Shenzhen, China
| | - Lizhi Zhu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Cell Biology and Genetics, Department of Pharmacy, Shenzhen University International Cancer Center, School of Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Shenzhen University, Shenzhen, China
| | - Chunlan Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Cell Biology and Genetics, Department of Pharmacy, Shenzhen University International Cancer Center, School of Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Shenzhen University, Shenzhen, China
| | - Cheng Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Cell Biology and Genetics, Department of Pharmacy, Shenzhen University International Cancer Center, School of Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Shenzhen University, Shenzhen, China
| | - You Zuo
- Southern University of Science and Technology, Yantian Hospital, Shenzhen, China
- *Correspondence: You Zuo, ; Duo Zheng,
| | - Duo Zheng
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Cell Biology and Genetics, Department of Pharmacy, Shenzhen University International Cancer Center, School of Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Shenzhen University, Shenzhen, China
- *Correspondence: You Zuo, ; Duo Zheng,
| |
Collapse
|
52
|
Dahiya UR, Heemers HV. Analyzing the Androgen Receptor Interactome in Prostate Cancer: Implications for Therapeutic Intervention. Cells 2022; 11:936. [PMID: 35326387 PMCID: PMC8946651 DOI: 10.3390/cells11060936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 12/29/2022] Open
Abstract
The androgen receptor (AR) is a member of the ligand-activated nuclear receptor family of transcription factors. AR's transactivation activity is turned on by the binding of androgens, the male sex steroid hormones. AR is critical for the development and maintenance of the male phenotype but has been recognized to also play an important role in human diseases. Most notably, AR is a major driver of prostate cancer (CaP) progression, which remains the second leading cause of cancer deaths in American men. Androgen deprivation therapies (ADTs) that interfere with interactions between AR and its activating androgen ligands have been the mainstay for treatment of metastatic CaP. Although ADTs are effective and induce remissions, eventually they fail, while the growth of the majority of ADT-resistant CaPs remains under AR's control. Alternative approaches to inhibit AR activity and bypass resistance to ADT are being sought, such as preventing the interaction between AR and its cofactors and coregulators that is needed to execute AR-dependent transcription. For such strategies to be efficient, the 3D conformation of AR complexes needs to be well-understood and AR-regulator interaction sites resolved. Here, we review current insights into these 3D structures and the protein interaction sites in AR transcriptional complexes. We focus on methods and technological approaches used to identify AR interactors and discuss challenges and limitations that need to be overcome for efficient therapeutic AR complex disruption.
Collapse
Affiliation(s)
| | - Hannelore V. Heemers
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, NB-40, 9500 Euclid Avenue, Cleveland, OH 44195, USA;
| |
Collapse
|
53
|
Chen YJC, Koutelou E, Dent SY. Now open: Evolving insights to the roles of lysine acetylation in chromatin organization and function. Mol Cell 2022; 82:716-727. [PMID: 35016034 PMCID: PMC8857060 DOI: 10.1016/j.molcel.2021.12.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022]
Abstract
Protein acetylation is conserved across phylogeny and has been recognized as one of the most prominent post-translational modifications since its discovery nearly 60 years ago. Histone acetylation is an active mark characteristic of open chromatin, but acetylation on specific lysine residues and histone variants occurs in different biological contexts and can confer various outcomes. The significance of acetylation events is indicated by the associations of lysine acetyltransferases, deacetylases, and acetyl-lysine readers with developmental disorders and pathologies. Recent advances have uncovered new roles of acetylation regulators in chromatin-centric events, which emphasize the complexity of these functional networks. In this review, we discuss mechanisms and dynamics of acetylation in chromatin organization and DNA-templated processes, including gene transcription and DNA repair and replication.
Collapse
Affiliation(s)
- Ying-Jiun C. Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Evangelia Koutelou
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sharon Y.R. Dent
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Correspondence:
| |
Collapse
|
54
|
Jaiswal B, Agarwal A, Gupta A. Lysine Acetyltransferases and Their Role in AR Signaling and Prostate Cancer. Front Endocrinol (Lausanne) 2022; 13:886594. [PMID: 36060957 PMCID: PMC9428678 DOI: 10.3389/fendo.2022.886594] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022] Open
Abstract
The development and growth of a normal prostate gland, as well as its physiological functions, are regulated by the actions of androgens through androgen receptor (AR) signaling which drives multiple cellular processes including transcription, cellular proliferation, and apoptosis in prostate cells. Post-translational regulation of AR plays a vital role in directing its cellular activities via modulating its stability, nuclear localization, and transcriptional activity. Among various post-translational modifications (PTMs), acetylation is an essential PTM recognized in AR and is governed by the regulated actions of acetyltransferases and deacetyltransferases. Acetylation of AR has been identified as a critical step for its activation and depending on the site of acetylation, the intracellular dynamics and activity of the AR can be modulated. Various acetyltransferases such as CBP, p300, PCAF, TIP60, and ARD1 that are known to acetylate AR, may directly coactivate the AR transcriptional function or help to recruit additional coactivators to functionally regulate the transcriptional activity of the AR. Aberrant expression of acetyltransferases and their deregulated activities have been found to interfere with AR signaling and play a key role in development and progression of prostatic diseases, including prostate cancer (PCa). In this review, we summarized recent research advances aimed at understanding the role of various lysine acetyltransferases (KATs) in the regulation of AR activity at the level of post-translational modifications in normal prostate physiology, as well as in development and progression of PCa. Considering the critical importance of KATs in modulating AR activity in physiological and patho-physiological context, we further discussed the potential of targeting these enzymes as a therapeutic option to treat AR-related pathology in combination with hormonal therapy.
Collapse
Affiliation(s)
- Bharti Jaiswal
- Integrative Chemical Biology (ICB), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru, India
- *Correspondence: Ashish Gupta, ; Bharti Jaiswal,
| | - Akanksha Agarwal
- Epigenetics and Human Disease Laboratory, Centre of Excellence in Epigenetics (CoEE) Department of Life Sciences, Shiv Nadar University, Delhi, UP, India
| | - Ashish Gupta
- Epigenetics and Human Disease Laboratory, Centre of Excellence in Epigenetics (CoEE) Department of Life Sciences, Shiv Nadar University, Delhi, UP, India
- *Correspondence: Ashish Gupta, ; Bharti Jaiswal,
| |
Collapse
|
55
|
Epigenetic Coregulation of Androgen Receptor Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:277-293. [DOI: 10.1007/978-3-031-11836-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
56
|
Rigalli JP, Theile D, Nilles J, Weiss J. Regulation of PXR Function by Coactivator and Corepressor Proteins: Ligand Binding Is Just the Beginning. Cells 2021; 10:cells10113137. [PMID: 34831358 PMCID: PMC8625645 DOI: 10.3390/cells10113137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/13/2022] Open
Abstract
The pregnane X receptor (PXR, NR1I2) is a nuclear receptor which exerts its regulatory function by heterodimerization with the retinoid-X-receptor α (RXRα, NR2B1) and binding to the promoter and enhancer regions of diverse target genes. PXR is involved in the regulation of drug metabolism and excretion, metabolic and immunological functions and cancer pathogenesis. PXR activity is strongly regulated by the association with coactivator and corepressor proteins. Coactivator proteins exhibit histone acetyltransferase or histone methyltransferase activity or associate with proteins having one of these activities, thus promoting chromatin decondensation and activation of the gene expression. On the contrary, corepressor proteins promote histone deacetylation and therefore favor chromatin condensation and repression of the gene expression. Several studies pointed to clear cell- and ligand-specific differences in the activation of PXR. In this article, we will review the critical role of coactivator and corepressor proteins as molecular determinants of the specificity of PXR-mediated effects. As already known for other nuclear receptors, understanding the complex mechanism of PXR activation in each cell type and under particular physiological and pathophysiological conditions may lead to the development of selective modulators with therapeutic potential.
Collapse
|