51
|
Prukop T, Wernick S, Boussicault L, Ewers D, Jäger K, Adam J, Winter L, Quintes S, Linhoff L, Barrantes-Freer A, Bartl M, Czesnik D, Zschüntzsch J, Schmidt J, Primas G, Laffaire J, Rinaudo P, Brureau A, Nabirotchkin S, Schwab MH, Nave KA, Hajj R, Cohen D, Sereda MW. Synergistic PXT3003 therapy uncouples neuromuscular function from dysmyelination in male Charcot-Marie-Tooth disease type 1A (CMT1A) rats. J Neurosci Res 2020; 98:1933-1952. [PMID: 32588471 DOI: 10.1002/jnr.24679] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/13/2020] [Accepted: 05/31/2020] [Indexed: 12/11/2022]
Abstract
Charcot-Marie-Tooth disease 1 A (CMT1A) is caused by an intrachromosomal duplication of the gene encoding for PMP22 leading to peripheral nerve dysmyelination, axonal loss, and progressive muscle weakness. No therapy is available. PXT3003 is a low-dose combination of baclofen, naltrexone, and sorbitol which has been shown to improve disease symptoms in Pmp22 transgenic rats, a bona fide model of CMT1A disease. However, the superiority of PXT3003 over its single components or dual combinations have not been tested. Here, we show that in a dorsal root ganglion (DRG) co-culture system derived from transgenic rats, PXT3003 induced myelination when compared to its single and dual components. Applying a clinically relevant ("translational") study design in adult male CMT1A rats for 3 months, PXT3003, but not its dual components, resulted in improved performance in behavioral motor and sensory endpoints when compared to placebo. Unexpectedly, we observed only a marginally increased number of myelinated axons in nerves from PXT3003-treated CMT1A rats. However, in electrophysiology, motor latencies correlated with increased grip strength indicating a possible effect of PXT3003 on neuromuscular junctions (NMJs) and muscle fiber pathology. Indeed, PXT3003-treated CMT1A rats displayed an increased perimeter of individual NMJs and a larger number of functional NMJs. Moreover, muscles of PXT3003 CMT1A rats displayed less neurogenic atrophy and a shift toward fast contracting muscle fibers. We suggest that ameliorated motor function in PXT3003-treated CMT1A rats result from restored NMJ function and muscle innervation, independent from myelination.
Collapse
Affiliation(s)
- Thomas Prukop
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | - Stephanie Wernick
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | | | - David Ewers
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Karoline Jäger
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Julia Adam
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Lorenz Winter
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Susanne Quintes
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Lisa Linhoff
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Michael Bartl
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Dirk Czesnik
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Jana Zschüntzsch
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Jens Schmidt
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | | | | | | | | | | | - Markus H Schwab
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | | | | - Michael W Sereda
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
53
|
Ijomone OK, Shallie PD, Naicker T. Oligodendrocytes Death Induced Sensorimotor and Cognitive Deficit in N-nitro-L-arginine methyl Rat Model of Pre-eclampsia. Neurochem Res 2020; 45:902-914. [PMID: 31983010 DOI: 10.1007/s11064-020-02969-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/17/2019] [Accepted: 01/20/2020] [Indexed: 12/17/2022]
Abstract
Pre-eclampsia (PE) is a pregnancy complicated syndrome that affects multiple organs including the brain that continue post- delivery in both mother and the offspring. We evaluated the expression of oligodendrocytes in the brain of PE rat model through development as well as the cognitive changes and other behavioural modifications that may occur later in the life of offspring of PE-like rat model. Pregnant rats divided into early-onset and late-onset groups were administered with N-nitro- L-arginine methyl (L-NAME) through drinking water at gestational days (GD) 8-17. Rats were allowed free access to water throughout the pregnancy. At GD 19, post-natal day (PND) 1 and 60, rats were sacrificed and brain excised for further analysis. The offspring were subjected to behavioural studies for cognitive and sensorimotor impairments before sacrificed at PND 60. Results showed significant down-regulation in the expression of OLIG2 in PE at GD 19 brain which persists till PND 60. Likewise, there was a significant increase in the latency to locate the platform in Morris water maze, time to traverse the balance beam and reduced hanging time on the wire test between the control and the PE treated. PE could lead to impaired neuronal signalling through demyelination which may contributes significantly to long-term sensorimotor and cognitive deficit.
Collapse
Affiliation(s)
- Olayemi K Ijomone
- Optics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Philemon Dauda Shallie
- Optics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thajasvarie Naicker
- Optics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
54
|
Stacchiotti A, Favero G, Rodella LF. Impact of Melatonin on Skeletal Muscle and Exercise. Cells 2020; 9:cells9020288. [PMID: 31991655 PMCID: PMC7072499 DOI: 10.3390/cells9020288] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 12/18/2022] Open
Abstract
Skeletal muscle disorders are dramatically increasing with human aging with enormous sanitary costs and impact on the quality of life. Preventive and therapeutic tools to limit onset and progression of muscle frailty include nutrition and physical training. Melatonin, the indole produced at nighttime in pineal and extra-pineal sites in mammalians, has recognized anti-aging, anti-inflammatory, and anti-oxidant properties. Mitochondria are the favorite target of melatonin, which maintains them efficiently, scavenging free radicals and reducing oxidative damage. Here, we discuss the most recent evidence of dietary melatonin efficacy in age-related skeletal muscle disorders in cellular, preclinical, and clinical studies. Furthermore, we analyze the emerging impact of melatonin on physical activity. Finally, we consider the newest evidence of the gut-muscle axis and the influence of exercise and probably melatonin on the microbiota. In our opinion, this review reinforces the relevance of melatonin as a safe nutraceutical that limits skeletal muscle frailty and prolongs physical performance.
Collapse
Affiliation(s)
- Alessandra Stacchiotti
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (G.F.); (L.F.R.)
- Interdepartmental University Center of Research “Adaptation and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
- Correspondence: ; Tel.: +39-030-3717478; Fax: +39-030-3717486
| | - Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (G.F.); (L.F.R.)
| | - Luigi Fabrizio Rodella
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (G.F.); (L.F.R.)
- Interdepartmental University Center of Research “Adaptation and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
55
|
Batra G, Jain M, Singh RS, Sharma AR, Singh A, Prakash A, Medhi B. Novel therapeutic targets for amyotrophic lateral sclerosis. Indian J Pharmacol 2019; 51:418-425. [PMID: 32029967 PMCID: PMC6984016 DOI: 10.4103/ijp.ijp_823_19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/01/2020] [Accepted: 01/04/2020] [Indexed: 11/04/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an untreatable and fatal neurodegenerative disease that is identified by the loss of motor neurons in the spinal cord, brain stem, and motor cortex which theatrically reduces life expectancy. Although the primary cause of ALS remains unclear, its heterogeneity put forward for consideration of association with various factors, including endogenous and/or environmental ones, which may be involved in progressive motor neuron stress that causes activation of different cell death pathways. It is hypothesized that this disease is triggered by factors related to genetic, environmental, and age-dependent risk. In spite of large neurobiological, molecular and genetic research, at the beginning of the 21st century, ALS still remains one of the most devastating neurodegenerative diseases because of the lack of effective therapeutic targets. It is a challenge for the clinical and scientific community. A better understanding of the etiology of ALS is necessary to develop specific targets of this progressive neurodegenerative disease. This review states about the current knowledge of targets in ALS research. This review provides an overview of the contribution of different targets like mitochondrial dysfunction, glutamate transport and excitotoxicity, protein accumulation, Oxidative stress, neuromuscular junction, microglia, and other molecular targets in the pathogenesis of ALS.
Collapse
Affiliation(s)
- Gitika Batra
- Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manav Jain
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rahul Soloman Singh
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Raj Sharma
- Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashutosh Singh
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ajay Prakash
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|