51
|
Walbeek TJ, Harrison EM, Gorman MR, Glickman GL. Naturalistic Intensities of Light at Night: A Review of the Potent Effects of Very Dim Light on Circadian Responses and Considerations for Translational Research. Front Neurol 2021; 12:625334. [PMID: 33597916 PMCID: PMC7882611 DOI: 10.3389/fneur.2021.625334] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/06/2021] [Indexed: 12/16/2022] Open
Abstract
In this review, we discuss the remarkable potency and potential applications of a form of light that is often overlooked in a circadian context: naturalistic levels of dim light at night (nLAN), equivalent to intensities produced by the moon and stars. It is often assumed that such low levels of light do not produce circadian responses typically associated with brighter light levels. A solid understanding of the impacts of very low light levels is complicated further by the broad use of the somewhat ambiguous term “dim light,” which has been used to describe light levels ranging seven orders of magnitude. Here, we lay out the argument that nLAN exerts potent circadian effects on numerous mammalian species, and that given conservation of anatomy and function, the efficacy of light in this range in humans warrants further investigation. We also provide recommendations for the field of chronobiological research, including minimum requirements for the measurement and reporting of light, standardization of terminology (specifically as it pertains to “dim” light), and ideas for reconsidering old data and designing new studies.
Collapse
Affiliation(s)
- Thijs J Walbeek
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, United States.,Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, United States
| | - Elizabeth M Harrison
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, United States
| | - Michael R Gorman
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, United States.,Department of Psychology, University of California, San Diego, San Diego, CA, United States
| | - Gena L Glickman
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, United States.,Departments of Psychiatry and Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
52
|
Houser KW, Esposito T. Human-Centric Lighting: Foundational Considerations and a Five-Step Design Process. Front Neurol 2021; 12:630553. [PMID: 33584531 PMCID: PMC7873560 DOI: 10.3389/fneur.2021.630553] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/06/2021] [Indexed: 12/22/2022] Open
Abstract
At its best, human-centric lighting considers the visual and non-visual effects of light in support of positive human outcomes. At its worst, it is a marketing phrase used to healthwash lighting products or lighting design solutions. There is no doubt that environmental lighting contributes to human health, but how might one practice human-centric lighting given both the credible potential and the implausible hype? Marketing literature is filled with promises. Technical lighting societies have summarized the science but have not yet offered design guidance. Meanwhile, designers are in the middle, attempting to distinguish credible knowledge from that which is dubious to make design decisions that affect people directly. This article is intended to: (1) empower the reader with fundamental understandings of ways in which light affects health; (2) provide a process for human-centric lighting design that can dovetail with the decision-making process that is already a part of a designer's workflow.
Collapse
Affiliation(s)
- Kevin W. Houser
- School of Civil and Construction Engineering, Oregon State University, Corvallis, OR, United States
- Advanced Lighting Team, Pacific Northwest National Laboratory, Portland, OR, United States
| | - Tony Esposito
- Lighting Research Solutions LLC, Cambridge, MA, United States
| |
Collapse
|
53
|
Lee R, Tapia A, Kaladchibachi S, Grandner MA, Fernandez FX. Meta-analysis of light and circadian timekeeping in rodents. Neurosci Biobehav Rev 2021; 123:215-229. [PMID: 33513413 DOI: 10.1016/j.neubiorev.2020.12.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/12/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022]
Abstract
We conducted a meta-analysis of papers published over the past half-century (1964-2017) that quantified the phase-shifting effects of timed light exposure on rodent locomotor rhythms. Descriptive statistics were tabulated in order to explore the extent to which these studies were generalizable across species, sex, age, circadian timing, and light sources. Attempts at understanding photic resetting were primarily targeted at younger male animals, with particular emphases placed on characterizing the pacemaker systems of C57BL/6 mice and Syrian hamsters during the parts of their subjective night most sensitive to delivery of white-fluorescent light. With subsequent analyses restricted to these rodent models, we then assessed the relationship between luminous exposure (via broadspectrum emission) and phase-shifting through a series of linear regressions. Monotonically increasing illuminance-response functions were noted at most circadian times surveyed. In the aggregate, our results show that previous research conducted on light's regulation of circadian timekeeping has been skewed in design with respect to several important biological variables. This bias might limit translation of phototherapy-relevant data to women and older individuals.
Collapse
Affiliation(s)
- Robert Lee
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Amaris Tapia
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | | | - Michael A Grandner
- Sleep and Health Research Program, Department of Psychiatry, University of Arizona, Tucson, AZ, USA
| | - Fabian-Xosé Fernandez
- Department of Psychology, University of Arizona, Tucson, AZ, USA; Department of Neurology, University of Arizona, Tucson, AZ, USA; BIO5 and McKnight Brain Research Institutes, Tucson, AZ, USA.
| |
Collapse
|
54
|
Höhn C, Schmid SR, Plamberger CP, Bothe K, Angerer M, Gruber G, Pletzer B, Hoedlmoser K. Preliminary Results: The Impact of Smartphone Use and Short-Wavelength Light during the Evening on Circadian Rhythm, Sleep and Alertness. Clocks Sleep 2021; 3:66-86. [PMID: 33499010 PMCID: PMC7838958 DOI: 10.3390/clockssleep3010005] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 12/20/2022] Open
Abstract
Smartphone usage strongly increased in the last decade, especially before bedtime. There is growing evidence that short-wavelength light affects hormonal secretion, thermoregulation, sleep and alertness. Whether blue light filters can attenuate these negative effects is still not clear. Therefore, here, we present preliminary data of 14 male participants (21.93 ± 2.17 years), who spent three nights in the sleep laboratory, reading 90 min either on a smartphone (1) with or (2) without a blue light filter, or (3) on printed material before bedtime. Subjective sleepiness was decreased during reading on a smartphone, but no effects were present on evening objective alertness in a GO/NOGO task. Cortisol was elevated in the morning after reading on the smartphone without a filter, which resulted in a reduced cortisol awakening response. Evening melatonin and nightly vasodilation (i.e., distal-proximal skin temperature gradient) were increased after reading on printed material. Early slow wave sleep/activity and objective alertness in the morning were only reduced after reading without a filter. These results indicate that short-wavelength light affects not only circadian rhythm and evening sleepiness but causes further effects on sleep physiology and alertness in the morning. Using a blue light filter in the evening partially reduces these negative effects.
Collapse
Affiliation(s)
- Christopher Höhn
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, University of Salzburg, 5020 Salzburg, Austria; (C.H.); (S.R.S.); (C.P.P.); (K.B.); (M.A.)
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg, 5020 Salzburg, Austria;
| | - Sarah R. Schmid
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, University of Salzburg, 5020 Salzburg, Austria; (C.H.); (S.R.S.); (C.P.P.); (K.B.); (M.A.)
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg, 5020 Salzburg, Austria;
| | - Christina P. Plamberger
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, University of Salzburg, 5020 Salzburg, Austria; (C.H.); (S.R.S.); (C.P.P.); (K.B.); (M.A.)
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg, 5020 Salzburg, Austria;
| | - Kathrin Bothe
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, University of Salzburg, 5020 Salzburg, Austria; (C.H.); (S.R.S.); (C.P.P.); (K.B.); (M.A.)
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg, 5020 Salzburg, Austria;
| | - Monika Angerer
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, University of Salzburg, 5020 Salzburg, Austria; (C.H.); (S.R.S.); (C.P.P.); (K.B.); (M.A.)
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg, 5020 Salzburg, Austria;
| | | | - Belinda Pletzer
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg, 5020 Salzburg, Austria;
| | - Kerstin Hoedlmoser
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, University of Salzburg, 5020 Salzburg, Austria; (C.H.); (S.R.S.); (C.P.P.); (K.B.); (M.A.)
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg, 5020 Salzburg, Austria;
| |
Collapse
|
55
|
Light in the Senior Home: Effects of Dynamic and Individual Light Exposure on Sleep, Cognition, and Well-Being. Clocks Sleep 2020; 2:557-576. [PMID: 33327499 PMCID: PMC7768397 DOI: 10.3390/clockssleep2040040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 11/18/2022] Open
Abstract
Disrupted sleep is common among nursing home patients and is associated with cognitive decline and reduced well-being. Sleep disruptions may in part be a result of insufficient daytime light exposure. This pilot study examined the effects of dynamic “circadian” lighting and individual light exposure on sleep, cognitive performance, and well-being in a sample of 14 senior home residents. The study was conducted as a within-subject study design over five weeks of circadian lighting and five weeks of conventional lighting, in a counterbalanced order. Participants wore wrist accelerometers to track rest–activity and light profiles and completed cognitive batteries (National Institute of Health (NIH) toolbox) and questionnaires (depression, fatigue, sleep quality, lighting appraisal) in each condition. We found no significant differences in outcome variables between the two lighting conditions. Individual differences in overall (indoors and outdoors) light exposure levels varied greatly between participants but did not differ between lighting conditions, except at night (22:00–6:00), with maximum light exposure being greater in the conventional lighting condition. Pooled data from both conditions showed that participants with higher overall morning light exposure (6:00–12:00) had less fragmented and more stable rest–activity rhythms with higher relative amplitude. Rest–activity rhythm fragmentation and long sleep duration both uniquely predicted lower cognitive performance.
Collapse
|
56
|
Boots R, Mead G, Rawashdeh O, Bellapart J, Townsend S, Paratz J, Garner N, Clement P, Oddy D. Circadian Hygiene in the ICU Environment (CHIE) study. CRIT CARE RESUSC 2020; 22:361-369. [PMID: 38046884 PMCID: PMC10692571 DOI: 10.51893/2020.4.oa9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objective: To investigate the environment and care in the intensive care unit (ICU) and its relationship to patient circadian temperature disruption. Design: 30-day, prospective period prevalence study. Setting: 27-bed tertiary ICU. Participants: Patients expected to remain in the ICU for at least 24 hours. Main outcome measures: Temperature, relative humidity, light and sound intensity in the ICU; nursing interventions (using the Therapeutic Intervention Scoring System-28); and core body temperature of ICU patients. Results: Of 28 patients surveyed, 20 (71%) were mechanically ventilated. Median (interquartile range [IQR]) light intensity peaked at 07:00 at 165 (12-1218) lux with a trough at 23:00 of 15 (12-51) lux and was consistently < 100 lux between 21:00 and 06:00. Peak median (IQR) sound intensity was at 07:00 (62.55 [57.87-68.03] dB) while 58.84 (54.81-64.71) dB at 02:00. Ambient temperature and humidity varied with median (IQR) peaks of 23.11°C (22.74-23.31°C) at 16:00 and 44.07% (32.76-51.08%) at 11:00 and median troughs of 22.37°C (21.79-22.88°C) at 05:00 and 39.95% (31.53-47.95%) at 14:00, respectively. Disturbances to sleep during the night occurred due to care activities including linen changes (15 patients, 54%) and bathing (13, 46%). On the day before and the day of the study, 13 patients (47%) and 10 patients (36%), respectively, had a circadian rhythm on core body temperature without an association with illness severity, nursing intervention or environmental measures. Conclusions: The ICU has low light intensity with relative humidity and ambient temperature not aligned to normal human circadian timing. Noise levels are commonly equivalent to conversational speech while patient care procedures interrupt overnight sleep. The contribution of these factors to disrupted CBT rhythmicity is unclear.
Collapse
Affiliation(s)
- Rob Boots
- Thoracic Medicine, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
- Burns, Trauma and Critical Care Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Gabrielle Mead
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Oliver Rawashdeh
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Judith Bellapart
- Burns, Trauma and Critical Care Research Centre, University of Queensland, Brisbane, QLD, Australia
- Department of Intensive Care Medicine, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
| | - Shane Townsend
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Department of Intensive Care Medicine, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
| | - Jenny Paratz
- Burns, Trauma and Critical Care Research Centre, University of Queensland, Brisbane, QLD, Australia
- School of Allied Health, Griffith University, Brisbane, QLD, Australia
| | - Nicholas Garner
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Pierre Clement
- Department of Intensive Care Medicine, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
| | - David Oddy
- Department of Intensive Care Medicine, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
| | - On behalf of the Circadian Investigators in Critical Illness
- Thoracic Medicine, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
- Burns, Trauma and Critical Care Research Centre, University of Queensland, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Department of Intensive Care Medicine, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
- School of Allied Health, Griffith University, Brisbane, QLD, Australia
| |
Collapse
|
57
|
Optimization of Lighting Projects Including Photopic and Circadian Criteria: A Simplified Action Protocol. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10228068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lighting projects that consider parameters related to circadian light remain rare. Using controlled lighting on both photopic and melanopic levels, this study aims to simplify the design of circadian lighting projects based on traditional photometric parameters and calculations. A real classroom is used to illustrate the behavior of horizontal (visual stimuli) and vertical (circadian contribution) illuminances under different design parameters, such as the varied reflectance of walls, ceiling, and floor; varied spatial distribution curves, including the number and position of luminaires; and across the spectral power distribution of a variety of LEDs. In this work, we seek to clarify and simplify to the greatest possible extent the meaning and scope of various lighting standards while establishing simple protocols. Our results will enable designers to carry out optimized lighting projects from both the photometric and circadian perspectives.
Collapse
|
58
|
Lockley SW. Journal of Pineal Research guideline for authors: Measuring melatonin in humans. J Pineal Res 2020; 69:e12664. [PMID: 32344453 DOI: 10.1111/jpi.12664] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Steven W Lockley
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
59
|
Fleury G, Masís‐Vargas A, Kalsbeek A. Metabolic Implications of Exposure to Light at Night: Lessons from Animal and Human Studies. Obesity (Silver Spring) 2020; 28 Suppl 1:S18-S28. [PMID: 32700826 PMCID: PMC7497102 DOI: 10.1002/oby.22807] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 02/06/2023]
Abstract
Lately, the incidence of overweight, obesity, and type 2 diabetes has shown a staggering increase. To prevent and treat these conditions, one must look at their etiology. As life on earth has evolved under the conditions of nature's 24-hour light/dark cycle, it seems likely that exposure to artificial light at night (LAN) would affect physiology. Indeed, ample evidence has shown that LAN impacts many metabolic parameters, at least partly via the biological clock in the suprachiasmatic nucleus of the hypothalamus. This review focuses on the impact of chronic and acute effects of LAN of different wavelengths on locomotor activity, food intake, the sleep/wake cycle, body temperature, melatonin, glucocorticoids, and glucose and lipid metabolism. While chronic LAN disturbs daily rhythms in these parameters, experiments using short-term LAN exposure also have shown acute negative effects in metabolically active peripheral tissues. Experiments using LAN of different wavelengths not only have indicated an important role for melanopsin, the photopigment found in intrinsically photosensitive retinal ganglion cells, but also provided evidence that each wavelength may have a specific impact on energy metabolism. Importantly, exposure to LAN has been shown to impact glucose homeostasis also in humans and to be associated with an increased incidence of overweight, obesity, and atherosclerosis.
Collapse
Affiliation(s)
- Giulia Fleury
- Department of Endocrinology and MetabolismAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - Anayanci Masís‐Vargas
- Department of Endocrinology and MetabolismAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
- Hypothalamic Integration MechanismsNetherlands Institute for Neuroscience (NIN)Amsterdamthe Netherlands
- Institute of Cellular and Integrative Neurosciences (INCI)UPR‐3212 CNRSUniversity of StrasbourgStrasbourgFrance
| | - Andries Kalsbeek
- Department of Endocrinology and MetabolismAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
- Hypothalamic Integration MechanismsNetherlands Institute for Neuroscience (NIN)Amsterdamthe Netherlands
| |
Collapse
|
60
|
The Impact of Optimized Daylight and Views on the Sleep Duration and Cognitive Performance of Office Workers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17093219. [PMID: 32384634 PMCID: PMC7246601 DOI: 10.3390/ijerph17093219] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/25/2020] [Accepted: 03/29/2020] [Indexed: 12/18/2022]
Abstract
A growing awareness has recently emerged on the health benefits of exposure to daylight and views. Daylight exposure is linked to circadian rhythm regulation, which can have significant impacts on sleep quality and cognitive function. Views of nature have also been shown to impact emotional affect and performance. This study explores the impact of optimized daylight and views on the sleep and cognitive performance of office workers. Thirty knowledge workers spent one week working in each of two office environments with identical layouts, furnishings, and orientations; however, one was outfitted with electrochromic glass and the other with traditional blinds, producing lighting conditions of 40.6 and 316 equivalent melanopic lux, respectively. Participants in the optimized daylight and views condition slept 37 min longer as measured by wrist-worn actigraphs and scored 42% higher on cognitive simulations designed to test their higher order decision-making performance. Both sleep and cognitive function were impacted after one day in the space, yet the impacts became more significant over the course of the week. The positive effect of optimized daylight and views on cognitive function was comparable for almost all participants, while increases in sleep duration were significantly greater for those with the lowest baseline sleep duration. This study stresses the significance of designing with daylight in order to optimize the sleep quality and performance of office workers.
Collapse
|
61
|
Münch M, Wirz-Justice A, Brown SA, Kantermann T, Martiny K, Stefani O, Vetter C, Wright KP, Wulff K, Skene DJ. The Role of Daylight for Humans: Gaps in Current Knowledge. Clocks Sleep 2020; 2:61-85. [PMID: 33089192 PMCID: PMC7445840 DOI: 10.3390/clockssleep2010008] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/21/2020] [Indexed: 01/04/2023] Open
Abstract
Daylight stems solely from direct, scattered and reflected sunlight, and undergoes dynamic changes in irradiance and spectral power composition due to latitude, time of day, time of year and the nature of the physical environment (reflections, buildings and vegetation). Humans and their ancestors evolved under these natural day/night cycles over millions of years. Electric light, a relatively recent invention, interacts and competes with the natural light-dark cycle to impact human biology. What are the consequences of living in industrialised urban areas with much less daylight and more use of electric light, throughout the day (and at night), on general health and quality of life? In this workshop report, we have classified key gaps of knowledge in daylight research into three main groups: (I) uncertainty as to daylight quantity and quality needed for "optimal" physiological and psychological functioning, (II) lack of consensus on practical measurement and assessment methods and tools for monitoring real (day) light exposure across multiple time scales, and (III) insufficient integration and exchange of daylight knowledge bases from different disciplines. Crucial short and long-term objectives to fill these gaps are proposed.
Collapse
Affiliation(s)
- Mirjam Münch
- Sleep/Wake Research Centre, Massey University Wellington, Wellington 6021, New Zealand
| | - Anna Wirz-Justice
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4002 Basel, Switzerland; (A.W.-J.); (O.S.)
- Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, 4002 Basel, Switzerland
| | - Steven A. Brown
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zürich, 8057 Zürich, Switzerland;
| | - Thomas Kantermann
- Faculty for Health and Social Affairs, University of Applied Sciences for Economics and Management (FOM), 45141 Essen, Germany;
- SynOpus, 44789 Bochum, Germany
| | - Klaus Martiny
- Psychiatric Center Copenhagen, University of Copenhagen, Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Oliver Stefani
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4002 Basel, Switzerland; (A.W.-J.); (O.S.)
- Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, 4002 Basel, Switzerland
| | - Céline Vetter
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (C.V.); (K.P.W.J.)
| | - Kenneth P. Wright
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (C.V.); (K.P.W.J.)
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado, Aurora, CO 80045, USA
| | - Katharina Wulff
- Departments of Radiation Sciences and Molecular Biology, Umeå University, 901 87 Umeå, Sweden;
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 901 87 Umeå, Sweden
| | - Debra J. Skene
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK;
| |
Collapse
|
62
|
Volf C, Aggestrup AS, Petersen PM, Dam-Hansen C, Knorr U, Petersen EE, Engstrøm J, Jakobsen JC, Hansen TS, Madsen HØ, Hageman I, Martiny K. Dynamic LED-light versus static LED-light for depressed inpatients: study protocol for a randomised clinical study. BMJ Open 2020; 10:e032233. [PMID: 31988225 PMCID: PMC7045110 DOI: 10.1136/bmjopen-2019-032233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 12/19/2019] [Accepted: 01/07/2020] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION Retrospective studies conducted in psychiatric inpatient wards have shown a relation between the intensity of daylight in patient rooms and the length of stay, pointing to an antidepressant effect of ambient lighting conditions. Light therapy has shown a promising antidepressant effect when administered from a light box. The emergence of light-emitting diode (LED) technology has made it possible to build luminaires into rooms and to dynamically mimic the spectral and temporal distribution of daylight. The objective of this study is to investigate the antidepressant efficacy of a newly developed dynamic LED-lighting system installed in an inpatient ward. METHODS AND ANALYSIS In all, 150 inpatients with a major depressive episode, as part of either a major depressive disorder or as part of a bipolar disorder, will be included. The design is a two-arm 1:1 randomised study with a dynamic LED-lighting arm and a static LED-lighting arm, both as add-on to usual treatment in an inpatient psychiatric ward. The primary outcome is the baseline adjusted score on the 6-item Hamilton Depression Rating Scale at week 3. The secondary outcomes are the mean score on the Suicidal Ideation Attributes Scale at week 3, the mean score on the 17-item Hamilton Depression Rating Scale at week 3 and the mean score on the World Health Organisation Quality of Life-BREF (WHOQOL-BREF) at week 3. The spectral distribution of daylight and LED-light, with a specific focus on light mediated through the intrinsically photosensitive retinal ganglion cells, will be measured. Use of light luminaires will be logged. Assessors of Hamilton Depression Rating Scale scores and data analysts will be blinded for treatment allocation. The study was initiated in May 2019 and will end in December 2021. ETHICS AND DISSEMINATION No ethical issues are expected. Results will be published in peer-reviewed journals, disseminated electronically and in print and presented at symposia. TRIAL REGISTRATION NUMBER NCT03821506; Pre-results.
Collapse
Affiliation(s)
- Carlo Volf
- Psychiatric Centre Copenhagen, University Hospital Copenhagen, Copenhagen, Denmark
| | - Anne Sofie Aggestrup
- Psychiatric Centre Copenhagen, University Hospital Copenhagen, Copenhagen, Denmark
| | - Paul Michael Petersen
- Department of Photonics Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Carsten Dam-Hansen
- Department of Photonics Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Ulla Knorr
- Psychiatric Centre Copenhagen, University Hospital Copenhagen, Copenhagen, Denmark
| | - Ema Erkocevic Petersen
- The Copenhagen Trial Unit, Centre for Clinical Intervention Research, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Janus Engstrøm
- Centre for Clinical Intervention Research, Rigshospitalet, Kobenhavn, Denmark
| | - Janus C Jakobsen
- The Copenhagen Trial Unit, Centre for Clinical Intervention Research, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | | | - Ida Hageman
- Mental Health Services in the Capital Region of Denmark, Kobenhavn O, Denmark
| | - Klaus Martiny
- Psychiatric Centre Copenhagen, University Hospital Copenhagen, Copenhagen, Denmark
| |
Collapse
|
63
|
Cajochen C, Reichert C, Maire M, Schlangen LJM, Schmidt C, Viola AU, Gabel V. Evidence That Homeostatic Sleep Regulation Depends on Ambient Lighting Conditions during Wakefulness. Clocks Sleep 2019; 1:517-531. [PMID: 33089184 PMCID: PMC7445844 DOI: 10.3390/clockssleep1040040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/09/2019] [Indexed: 11/16/2022] Open
Abstract
We examined whether ambient lighting conditions during extended wakefulness modulate the homeostatic response to sleep loss as indexed by. slow wave sleep (SWS) and electroencephalographic (EEG) slow-wave activity (SWA) in healthy young and older volunteers. Thirty-eight young and older participants underwent 40 hours of extended wakefulness [i.e., sleep deprivation (SD)] once under dim light (DL: 8 lux, 2800 K), and once under either white light (WL: 250 lux, 2800 K) or blue-enriched white light (BL: 250 lux, 9000 K) exposure. Subjective sleepiness was assessed hourly and polysomnography was quantified during the baseline night prior to the 40-h SD and during the subsequent recovery night. Both the young and older participants responded with a higher homeostatic sleep response to 40-h SD after WL and BL than after DL. This was indexed by a significantly faster intra-night accumulation of SWS and a significantly higher response in relative EEG SWA during the recovery night after WL and BL than after DL for both age groups. No significant differences were observed between the WL and BL condition for these two particular SWS and SWA measures. Subjective sleepiness ratings during the 40-h SD were significantly reduced under both WL and BL compared to DL, but were not significantly associated with markers of sleep homeostasis in both age groups. Our data indicate that not only the duration of prior wakefulness, but also the experienced illuminance during wakefulness affects homeostatic sleep regulation in humans. Thus, working extended hours under low illuminance may negatively impact subsequent sleep intensity in humans.
Collapse
Affiliation(s)
- Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Wilhelm Kleinstr. 27, CH-4002 Basel, Switzerland;
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Birmannsgasse 8, CHF-4055 Basel, Switzerland
| | - Carolin Reichert
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Wilhelm Kleinstr. 27, CH-4002 Basel, Switzerland;
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Birmannsgasse 8, CHF-4055 Basel, Switzerland
| | - Micheline Maire
- Institute of Primary Health Care (BIHAM), University of Bern, 3012 Bern, Switzerland;
| | - Luc J M Schlangen
- Intelligent Lighting Institute, School of Innovation Sciences, Department of Human Technology Interaction, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands;
| | - Christina Schmidt
- GIGA-Research, Cyclotron Research Centre-In Vivo Imaging Unit, Psychology and Neuroscience of Cognition Research Unit (PsyNCog), Faculty of Psychology and Educational Sciences, University of Liège, 4000 Liège, Belgium;
| | | | - Virginie Gabel
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA 94305, USA;
| |
Collapse
|
64
|
Abstract
Humans live in a 24-hour environment, in which light and darkness follow a diurnal pattern. Our circadian pacemaker, the suprachiasmatic nuclei (SCN) in the hypothalamus, is entrained to the 24-hour solar day via a pathway from the retina and synchronises our internal biological rhythms. Rhythmic variations in ambient illumination impact behaviours such as rest during sleep and activity during wakefulness as well as their underlying biological processes. Rather recently, the availability of artificial light has substantially changed the light environment, especially during evening and night hours. This may increase the risk of developing circadian rhythm sleep-wake disorders (CRSWD), which are often caused by a misalignment of endogenous circadian rhythms and external light-dark cycles. While the exact relationship between the availability of artificial light and CRSWD remains to be established, nocturnal light has been shown to alter circadian rhythms and sleep in humans. On the other hand, light can also be used as an effective and noninvasive therapeutic option with little to no side effects, to improve sleep,mood and general well-being. This article reviews our current state of knowledge regarding the effects of light on circadian rhythms, sleep, and mood.
Collapse
Affiliation(s)
- Christine Blume
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel (UPK), Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland.,Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Corrado Garbazza
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel (UPK), Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland
| | - Manuel Spitschan
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel (UPK), Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland.,Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
65
|
Abstract
Light, through its non-imaging forming effects, plays a dominant role on a myriad of physiological functions, including the human sleep–wake cycle. The non-image forming effects of light heavily rely on specific properties such as intensity, duration, timing, pattern, and wavelengths. Here, we address how specific properties of light influence sleep and wakefulness in humans through acute effects, e.g., on alertness, and/or effects on the circadian timing system. Of critical relevance, we discuss how different characteristics of light exposure across the 24-h day can lead to changes in sleep–wake timing, sleep propensity, sleep architecture, and sleep and wake electroencephalogram (EEG) power spectra. Ultimately, knowledge on how light affects sleep and wakefulness can improve light settings at home and at the workplace to improve health and well-being and optimize treatments of chronobiological disorders.
Collapse
|