51
|
Chelliah R, Wei S, Vijayalakshmi S, Barathikannan K, Sultan G, Liu S, Oh DH. A Comprehensive Mini-Review on Lignin-Based Nanomaterials for Food Applications: Systemic Advancement and Future Trends. Molecules 2023; 28:6470. [DOI: https:/doi.10.3390/molecules28186470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
The shift to an environmentally friendly material economy requires renewable resource exploration. This shift may depend on lignin valorization. Lignin is an aromatic polymer that makes up one-third of total lingo-cellulosic biomass and is separated into large amounts for biofuel and paper manufacture. This renewable polymer is readily available at a very low cost as nearly all the lignin that is produced each year (90–100 million tons) is simply burned as a low-value fuel. Lignin offers potential qualities for many applications, and yet it is underutilized. This Perspective highlights lignin-based material prospects and problems in food packaging, antimicrobial, and agricultural applications. The first half will discuss the present and future studies on exploiting lignin as an addition to improve food packaging’s mechanical, gas, UV, bioactive molecules, polyphenols, and antioxidant qualities. Second, lignin’s antibacterial activity against bacteria, fungi, and viruses will be discussed. In conclusion, lignin agriculture will be discussed in the food industries.
Collapse
Affiliation(s)
- Ramachandran Chelliah
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
- Kangwon Institute of Inclusive Technology (KIIT), Kangwon National University, Chuncheon 24341, Republic of Korea
- Saveetha School of Engineering, SIMATS University, Kanchipuram 600124, India
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Selvakumar Vijayalakshmi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kaliyan Barathikannan
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ghazala Sultan
- Department of Computer Science, Faculty of Science, Aligarh Muslim University, Aligarh 202002, India
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
- Kangwon Institute of Inclusive Technology (KIIT), Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
52
|
Chelliah R, Wei S, Vijayalakshmi S, Barathikannan K, Sultan G, Liu S, Oh DH. A Comprehensive Mini-Review on Lignin-Based Nanomaterials for Food Applications: Systemic Advancement and Future Trends. Molecules 2023; 28:6470. [PMID: 37764246 PMCID: PMC10535768 DOI: 10.3390/molecules28186470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The shift to an environmentally friendly material economy requires renewable resource exploration. This shift may depend on lignin valorization. Lignin is an aromatic polymer that makes up one-third of total lingo-cellulosic biomass and is separated into large amounts for biofuel and paper manufacture. This renewable polymer is readily available at a very low cost as nearly all the lignin that is produced each year (90-100 million tons) is simply burned as a low-value fuel. Lignin offers potential qualities for many applications, and yet it is underutilized. This Perspective highlights lignin-based material prospects and problems in food packaging, antimicrobial, and agricultural applications. The first half will discuss the present and future studies on exploiting lignin as an addition to improve food packaging's mechanical, gas, UV, bioactive molecules, polyphenols, and antioxidant qualities. Second, lignin's antibacterial activity against bacteria, fungi, and viruses will be discussed. In conclusion, lignin agriculture will be discussed in the food industries.
Collapse
Affiliation(s)
- Ramachandran Chelliah
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; (R.C.); (S.L.)
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea; (S.V.); (K.B.)
- Kangwon Institute of Inclusive Technology (KIIT), Kangwon National University, Chuncheon 24341, Republic of Korea
- Saveetha School of Engineering, SIMATS University, Kanchipuram 600124, India
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; (R.C.); (S.L.)
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Selvakumar Vijayalakshmi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea; (S.V.); (K.B.)
| | - Kaliyan Barathikannan
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea; (S.V.); (K.B.)
| | - Ghazala Sultan
- Department of Computer Science, Faculty of Science, Aligarh Muslim University, Aligarh 202002, India;
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; (R.C.); (S.L.)
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea; (S.V.); (K.B.)
- Kangwon Institute of Inclusive Technology (KIIT), Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
53
|
Monroy Y, Hamet MF, Rivero S, García MA. Tailor-made starch-based adhesives chemically modified with NaOH:urea and their applications on a cellulosic substrate. Int J Biol Macromol 2023; 247:125423. [PMID: 37343607 DOI: 10.1016/j.ijbiomac.2023.125423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
Adhesives formulated with native starches have high viscosity, low solids content, poor bond strength and stability due to the starch retrogradation. To overcome this problem, a strategy is the starch treatment with NaOH solution combined with urea, capable of intercalating in the polymeric chains of starch. The aims of this work were to develop adhesives based on chemically modified cassava starch with different NaOH:urea ratios and to study in depth the effect induced by the addition of different concentrations of alkali and urea in the adhesive capacity of formulations that determine their subsequent application in paper-based packaging. Firmness and consistency of the adhesive increased for the 1:1 ratio while it decreased for the NaOH:urea 2:1 ratio, suggesting that the hydrolysis of polymer chains occurred. Additionally, adhesives prepared with 15 % starch maintaining NaOH:urea ratios of 0.5:1: and 1:1 exhibited the highest stress values. ATR-FTIR studies supported the results obtained. It was possible to obtain formulations with different adhesive properties with applications in paper-based packaging. From the analysis of the studied parameters, the combination of 15 % w/w cassava starch with a ratio of NaOH:urea 1:1 allows obtaining adhesives with adequate consistency and adhesive capacity which remain stable during the adhesive storage.
Collapse
Affiliation(s)
- Yuliana Monroy
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA-CONICET), 47 y 116 S/N, La Plata, B1900AJJ Buenos Aires, Argentina.
| | - M Fernanda Hamet
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA-CONICET), 47 y 116 S/N, La Plata, B1900AJJ Buenos Aires, Argentina; Universidad Nacional Arturo Jauretche, Av. Calchaquí 6200 (1888), Florencio Varela, Argentina
| | - Sandra Rivero
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA-CONICET), 47 y 116 S/N, La Plata, B1900AJJ Buenos Aires, Argentina; Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata, B1900AJJ Buenos Aires, Argentina
| | - María A García
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA-CONICET), 47 y 116 S/N, La Plata, B1900AJJ Buenos Aires, Argentina; Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata, B1900AJJ Buenos Aires, Argentina.
| |
Collapse
|
54
|
Ciano S, Di Mario M, Goscinny S, Van Hoeck E. Towards Less Plastic in Food Contact Materials: An In-Depth Overview of the Belgian Market. Foods 2023; 12:2737. [PMID: 37509829 PMCID: PMC10379060 DOI: 10.3390/foods12142737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
The food contact materials (FCMs) industry is forced to develop substitute materials due to constant pressure from consumers and authorities to reduce fossil-based plastic. Several alternatives are available on the market. However, market share, trends, and consumer preferences are still unclear. Therefore, this study aims to provide an overview of the Belgian FCMs market, the available substitute materials, and their uses. The market analysis was performed with an integrated web-based approach. Fifty-two sources were investigated, covering e-shops selling materials intended to replace disposable plastic materials or being advertised as environmentally friendly and websites describing homemade FCMs. The first screening identified 10,523 articles. The following data cleaning process resulted in a homogeneous dataset containing 2688 unique entries, systematically categorised into fifteen material categories and seven utilisation classes. Paper and board was the most popular material category (i.e., 37% of the entries), followed by bagasse, accounting for 9% of the entries. Takeaway and food serving (44.4% and 22.8% of the entries) were the most common usage categories. The study pursued to provide insights into current trends and consumer preferences, highlighting priorities for safety assessment and future policy making.
Collapse
Affiliation(s)
- Salvatore Ciano
- Scientific Direction "Chemical and Physical Health Risks", Sciensano, Rue Juliette Wytsman 14, 1050 Ixelles, Belgium
| | - Mélanie Di Mario
- Scientific Direction "Chemical and Physical Health Risks", Sciensano, Rue Juliette Wytsman 14, 1050 Ixelles, Belgium
| | - Séverine Goscinny
- Scientific Direction "Chemical and Physical Health Risks", Sciensano, Rue Juliette Wytsman 14, 1050 Ixelles, Belgium
| | - Els Van Hoeck
- Scientific Direction "Chemical and Physical Health Risks", Sciensano, Rue Juliette Wytsman 14, 1050 Ixelles, Belgium
| |
Collapse
|
55
|
Pak AM, Maiorova EA, Siaglova ED, Aliev TM, Strukova EN, Kireynov AV, Piryazev AA, Novikov VV. MIL-100(Fe)-Based Composite Films for Food Packaging. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111714. [PMID: 37299617 DOI: 10.3390/nano13111714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
A biocompatible metal-organic framework MIL-100(Fe) loaded with the active compounds of tea tree essential oil was used to produce composite films based on κ-carrageenan and hydroxypropyl methylcellulose with the uniform distribution of the particles of this filler. The composite films featured great UV-blocking properties, good water vapor permeability, and modest antibacterial activity against both Gram-negative and Gram-positive bacteria. The use of metal-organic frameworks as containers of hydrophobic molecules of natural active compounds makes the composites made from naturally occurring hydrocolloids attractive materials for active packaging of food products.
Collapse
Affiliation(s)
- Alexandra M Pak
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str. 28, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, Institutskiy per. 9, 141700 Dolgoprudny, Russia
| | - Elena A Maiorova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str. 28, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, Institutskiy per. 9, 141700 Dolgoprudny, Russia
| | - Elizaveta D Siaglova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str. 28, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, Institutskiy per. 9, 141700 Dolgoprudny, Russia
| | - Teimur M Aliev
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str. 28, 119991 Moscow, Russia
| | - Elena N Strukova
- Gause Institute of New Antibiotics, Russian Academy of Sciences, B. Pirogovskaya Str. 11/1, 119021 Moscow, Russia
| | - Aleksey V Kireynov
- Scientific and Educational Center "Composites of Russia", Bauman Moscow State Technical University, 2nd Baumanskaya Str. 5, 105005 Moscow, Russia
| | - Alexey A Piryazev
- Research Center for Genetics and Life Sciences, Scientific Direction Biomaterials, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
| | - Valentin V Novikov
- Moscow Institute of Physics and Technology, National Research University, Institutskiy per. 9, 141700 Dolgoprudny, Russia
- Scientific and Educational Center "Composites of Russia", Bauman Moscow State Technical University, 2nd Baumanskaya Str. 5, 105005 Moscow, Russia
| |
Collapse
|