51
|
Zhao F, Zhou R, Wang JL, Liu H, Jing ZC. 18β-glycyrrhetinic acid ameliorates endoplasmic reticulum stress-induced inflammation in pulmonary arterial hypertension through PERK/eIF2α/NF-κB signaling. CHINESE J PHYSIOL 2022; 65:187-198. [DOI: 10.4103/0304-4920.354801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
52
|
Rehni AK, Cho S, Dave KR. Ischemic brain injury in diabetes and endoplasmic reticulum stress. Neurochem Int 2022; 152:105219. [PMID: 34736936 PMCID: PMC8918032 DOI: 10.1016/j.neuint.2021.105219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/07/2021] [Accepted: 10/29/2021] [Indexed: 01/03/2023]
Abstract
Diabetes is a widespread disease characterized by high blood glucose levels due to abnormal insulin activity, production, or both. Chronic diabetes causes many secondary complications including cardiovascular disease: a life-threatening complication. Cerebral ischemia-related mortality, morbidity, and the extent of brain injury are high in diabetes. However, the mechanism of increase in ischemic brain injury during diabetes is not well understood. Multiple mechanisms mediate diabetic hyperglycemia and hypoglycemia-induced increase in ischemic brain injury. Endoplasmic reticulum (ER) stress mediates both brain injury as well as brain protection after ischemia-reperfusion injury. The pathways of ER stress are modulated during diabetes. Free radical generation and mitochondrial dysfunction, two of the prominent mechanisms that mediate diabetic increase in ischemic brain injury, are known to stimulate the pathways of ER stress. Increased ischemic brain injury in diabetes is accompanied by a further increase in the activation of ER stress. As there are many metabolic changes associated with diabetes, differential activation of the pathways of ER stress may mediate pronounced ischemic brain injury in subjects suffering from diabetes. We presently discuss the literature on the significance of ER stress in mediating increased ischemia-reperfusion injury in diabetes.
Collapse
Affiliation(s)
- Ashish K Rehni
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Sunjoo Cho
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Kunjan R Dave
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
53
|
Kulbay M, Paimboeuf A, Ozdemir D, Bernier J. Review of cancer cell resistance mechanisms to apoptosis and actual targeted therapies. J Cell Biochem 2021; 123:1736-1761. [PMID: 34791699 DOI: 10.1002/jcb.30173] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/04/2021] [Accepted: 10/22/2021] [Indexed: 11/11/2022]
Abstract
The apoptosis pathway is a programmed cell death mechanism that is crucial for cellular and tissue homeostasis and organ development. There are three major caspase-dependent pathways of apoptosis that ultimately lead to DNA fragmentation. Cancerous cells are known to highly regulate the apoptotic pathway and its role in cancer hallmark acquisition has been discussed over the past decades. Numerous mutations in cancer cell types have been reported to be implicated in chemoresistance and treatment outcome. In this review, we summarize the mutations of the caspase-dependant apoptotic pathways that are the source of cancer development and the targeted therapies currently available or in trial.
Collapse
Affiliation(s)
- Merve Kulbay
- INRS - Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada.,Department of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Adeline Paimboeuf
- INRS - Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Derman Ozdemir
- Department of Medicine, One Brooklyn Health-Brookdale Hospital Medical Center, Brooklyn, New York, USA
| | - Jacques Bernier
- INRS - Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| |
Collapse
|
54
|
SREBP1c silencing reduces endoplasmic reticulum stress and related apoptosis in oleic acid induced lipid accumulation. MARMARA MEDICAL JOURNAL 2021. [DOI: 10.5472/marumj.1009096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
55
|
Karan D. CCL23 in Balancing the Act of Endoplasmic Reticulum Stress and Antitumor Immunity in Hepatocellular Carcinoma. Front Oncol 2021; 11:727583. [PMID: 34671553 PMCID: PMC8522494 DOI: 10.3389/fonc.2021.727583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/17/2021] [Indexed: 11/15/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is a cellular process in response to stress stimuli in protecting functional activities. However, sustained hyperactive ER stress influences tumor growth and development. Hepatocytes are enriched with ER and highly susceptible to ER perturbations and stress, which contribute to immunosuppression and the development of aggressive and drug-resistant hepatocellular carcinoma (HCC). ER stress-induced inflammation and tumor-derived chemokines influence the immune cell composition at the tumor site. Consequently, a decrease in the CCL23 chemokine in hepatic tumors is associated with poor survival of HCC patients and could be a mechanism hepatic tumor cells use to evade the immune system. This article describes the prospective role of CCL23 in alleviating ER stress and its impact on the HCC tumor microenvironment in promoting antitumor immunity. Moreover, approaches to reactivate CCL23 combined with immune checkpoint blockade or chemotherapy drugs may provide novel opportunities to target hepatocellular carcinoma.
Collapse
Affiliation(s)
- Dev Karan
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
56
|
Singh R, Smit RB, Wang X, Wang C, Racher H, Hansen D. Reduction of Derlin activity suppresses Notch-dependent tumours in the C. elegans germ line. PLoS Genet 2021; 17:e1009687. [PMID: 34555015 PMCID: PMC8491880 DOI: 10.1371/journal.pgen.1009687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/05/2021] [Accepted: 09/08/2021] [Indexed: 11/19/2022] Open
Abstract
Regulating the balance between self-renewal (proliferation) and differentiation is key to the long-term functioning of all stem cell pools. In the Caenorhabditis elegans germline, the primary signal controlling this balance is the conserved Notch signaling pathway. Gain-of-function mutations in the GLP-1/Notch receptor cause increased stem cell self-renewal, resulting in a tumour of proliferating germline stem cells. Notch gain-of-function mutations activate the receptor, even in the presence of little or no ligand, and have been associated with many human diseases, including cancers. We demonstrate that reduction in CUP-2 and DER-2 function, which are Derlin family proteins that function in endoplasmic reticulum-associated degradation (ERAD), suppresses the C. elegans germline over-proliferation phenotype associated with glp-1(gain-of-function) mutations. We further demonstrate that their reduction does not suppress other mutations that cause over-proliferation, suggesting that over-proliferation suppression due to loss of Derlin activity is specific to glp-1/Notch (gain-of-function) mutations. Reduction of CUP-2 Derlin activity reduces the expression of a read-out of GLP-1/Notch signaling, suggesting that the suppression of over-proliferation in Derlin loss-of-function mutants is due to a reduction in the activity of the mutated GLP-1/Notch(GF) receptor. Over-proliferation suppression in cup-2 mutants is only seen when the Unfolded Protein Response (UPR) is functioning properly, suggesting that the suppression, and reduction in GLP-1/Notch signaling levels, observed in Derlin mutants may be the result of activation of the UPR. Chemically inducing ER stress also suppress glp-1(gf) over-proliferation but not other mutations that cause over-proliferation. Therefore, ER stress and activation of the UPR may help correct for increased GLP-1/Notch signaling levels, and associated over-proliferation, in the C. elegans germline. Notch signaling is a highly conserved signaling pathway that is utilized in many cell fate decisions in many organisms. In the C. elegans germline, Notch signaling is the primary signal that regulates the balance between stem cell proliferation and differentiation. Notch gain-of-function mutations cause the receptor to be active, even when a signal that is normally needed to activate the receptor is absent. In the germline of C. elegans, gain-of-function mutations in GLP-1, a Notch receptor, results in over-proliferation of the stem cells and tumour formation. Here we demonstrate that a reduction or loss of Derlin activity, which is a conserved family of proteins involved in endoplasmic reticulum-associated degradation (ERAD), suppresses over-proliferation due to GLP-1/Notch gain-of-function mutations. Furthermore, we demonstrate that a surveillance mechanism utilized in cells to monitor and react to proteins that are not folded properly (Unfolded Protein Response-UPR) must be functioning well in order for the loss of Derlin activity to supress over-proliferation caused by glp-1/Notch gain-of-function mutations. This suggests that activation of the UPR may be the mechanism at work for suppressing this type of over-proliferation, when Derlin activity is reduced. Therefore, decreasing Derlin activity may be a means of reducing the impact of phenotypes and diseases due to certain Notch gain-of-function mutations.
Collapse
Affiliation(s)
- Ramya Singh
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Ryan B. Smit
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Xin Wang
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Chris Wang
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Hilary Racher
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Dave Hansen
- Department of Biological Sciences, University of Calgary, Calgary, Canada
- * E-mail:
| |
Collapse
|
57
|
Sridhar S, Saha G, Lata S, Mehrotra R. Molecular docking studies of Indian variants of pathophysiological proteins of SARS-CoV-2 with selected drug candidates. J Genet 2021. [PMID: 34553696 PMCID: PMC8435403 DOI: 10.1007/s12041-021-01313-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
SARS-CoV-2 pandemic has recently made the entire world come to a standstill. The number of cases in the world, especially India, have been increasing exponentially. The need of the hour is to assimilate as much data as possible to fast track the pipeline of bringing in new therapeutic tools against this fatal virus. In this brief communication, we aim to throw light on the various variants of the proteins involved heavily in the pathophysiology of COVID-19, namely Spike protein, ACE2, GRP78, TMPRSS2 and NSP-12. We also portray the molecular docking studies of these proteins with specific drugs that are currently being associated with the same. In our brief study, we come across a few key findings. First of all the combinations of the variants of spike protein and ACE2 binding show overall 25% unfavourable ΔΔG. Second, NSP12 is the most mutation prone among all the NSPs of the SARS-CoV-2 genome and the most common mutations are P323L and A97V. Third, we discovered the variants found in the Indian subpopulation that have greater binding with the currently investigated drugs.
Collapse
|
58
|
Ergül M, Taşkıran AŞ. Thiamine Protects Glioblastoma Cells against Glutamate Toxicity by Suppressing Oxidative/Endoplasmic Reticulum Stress. Chem Pharm Bull (Tokyo) 2021; 69:832-839. [PMID: 34470947 DOI: 10.1248/cpb.c21-00169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thiamine (vitamin B1), which is synthesized only in bacteria, fungi and plants and which humans should take with diet, participates in basic biochemical and physiological processes in a versatile way and its deficiency is associated with neurological problems accompanied by cognitive dysfunctions. The rat glioblastoma (C6) model was used, which was exposed to a limited environment and toxicity with glutamate. The cells were stressed by exposure to glutamate in the presence and absence of thiamine. The difference in cell proliferation was evaluated in the XTT assay. Oxidative stress (OS) markers malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) levels, as well as endoplasmic reticulum (ER) stress markers 78-kDa glucose-regulated protein (GRP78), activating transcription factor-4 (ATF-4), and C/EBP homologous protein (CHOP) levels, were measured with commercial kits. Apoptosis determined by flow cytometry was confirmed by 4',6-diamidino-2-phenylindole (DAPI) staining. At all concentrations, thiamine protects the cells and increased the viability against glutamate-induced toxicity. Thiamine also significantly decreased the levels of MDA, while increasing SOD and CAT levels. Moreover, thiamine reduced ER stress proteins' levels. Moreover, it lessened the apoptotic cell amount and enhanced the live-cell percentage in the flow cytometry and DAPI staining. As a result, thiamine may be beneficial nutritional support for individuals with a predisposition to neurodegenerative disorders due to its protective effect on glutamate cytotoxicity in glioblastoma cells by suppressing OS and ER stress.
Collapse
Affiliation(s)
- Merve Ergül
- Department of Pharmacology, Faculty of Pharmacy, Sivas Cumhuriyet University
| | | |
Collapse
|
59
|
Hartwick Bjorkman S, Oliveira Pereira R. The Interplay Between Mitochondrial Reactive Oxygen Species, Endoplasmic Reticulum Stress, and Nrf2 Signaling in Cardiometabolic Health. Antioxid Redox Signal 2021; 35:252-269. [PMID: 33599550 PMCID: PMC8262388 DOI: 10.1089/ars.2020.8220] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Mitochondria-derived reactive oxygen species (mtROS) are by-products of normal physiology that may disrupt cellular redox homeostasis on a regular basis. Nonetheless, failure to resolve sustained mitochondrial stress to mitigate high levels of mtROS might contribute to the etiology of numerous pathological conditions, such as obesity, insulin resistance, and cardiovascular disease (CVD). Recent Advances: Notably, recent studies have demonstrated that moderate mitochondrial stress might result in the induction of different stress response pathways that ultimately improve the organism's ability to deal with subsequent stress, a process termed mitohormesis. mtROS have been shown to play a key role in regulating this adaptation. Critical Issue: mtROS regulate the convergence of different signaling pathways that, when disturbed, might impair cardiometabolic health. Conversely, mtROS seem to be required to mediate activation of prosurvival pathways, contributing to improved cardiometabolic fitness. In the present review, we will primarily focus on the role of mtROS in the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant pathway and examine the role of endoplasmic reticulum (ER) stress in coordinating the convergence of ER stress and oxidative stress signaling through activation of Nrf2 and activating transcription factor 4 (ATF4). Future Directions: The mechanisms underlying cardiometabolic protection in response to mitochondrial stress have only started to be investigated. Integrated understanding of how mtROS and ER stress cooperatively promote activation of prosurvival pathways might shed mechanistic insight into the role of mitohormesis in mediating cardiometabolic protection and might inform future therapeutic avenues for the treatment of metabolic diseases contributing to CVD. Antioxid. Redox Signal. 35, 252-269.
Collapse
Affiliation(s)
- Sarah Hartwick Bjorkman
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Renata Oliveira Pereira
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
60
|
Mergener S, Siveke JT, Peña-Llopis S. Monosomy 3 Is Linked to Resistance to MEK Inhibitors in Uveal Melanoma. Int J Mol Sci 2021; 22:ijms22136727. [PMID: 34201614 PMCID: PMC8269285 DOI: 10.3390/ijms22136727] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 01/04/2023] Open
Abstract
The use of MEK inhibitors in the therapy of uveal melanoma (UM) has been investigated widely but has failed to show benefits in clinical trials due to fast acquisition of resistance. In this study, we investigated a variety of therapeutic compounds in primary-derived uveal melanoma cell lines and found monosomy of chromosome 3 (M3) and mutations in BAP1 to be associated with higher resistance to MEK inhibition. However, reconstitution of BAP1 in a BAP1-deficient UM cell line was unable to restore sensitivity to MEK inhibition. We then compared UM tumors from The Cancer Genome Atlas (TCGA) with mutations in BAP1 with tumors with wild-type BAP1. Principal component analysis (PCA) clearly differentiated both groups of tumors, which displayed disparate overall and progression-free survival data. Further analysis provided insight into differential expression of genes involved in signaling pathways, suggesting that the downregulation of the eukaryotic translation initiation factor 2A (EIF2A) observed in UM tumors with BAP1 mutations and M3 UM cell lines might lead to a decrease in ribosome biogenesis while inducing an adaptive response to stress. Taken together, our study links loss of chromosome 3 with decreased sensitivity to MEK inhibition and gives insight into possible related mechanisms, whose understanding is fundamental to overcome resistance in this aggressive tumor.
Collapse
Affiliation(s)
- Svenja Mergener
- Translational Genomics in Solid Tumors, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), University Hospital Essen, Hufelandstrasse 55, D-45147 Essen, Germany;
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany;
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Hufelandstrasse 55, D-45147 Essen, Germany
| | - Jens T. Siveke
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany;
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Hufelandstrasse 55, D-45147 Essen, Germany
| | - Samuel Peña-Llopis
- Translational Genomics in Solid Tumors, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), University Hospital Essen, Hufelandstrasse 55, D-45147 Essen, Germany;
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany;
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Hufelandstrasse 55, D-45147 Essen, Germany
- Correspondence:
| |
Collapse
|
61
|
Azizi N, Toma J, Martin M, Khalid MF, Mousavi F, Win PW, Borrello MT, Steele N, Shi J, di Magliano MP, Pin CL. Loss of activating transcription factor 3 prevents KRAS-mediated pancreatic cancer. Oncogene 2021; 40:3118-3135. [PMID: 33864001 PMCID: PMC8173475 DOI: 10.1038/s41388-021-01771-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 02/02/2023]
Abstract
The unfolded protein response (UPR) is activated in pancreatic pathologies and suggested as a target for therapeutic intervention. In this study, we examined activating transcription factor 3 (ATF3), a mediator of the UPR that promotes acinar-to-ductal metaplasia (ADM) in response to pancreatic injury. Since ADM is an initial step in the progression to pancreatic ductal adenocarcinoma (PDAC), we hypothesized that ATF3 is required for initiation and progression of PDAC. We generated mice carrying a germline mutation of Atf3 (Atf3-/-) combined with acinar-specific induction of oncogenic KRAS (Ptf1acreERT/+KrasG12D/+). Atf3-/- mice with (termed APK) and without KRASG12D were exposed to cerulein-induced pancreatitis. In response to recurrent pancreatitis, Atf3-/- mice showed decreased ADM and enhanced regeneration based on morphological and biochemical analysis. Similarly, an absence of ATF3 reduced spontaneous pancreatic intraepithelial neoplasia (PanIN) formation and PDAC in Ptf1acreERT/+KrasG12D/+ mice. In response to injury, KRASG12D bypassed the requirement for ATF3 with a dramatic loss in acinar tissue and PanIN formation observed regardless of ATF3 status. Compared to Ptf1acreERT/+KrasG12D/+ mice, APK mice exhibited a significant decrease in pancreatic and total body weight, did not progress through to PDAC, and showed altered pancreatic fibrosis and immune cell infiltration. These findings suggest a complex, multifaceted role for ATF3 in pancreatic cancer pathology.
Collapse
Affiliation(s)
- Nawab Azizi
- Children's Health Research Institute, London, ON, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - Jelena Toma
- Children's Health Research Institute, London, ON, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
- Department of Oncology, University of Western Ontario, London, ON, Canada
| | - Mickenzie Martin
- Children's Health Research Institute, London, ON, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Muhammad Faran Khalid
- Children's Health Research Institute, London, ON, Canada
- Department of Paediatrics, University of Western Ontario, London, ON, Canada
| | - Fatemeh Mousavi
- Children's Health Research Institute, London, ON, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - Phyo Wei Win
- Children's Health Research Institute, London, ON, Canada
- Department of Paediatrics, University of Western Ontario, London, ON, Canada
| | - Maria Teresa Borrello
- Centre for Cancer Research Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Marseille, France
| | - Nina Steele
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jiaqi Shi
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Christopher L Pin
- Children's Health Research Institute, London, ON, Canada.
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada.
- Department of Oncology, University of Western Ontario, London, ON, Canada.
- Department of Paediatrics, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
62
|
Wu H, Li H, Wen W, Wang Y, Xu H, Xu M, Frank JA, Wei W, Luo J. MANF protects pancreatic acinar cells against alcohol-induced endoplasmic reticulum stress and cellular injury. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2021; 28:883-892. [PMID: 33644980 DOI: 10.1002/jhbp.928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/31/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND/PURPOSE Heavy alcohol drinking is associated with pancreatitis. Pancreatitis is initiated by the damage to the pancreatic acinar cells. The endoplasmic reticulum (ER) stress has been shown to play an important role in alcohol-induced pancreatic damage. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an ER stress-inducible protein. The aim of the study was to determine whether MANF can ameliorate alcohol-induced ER stress and cellular damages to pancreatic acinar cells. METHODS Alcohol-induced damage to mouse pancreatic 266-6 acinar cells was determined by MTT and flow cytometry. MANF expression was downregulated by MANF siRNA using the Neon Transfection System. The overexpression of MANF was performed by the infection with the adenoviral vector carrying mouse MANF gene. The expression of ER stress markers was determined by immunoblotting and immunofluorescence. RESULTS Alcohol caused ER stress, oxidative stress and induced apoptosis of 266-6 acinar cells. Recombinant human MANF alleviated alcohol-induced ER stress and cell death by inhibiting IRE1-caspase 12-caspase 3 apoptotic pathway. Overexpression of mouse MANF also protected cells against alcohol-induced apoptosis. In contrast, inhibiting MANF by siRNA exacerbated alcohol-induced cellular damage. CONCLUSIONS MANF was protective against alcohol-induced ER stress and cellular injury in pancreatic acinar cells. The findings suggest a potential therapeutic value of MANF for alcoholic pancreatitis.
Collapse
Affiliation(s)
- Huaxun Wu
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Hui Li
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Wen Wen
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Yongchao Wang
- Department of Cell and Development Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Hong Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Jacqueline A Frank
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Wei Wei
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Jia Luo
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
63
|
Wang Y, Wagner KM, Morisseau C, Hammock BD. Inhibition of the Soluble Epoxide Hydrolase as an Analgesic Strategy: A Review of Preclinical Evidence. J Pain Res 2021; 14:61-72. [PMID: 33488116 PMCID: PMC7814236 DOI: 10.2147/jpr.s241893] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
Chronic pain is a complicated condition which causes substantial physical, emotional, and financial impacts on individuals and society. However, due to high cost, lack of efficacy and safety problems, current treatments are insufficient. There is a clear unmet medical need for safe, nonaddictive and effective therapies in the management of pain. Epoxy-fatty acids (EpFAs), which are natural signaling molecules, play key roles in mediation of both inflammatory and neuropathic pain sensation. However, their molecular mechanisms of action remain largely unknown. Soluble epoxide hydrolase (sEH) rapidly converts EpFAs into less bioactive fatty acid diols in vivo; therefore, inhibition of sEH is an emerging therapeutic target to enhance the beneficial effect of natural EpFAs. In this review, we will discuss sEH inhibition as an analgesic strategy for pain management and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Yuxin Wang
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, USA
| | - Karen M Wagner
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
64
|
Kielbik M, Szulc-Kielbik I, Klink M. Calreticulin-Multifunctional Chaperone in Immunogenic Cell Death: Potential Significance as a Prognostic Biomarker in Ovarian Cancer Patients. Cells 2021; 10:130. [PMID: 33440842 PMCID: PMC7827772 DOI: 10.3390/cells10010130] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 12/11/2022] Open
Abstract
Immunogenic cell death (ICD) is a type of death, which has the hallmarks of necroptosis and apoptosis, and is best characterized in malignant diseases. Chemotherapeutics, radiotherapy and photodynamic therapy induce intracellular stress response pathways in tumor cells, leading to a secretion of various factors belonging to a family of damage-associated molecular patterns molecules, capable of inducing the adaptive immune response. One of them is calreticulin (CRT), an endoplasmic reticulum-associated chaperone. Its presence on the surface of dying tumor cells serves as an "eat me" signal for antigen presenting cells (APC). Engulfment of tumor cells by APCs results in the presentation of tumor's antigens to cytotoxic T-cells and production of cytokines/chemokines, which activate immune cells responsible for tumor cells killing. Thus, the development of ICD and the expression of CRT can help standard therapy to eradicate tumor cells. Here, we review the physiological functions of CRT and its involvement in the ICD appearance in malignant disease. Moreover, we also focus on the ability of various anti-cancer drugs to induce expression of surface CRT on ovarian cancer cells. The second aim of this work is to discuss and summarize the prognostic/predictive value of CRT in ovarian cancer patients.
Collapse
Affiliation(s)
- Michal Kielbik
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland; (I.S.-K.); (M.K.)
| | | | | |
Collapse
|
65
|
Gami-Patel P, van Dijken I, Meeter LH, Melhem S, Morrema THJ, Scheper W, van Swieten JC, Rozemuller AJM, Dijkstra AA, Hoozemans JJM. Unfolded protein response activation in C9orf72 frontotemporal dementia is associated with dipeptide pathology and granulovacuolar degeneration in granule cells. Brain Pathol 2020; 31:163-173. [PMID: 32865835 PMCID: PMC7891436 DOI: 10.1111/bpa.12894] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
A repeat expansion in the C9orf72 gene is the most prevalent genetic cause of frontotemporal dementia (C9‐FTD). Several studies have indicated the involvement of the unfolded protein response (UPR) in C9‐FTD. In human neuropathology, UPR markers are strongly associated with granulovacuolar degeneration (GVD). In this study, we aim to assess the presence of UPR markers together with the presence of dipeptide pathology and GVD in post mortem brain tissue from C9‐FTD cases and neurologically healthy controls. Using immunohistochemistry we assessed the presence of phosphorylated PERK, IRE1α and eIF2α in the frontal cortex, hippocampus and cerebellum of C9‐FTD (n = 18) and control (n = 9) cases. The presence of UPR activation markers was compared with the occurrence of pTDP‐43, p62 and dipeptide repeat (DPR) proteins (poly(GA), ‐(GR) & ‐(GP)) as well as casein kinase 1 delta (CK1δ), a marker for GVD. Increased presence of UPR markers was observed in the hippocampus and cerebellum in C9‐FTD compared to control cases. In the hippocampus, overall levels of pPERK and peIF2α were higher in C9‐FTD, including in granule cells of the dentate gyrus (DG). UPR markers were also observed in granule cells of the cerebellum in C9‐FTD. In addition, increased levels of CK1δ were observed in granule cells in the DG of the hippocampus and granular layer of the cerebellum in C9‐FTD. Double‐labelling experiments indicate a strong association between UPR markers and the presence of dipeptide pathology as well as GVD. We conclude that UPR markers are increased in C9‐FTD and that their presence is associated with dipeptide pathology and GVD. Increased presence of UPR markers and CK1δ in granule cells in the cerebellum and hippocampus could be a unique feature of C9‐FTD.
Collapse
Affiliation(s)
- Priya Gami-Patel
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Irene van Dijken
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Lieke H Meeter
- Alzheimer Centre Rotterdam and Department of Neurology, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Shamiram Melhem
- Alzheimer Centre Rotterdam and Department of Neurology, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Tjado H J Morrema
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Wiep Scheper
- Department of Functional Genomics, Centre for Neurogenomics and Cognitive Research Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands.,Department of Clinical Genetics and Alzheimer Centre, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - John C van Swieten
- Alzheimer Centre Rotterdam and Department of Neurology, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands.,Dutch Surveillance Centre for Prion Diseases, Department of Pathology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Anke A Dijkstra
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Jeroen J M Hoozemans
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
66
|
Association of the Hepatitis B Virus Large Surface Protein with Viral Infectivity and Endoplasmic Reticulum Stress-mediated Liver Carcinogenesis. Cells 2020; 9:cells9092052. [PMID: 32911838 PMCID: PMC7563867 DOI: 10.3390/cells9092052] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B is the most prevalent viral hepatitis worldwide, affecting approximately one-third of the world’s population. Among HBV factors, the surface protein is the most sensitive biomarker for viral infection, given that it is expressed at high levels in all viral infection phases. The large HBV surface protein (LHBs) contains the integral pre-S1 domain, which binds to the HBV receptor sodium taurocholate co transporting polypeptide on the hepatocyte to facilitate viral entry. The accumulation of viral LHBs and its prevalent pre-S mutants in chronic HBV carriers triggers a sustained endoplasmic reticulum (ER) overload response, leading to ER stress-mediated cell proliferation, metabolic switching and genomic instability, which are associated with pro-oncogenic effects. Ground glass hepatocytes identified in HBV-related hepatocellular carcinoma (HCC) patients harbor pre-S deletion variants that largely accumulate in the ER lumen due to mutation-induced protein misfolding and are associated with increased risks of cancer recurrence and metastasis. Moreover, in contrast to the major HBs, which is decreased in tumors to a greater extent than it is in peritumorous regions, LHBs is continuously expressed during tumorigenesis, indicating that LHBs serves as a promising biomarker for HCC in people with CHB. Continuing efforts to delineate the molecular mechanisms by which LHBs regulates pathological changes in CHB patients are important for establishing a correlation between LHBs biomarkers and HCC development.
Collapse
|
67
|
Kim S, Lee S, Lee H, Ju S, Park S, Kwon D, Yoo JW, Yoon IS, Min DS, Jung YS, Jung Y. A Colon-Targeted Prodrug, 4-Phenylbutyric Acid-Glutamic Acid Conjugate, Ameliorates 2,4-Dinitrobenzenesulfonic Acid-Induced Colitis in Rats. Pharmaceutics 2020; 12:pharmaceutics12090843. [PMID: 32899177 PMCID: PMC7558321 DOI: 10.3390/pharmaceutics12090843] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/17/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
An elevated level of endoplasmic reticulum (ER) stress is considered an aggravating factor for inflammatory bowel disease (IBD). To develop an ER-stress attenuator that is effective against colitis, 4-phenylbutyric acid (4-PBA), a chemical chaperone that alleviates ER stress, was conjugated with acidic amino acids to yield 4-PBA-glutamic acid (PBA-GA) and 4-PBA-aspartic acid (PBA-AA) conjugates. The PBA derivatives were converted to 4-PBA in the cecal contents, and the conversion was greater with PBA-GA than that with PBA-AA. After oral administration of PBA-GA (oral PBA-GA), up to 2.7 mM PBA was detected in the cecum, whereas 4-PBA was not detected in the blood, indicating that PBA-GA predominantly targeted the large intestine. In 2,4-dinitrobenzenesulfonic acid-induced colitis in rats, oral PBA-GA alleviated the damage and inflammation in the colon and substantially reduced the elevated levels of ER stress marker proteins in the inflamed colon. Moreover, PBA-GA was found to be as effective as the currently used anti-IBD drug, sulfasalazine. In conclusion, PBA-GA is a colon-targeted prodrug of 4-PBA and is effective against rat colitis probably via the attenuation of ER stress in the inflamed colon.
Collapse
Affiliation(s)
- Soojin Kim
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.K.); (S.L.); (H.L.); (S.J.); (S.P.); (D.K.); (J.-W.Y.); (I.-S.Y.)
| | - Seunghyun Lee
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.K.); (S.L.); (H.L.); (S.J.); (S.P.); (D.K.); (J.-W.Y.); (I.-S.Y.)
| | - Hanju Lee
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.K.); (S.L.); (H.L.); (S.J.); (S.P.); (D.K.); (J.-W.Y.); (I.-S.Y.)
| | - Sanghyun Ju
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.K.); (S.L.); (H.L.); (S.J.); (S.P.); (D.K.); (J.-W.Y.); (I.-S.Y.)
| | - Sohee Park
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.K.); (S.L.); (H.L.); (S.J.); (S.P.); (D.K.); (J.-W.Y.); (I.-S.Y.)
| | - Doyoung Kwon
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.K.); (S.L.); (H.L.); (S.J.); (S.P.); (D.K.); (J.-W.Y.); (I.-S.Y.)
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.K.); (S.L.); (H.L.); (S.J.); (S.P.); (D.K.); (J.-W.Y.); (I.-S.Y.)
| | - In-Soo Yoon
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.K.); (S.L.); (H.L.); (S.J.); (S.P.); (D.K.); (J.-W.Y.); (I.-S.Y.)
| | - Do Sik Min
- College of Pharmacy, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Korea;
| | - Young-Suk Jung
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.K.); (S.L.); (H.L.); (S.J.); (S.P.); (D.K.); (J.-W.Y.); (I.-S.Y.)
- Correspondence: (Y.-S.J.); (Y.J.); Tel.: +51-510-2816 (Y.-S.J.); +51-510-2527(Y.J.); Fax: +51-513-6754 (Y.-S.J. & Y.J.)
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.K.); (S.L.); (H.L.); (S.J.); (S.P.); (D.K.); (J.-W.Y.); (I.-S.Y.)
- Correspondence: (Y.-S.J.); (Y.J.); Tel.: +51-510-2816 (Y.-S.J.); +51-510-2527(Y.J.); Fax: +51-513-6754 (Y.-S.J. & Y.J.)
| |
Collapse
|
68
|
Zadorozhnii PV, Kiselev VV, Kharchenko AV. In silico toxicity evaluation of Salubrinal and its analogues. Eur J Pharm Sci 2020; 155:105538. [PMID: 32889087 DOI: 10.1016/j.ejps.2020.105538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/14/2020] [Accepted: 08/30/2020] [Indexed: 02/06/2023]
Abstract
This paper reports on a comprehensive in silico toxicity assessment of Salubrinal and its analogues containing a cinnamic acid residue or quinoline ring using the online servers admetSAR, ADMETlab, ProTox, ADVERPred, Pred-hERG and Vienna LiverTox. Apart from rare exceptions, in all 55 studied structures, mild or practical absence of acute toxicity was predicted for rats (III or IV toxicity class). Cardiotoxic, hepatotoxic and immunotoxic effects were predicted for Salubrinal and its analogues. We constructed models of the main predicted anti-targets hERG, BSEP, MRP3, MRP4 and AhR using the principle of homologous modeling. Molecular docking studies were carried out with the obtained models. We carried out molecular docking for all targets using AutoDock Vina, implemented in the PyRx 0.8 software package. According to the results of molecular docking, the compounds analyzed are potential moderate or weak hERG blockers. Induction of cholestasis and, as a consequence, liver damage by these drugs, directly related to inhibition of BSEP, MRP3 and MRP4, most likely will not be observed. Interaction with AhR for the studied compounds is impossible for steric reasons and, as a consequence, toxic effects on the immune and other organ systems associated with the activation of the AhR signaling pathway are excluded.
Collapse
Affiliation(s)
- Pavlo V Zadorozhnii
- Department of pharmacy and technology of organic substances, Ukrainian State University of Chemical Technology, Gagarin Ave., 8, Dnipro 49005, Ukraine.
| | - Vadym V Kiselev
- Department of pharmacy and technology of organic substances, Ukrainian State University of Chemical Technology, Gagarin Ave., 8, Dnipro 49005, Ukraine
| | - Aleksandr V Kharchenko
- Department of pharmacy and technology of organic substances, Ukrainian State University of Chemical Technology, Gagarin Ave., 8, Dnipro 49005, Ukraine
| |
Collapse
|
69
|
Barrera M, Hiriart M, Cocho G, Villarreal C. Type 2 diabetes progression: A regulatory network approach. CHAOS (WOODBURY, N.Y.) 2020; 30:093132. [PMID: 33003944 DOI: 10.1063/5.0011125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
In order to elucidate central elements underlying type 2 diabetes, we constructed a regulatory network model involving 37 components (molecules, receptors, processes, etc.) associated to signaling pathways of pancreatic beta-cells. In a first approximation, the network topology was described by Boolean rules whose interacting dynamics predicted stationary patterns broadly classified as health, metabolic syndrome, and diabetes stages. A subsequent approximation based on a continuous logic analysis allowed us to characterize the progression of the disease as transitions between these states associated to alterations of cell homeostasis due to exhaustion or exacerbation of specific regulatory signals. The method allowed the identification of key transcription factors involved in metabolic stress as essential for the progression of the disease. Integration of the present analysis with existent mathematical models designed to yield accurate account of experimental data in human or animal essays leads to reliable predictions for beta-cell mass, insulinemia, glycemia, and glycosylated hemoglobin in diabetic fatty rats.
Collapse
Affiliation(s)
- M Barrera
- Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - M Hiriart
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - G Cocho
- Instituto de Física, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - C Villarreal
- Instituto de Física, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
70
|
Gautam A, Sahai V, Mishra S. Development of a dual specific growth rate-based fed-batch process for production of recombinant human granulocyte colony-stimulating factor in Pichia pastoris. Bioprocess Biosyst Eng 2020; 44:103-112. [PMID: 32808048 DOI: 10.1007/s00449-020-02427-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 08/07/2020] [Indexed: 10/23/2022]
Abstract
A number of limitations exist for production of human granulocyte colony-stimulating factor (G-CSF) in Pichia pastoris. In this study, two different specific growth rates (0.015 h-1, 0.01 h-1) were used sequentially in the mixed substrate feeding period during methanol induction phase to enhance the G-CSF titer in the culture broth. Necessary parameters required for implementing the feeding strategy, such as specific product yield on biomass (YP/X) and maintenance coefficient (m) on glycerol, methanol, and sorbitol were estimated using continuous culture technique. Using this strategy, for the same volumetric productivity, about 20% increase in protein titer was achieved over that obtained from the run carried out at a single pre-set value of 0.015 h-1 alone. Thus, implementation of higher specific growth rate (0.015 h-1) set during initial stages of the methanol induction phase followed by a lower specific growth rate (0.01 h-1) helped in achieving increased protein titers.
Collapse
Affiliation(s)
- Ashwani Gautam
- Center for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz-Khas, New Delhi, 110016, India
| | - Vikram Sahai
- Care Pro Biosciences Pvt. Ltd., I - 059, Site 5, Kasna Ind Area, Gautam Buddh Nagar, Greater Noida, UP, 201308, India
| | - Saroj Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz-Khas, New Delhi, 110016, India.
| |
Collapse
|
71
|
Aryal YP, Lee ES, Kim TY, Sung S, Kim JY, An SY, Jung JK, Ha JH, Suh JY, Yamamoto H, Sohn WJ, Cho SW, Lee Y, An CH, Kim JY. Stage-specific expression patterns of ER stress-related molecules in mice molars: Implications for tooth development. Gene Expr Patterns 2020; 37:119130. [PMID: 32758541 DOI: 10.1016/j.gep.2020.119130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 01/13/2023]
Abstract
The endoplasmic reticulum (ER) is a site where protein folding and posttranslational modifications occur, but when unfolded or misfolded proteins accumulate in the ER lumen, an unfolded protein response (UPR) occurs. A UPR activates ER-stress signalling genes, including inositol-requiring enzyme-1 (Ire1), activating transcription factor 6 (Atf6), and double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (Perk), to maintain homeostasis. The involvement of ER stress molecules in metabolic disease and hard tissue matrix formation has been established; however, an understanding of the role of ER-stress signalling molecules in tooth development is lacking. The aims of this study are to define the stage-specific expression patterns of ER stress-related molecules and to elucidate their putative functions in the organogenesis of teeth. This study leverages knowledge of the tissue morphology and expression patterns of a range of signalling molecules during tooth development. RT-qPCR, in situ hybridization, and immunohistochemistry analyses were performed to determine the stage-specific expression patterns of ER-stress-related signalling molecules at important stages of tooth development. RT-qPCR analyses showed that Atf6 and Perk have similar expression levels during all stages of tooth development; however, the expression levels of Ire1 and its downstream target X-box binding protein (Xbp1) increased significantly from the cap to the secretory stage of tooth development. In situ hybridization results revealed that Atf6 and Xbp1 were expressed in cells that form the enamel knot at cap stage and ameloblasts and odontoblasts at secretory stage in stage-specific patterns. In addition, Atf6, Ire1, and Xbp1 expression exhibited distinct localization patterns in secretory odontoblasts and ameloblasts of PN0 molars. Overall, our results strongly suggest that ER-stress molecules are involved in tooth development in response to protein overload that occurs during signaling modulations from enamel knots at cap stage and extracellular matrix secretion at secretory stage.
Collapse
Affiliation(s)
- Yam Prasad Aryal
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, 2177, Dalgubeol-daero, Jung-gu, Daegu, 41940, South Korea
| | - Eui-Seon Lee
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, 2177, Dalgubeol-daero, Jung-gu, Daegu, 41940, South Korea
| | - Tae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, 2177, Dalgubeol-daero, Jung-gu, Daegu, 41940, South Korea
| | - Shijin Sung
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, 2177, Dalgubeol-daero, Jung-gu, Daegu, 41940, South Korea
| | - Ji-Youn Kim
- Department of Dental Hygiene, Gachon University, Incheon, South Korea
| | - Seo-Young An
- Department of Oral and Maxillofacial Radiology, School of Dentistry, IHBR, Kyungpook National University, 2177, Dalgubeol-daero, Jung-gu, Daegu, 41940, South Korea
| | - Jae-Kwang Jung
- Department of Oral Medicine, School of Dentistry, IHBR, Kyungpook National University, 2177, Dalgubeol-daero, Jung-gu, Daegu, 41940, South Korea
| | - Jung-Hong Ha
- Department of Conservative Dentistry, School of Dentistry, IHBR, Kyungpook National University, 2177, Dalgubeol-daero, Jung-gu, Daegu, 41940, South Korea
| | - Jo-Young Suh
- Department of Periodontology, School of Dentistry, IHBR, Kyungpook National University, 2177, Dalgubeol-daero, Jung-gu, Daegu, 41940, South Korea
| | - Hitoshi Yamamoto
- Department of Histology and Developmental Biology, Tokyo Dental College, Tokyo, Japan
| | - Wern-Joo Sohn
- Pre-Major of Cosmetics and Pharmaceutics, Daegu Haany University, Gyeongsan, South Korea
| | - Sung-Won Cho
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, 2177, Dalgubeol-daero, Jung-gu, Daegu, 41940, South Korea
| | - Chang-Hyeon An
- Department of Oral and Maxillofacial Radiology, School of Dentistry, IHBR, Kyungpook National University, 2177, Dalgubeol-daero, Jung-gu, Daegu, 41940, South Korea
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, 2177, Dalgubeol-daero, Jung-gu, Daegu, 41940, South Korea.
| |
Collapse
|
72
|
Abstract
The evolutionarily conserved p53 protein and its cellular pathways mediate tumour suppression through an informed, regulated and integrated set of responses to environmental perturbations resulting in either cellular death or the maintenance of cellular homeostasis. The p53 and MDM2 proteins form a central hub in this pathway that receives stressful inputs via MDM2 and respond via p53 by informing and altering a great many other pathways and functions in the cell. The MDM2-p53 hub is one of the hubs most highly connected to other signalling pathways in the cell, and this may be why TP53 is the most commonly mutated gene in human cancers. Initial or truncal TP53 gene mutations (the first mutations in a stem cell) are selected for early in cancer development inectodermal and mesodermal-derived tissue-specific stem and progenitor cells and then, following additional mutations, produce tumours from those tissue types. In endodermal-derived tissue-specific stem or progenitor cells, TP53 mutations are functionally selected as late mutations transitioning the mutated cell into a malignant tumour. The order in which oncogenes or tumour suppressor genes are functionally selected for in a stem cell impacts the timing and development of a tumour.
Collapse
Affiliation(s)
- Arnold J Levine
- Simons Center for Systems Biology, Institute for Advanced Study, Princeton, NJ, USA.
| |
Collapse
|
73
|
Liu TJ, Yeh YC, Lee WL, Wang LC, Lee HW, Shiu MT, Su CS, Lai HC. Insulin ameliorates hypoxia-induced autophagy, endoplasmic reticular stress and apoptosis of myocardial cells: In vitro and ex vivo models. Eur J Pharmacol 2020; 880:173125. [DOI: 10.1016/j.ejphar.2020.173125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
|
74
|
Chen B, Hong W, Tang Y, Zhao Y, Aguilar ZP, Xu H. Protective effect of the NAC and Sal on zinc oxide nanoparticles-induced reproductive and development toxicity in pregnant mice. Food Chem Toxicol 2020; 143:111552. [PMID: 32640348 DOI: 10.1016/j.fct.2020.111552] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/22/2020] [Accepted: 06/20/2020] [Indexed: 12/12/2022]
Abstract
The growing use of zinc oxide nanoparticles (ZnO NPs) in various applications has raised many concerns about the potential risks to human health. In this research, the protective effects of cellular oxidative stress inhibitor N-Acetyl-cysteine (NAC) and endoplasmic reticulum (ER) stress inhibitor Salubrinal (Sal) on reproductive toxicity induced by ZnO NPs were investigated. The results showed that application of these two kinds of cell stress inhibitors after oral ingestion of ZnO NPs could prevent the weight loss of pregnant mice; reduce zinc content in the uterus, placenta and fetus; reduce abnormal development of the offspring; and decrease fetal abortion. Furthermore, RT-qPCR, Western blot and immunofluorescence assay results indicated that NAC restored the expression of Gclc, reduced the expression of ATF4, JNK and Caspase-12, and decreased the expression of eNOS and IGF-1, in the placenta. Sal decreased the expression of ATF4, JNK and Caspase-12, and increased the expression of eNOS and IGF-1caused by the oral ingestion of ZnO NPs. These results indicated that treatment with NAC and Sal after oral exposure could reduce reproductive and development toxicity caused by ZnO NPs which induced reproductive and development toxicity that was probably caused by the activation of oxide stress and ER stress.
Collapse
Affiliation(s)
- Bolu Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Wuding Hong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Yizhou Tang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | | | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China.
| |
Collapse
|
75
|
Humeau J, Leduc M, Cerrato G, Loos F, Kepp O, Kroemer G. Phosphorylation of eukaryotic initiation factor-2α (eIF2α) in autophagy. Cell Death Dis 2020; 11:433. [PMID: 32513922 PMCID: PMC7280501 DOI: 10.1038/s41419-020-2642-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 01/12/2023]
Abstract
The integrated stress response is characterized by the phosphorylation of eukaryotic initiation factor-2α (eIF2α) on serine 51 by one out of four specific kinases (EIF2AK1 to 4). Here we provide three series of evidence suggesting that macroautophagy (to which we refer to as autophagy) induced by a variety of distinct pharmacological agents generally requires this phosphorylation event. First, the induction of autophagic puncta by various distinct compounds was accompanied by eIF2α phosphorylation on serine 51. Second, the modulation of autophagy by >30 chemically unrelated agents was partially inhibited in cells expressing a non-phosphorylable (S51A) mutant of eIF2α or lacking all four eIF2α kinases, although distinct kinases were involved in the response to different autophagy inducers. Third, inhibition of eIF2α phosphatases was sufficient to stimulate autophagy. In synthesis, it appears that eIF2α phosphorylation is a central event for the stimulation of autophagy.
Collapse
Affiliation(s)
- Juliette Humeau
- Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France.,Faculty of Medicine, Université Paris Sud, Paris Saclay, Kremlin Bicêtre, France
| | - Marion Leduc
- Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Giulia Cerrato
- Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France.,Faculty of Medicine, Université Paris Sud, Paris Saclay, Kremlin Bicêtre, France
| | - Friedemann Loos
- Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Oliver Kepp
- Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France. .,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France.
| | - Guido Kroemer
- Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France. .,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France. .,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France. .,Department of Women's and Children's Health, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
76
|
Kang JH, Kim MH, Lee HJ, Huh JW, Lee HS, Lee DS. Peroxiredoxin 4 attenuates glutamate-induced neuronal cell death through inhibition of endoplasmic reticulum stress. Free Radic Res 2020; 54:207-220. [PMID: 32241191 DOI: 10.1080/10715762.2020.1745201] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
High concentrations of glutamate induce neurotoxicity by eliciting reactive oxygen species (ROS) generation and intracellular Ca2+ influx. The disruption of Ca2+ homeostasis in the endoplasmic reticulum (ER) evokes ER stress, ultimately resulting in neuronal dysfunction. Additionally, glutamate participates in the development of neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Peroxiredoxins (Prxs) are members of a family of antioxidant enzymes that protect cells from neurotoxic factor-induced apoptosis by scavenging hydrogen peroxide (H2O2). Prx4 is located in the ER and controls the redox condition within the ER. The present study investigated the protective effects of Prx4 against glutamate-induced neurotoxicity linked to ER stress. HT22 cells in which Prx4 was either overexpressed or silenced were used to elucidate the protective role of Prx4 against glutamate toxicity. The expression of Prx4 in HT22 cells was significantly increased in response to glutamate treatment, while ROS scavengers and ER chemical chaperones reduced Prx4 levels. Moreover, Prx4 overexpression reduces glutamate-induced apoptosis of HT22 cells by inhibiting ROS formation, Ca2+ influx, and ER stress. Therefore, we conclude that Prx4 has protective effects against glutamate-induced HT22 cell damage. Collectively, these results suggest that Prx4 could contribute to the treatment of neuronal disorders.
Collapse
Affiliation(s)
- Ji Hye Kang
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea;,School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Mi Hye Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea;,School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Hong Jun Lee
- College of Medicine, Chungbuk National University, Chungbuk, Republic of Korea.,Research Institute, e-biogen Inc., Seoul, Korea
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Hyun-Shik Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea;,School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea;,School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
77
|
Albert A, Paul E, Rajakumar S, Saso L. Oxidative stress and endoplasmic stress in calcium oxalate stone disease: the chicken or the egg? Free Radic Res 2020; 54:244-253. [PMID: 32292073 DOI: 10.1080/10715762.2020.1751835] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Crystal modulators play a significant role in the formation of calcium oxalate stone disease. When renal cells are subjected to oxalate stress, the loss in cell integrity leads to exposure of multiple proteins that assist and/or inhibit crystal attachment and retention. Contact between oxalate and calcium oxalate with urothelium proves fatal to cells as a result of reactive oxygen species generation and onset of oxidative stress. Hence, as a therapeutic strategy it was hypothesised that supplementation of antioxidants would suffice. On the contrary to popular belief, the detection of oxalate induced endoplasmic reticulum mediated apoptosis proved the ineffectiveness of antioxidant therapy alone. Thus, the inadequacy of antioxidant supplementation in oxalate stress invoked the presence of an alternative pathway for the induction of kidney fibrosis in hyperoxaluric rats. In addition to settling this query, the link between oxidative stress and ER stress is not well understood, especially in urolithiasis.
Collapse
Affiliation(s)
| | - Eldho Paul
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Selvaraj Rajakumar
- Department of Pediatrics, Group of Molecular Cell Biology of Lipids, 315, Heritage Medical Research Center, University of Alberta, Edmonton, Canada
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
78
|
Das B, Okamoto K, Rabalais J, Marchelletta RR, Barrett KE, Das S, Niwa M, Sivagnanam M. Congenital Tufting Enteropathy-Associated Mutant of Epithelial Cell Adhesion Molecule Activates the Unfolded Protein Response in a Murine Model of the Disease. Cells 2020; 9:cells9040946. [PMID: 32290509 PMCID: PMC7226999 DOI: 10.3390/cells9040946] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/31/2020] [Accepted: 04/09/2020] [Indexed: 12/18/2022] Open
Abstract
Congenital tufting enteropathy (CTE) is a rare chronic diarrheal disease of infancy caused by mutations in epithelial cell adhesion molecule (EpCAM). Previously, a murine CTE model showed mis-localization of EpCAM away from the basolateral cell surface in the intestine. Here we demonstrate that mutant EpCAM accumulated in the endoplasmic reticulum (ER) where it co-localized with ER chaperone, GRP78/BiP, revealing potential involvement of ER stress-induced unfolded protein response (UPR) pathway in CTE. To investigate the significance of ER-localized mutant EpCAM in CTE, activation of the three UPR signaling branches initiated by the ER transmembrane protein components IRE1, PERK, and ATF6 was tested. A significant reduction in BLOS1 and SCARA3 mRNA levels in EpCAM mutant intestinal cells demonstrated that regulated IRE1-dependent decay (RIDD) was activated. However, IRE1 dependent XBP1 mRNA splicing was not induced. Furthermore, an increase in nuclear-localized ATF6 in mutant intestinal tissues revealed activation of the ATF6-signaling arm. Finally, an increase in both the phosphorylated form of the translation initiation factor, eIF2α, and ATF4 expression in the mutant intestine provided support for activation of the PERK-mediated pathway. Our results are consistent with a significant role for UPR in gastrointestinal homeostasis and provide a working model for CTE pathophysiology.
Collapse
Affiliation(s)
- Barun Das
- Department of Pediatrics, University of California, San Diego, CA 92093, USA; (B.D.); (K.O.); (J.R.)
| | - Kevin Okamoto
- Department of Pediatrics, University of California, San Diego, CA 92093, USA; (B.D.); (K.O.); (J.R.)
| | - John Rabalais
- Department of Pediatrics, University of California, San Diego, CA 92093, USA; (B.D.); (K.O.); (J.R.)
| | - Ronald R. Marchelletta
- Department of Medicine, University of California, San Diego, CA 92093, USA; (R.R.M.); (K.E.B.)
| | - Kim E. Barrett
- Department of Medicine, University of California, San Diego, CA 92093, USA; (R.R.M.); (K.E.B.)
| | - Soumita Das
- Department of Pathology, University of California, San Diego, CA 92093, USA;
| | - Maho Niwa
- Division of Biological Sciences, University of California, San Diego, CA 92093, USA;
| | - Mamata Sivagnanam
- Department of Pediatrics, University of California, San Diego, CA 92093, USA; (B.D.); (K.O.); (J.R.)
- Rady Children’s Hospital, San Diego, CA 92123, USA
- Correspondence: ; Tel.: +1-858-966-8907
| |
Collapse
|
79
|
Jung S, Hyun J, Nah J, Han J, Kim SH, Park J, Oh Y, Gwon Y, Moon S, Jo DG, Jung YK. SERP1 is an assembly regulator of γ-secretase in metabolic stress conditions. Sci Signal 2020; 13:13/623/eaax8949. [PMID: 32184288 DOI: 10.1126/scisignal.aax8949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The enzyme γ-secretase generates β-amyloid (Aβ) peptides by cleaving amyloid protein precursor (APP); the aggregation of these peptides is associated with Alzheimer's disease (AD). Despite the development of various γ-secretase regulators, their clinical use is limited by coincident disruption of other γ-secretase-regulated substrates, such as Notch. Using a genome-wide functional screen of γ-secretase activity in cells and a complementary DNA expression library, we found that SERP1 is a previously unknown γ-secretase activator that stimulates Aβ generation in cells experiencing endoplasmic reticulum (ER) stress, such as is seen with diabetes. SERP1 interacted with a subcomplex of γ-secretase (APH1A/NCT) through its carboxyl terminus to enhance the assembly and, consequently, the activity of the γ-secretase holoenzyme complex. In response to ER stress, SERP1 preferentially recruited APP rather than Notch into the γ-secretase complex and enhanced the subcellular localization of the complex into lipid rafts, increasing Aβ production. Moreover, SERP1 abundance, γ-secretase assembly, and Aβ production were increased both in cells exposed to high amounts of glucose and in diabetic AD model mice. Conversely, Aβ production was decreased by knocking down SERP1 in cells or in the hippocampi of mice. Compared to postmortem samples from control individuals, those from patients with AD showed increased SERP1 expression in the hippocampus and parietal lobe. Together, our findings suggest that SERP1 is an APP-biased regulator of γ-secretase function in the context of cell stress, providing a possible molecular explanation for the link between diabetes and sporadic AD.
Collapse
Affiliation(s)
- Sunmin Jung
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Junho Hyun
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Jihoon Nah
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Jonghee Han
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Seo-Hyun Kim
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Jaesang Park
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Yoonseo Oh
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Youngdae Gwon
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Seowon Moon
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Yong-Keun Jung
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| |
Collapse
|
80
|
Li A, Song NJ, Riesenberg BP, Li Z. The Emerging Roles of Endoplasmic Reticulum Stress in Balancing Immunity and Tolerance in Health and Diseases: Mechanisms and Opportunities. Front Immunol 2020; 10:3154. [PMID: 32117210 PMCID: PMC7026265 DOI: 10.3389/fimmu.2019.03154] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022] Open
Abstract
The endoplasmic reticulum (ER) is an organelle equipped with mechanisms for proper protein folding, trafficking, and degradation to maintain protein homeostasis in the secretory pathway. As a defense mechanism, perturbation of ER proteostasis by ER stress agents activates a cascade of signaling pathways from the ER to the nucleus known as unfolded protein response (UPR). The primary goal of UPR is to induce transcriptional and translational programs to restore ER homeostasis for cell survival. As such, defects in UPR signaling have been implicated as a key contributor to multiple diseases including metabolic diseases, degenerative diseases, inflammatory disorders, and cancer. Growing evidence support the critical role of ER stress in regulating the fate as well as the magnitude of the immune response. Moreover, the availability of multiple UPR pharmacological inhibitors raises the hope that targeting UPR can be a new strategy for immune modulation and immunotherapy of diseases. This paper reviews the principal mechanisms by which ER stress affects immune cell biology and function, with a focus of discussion on UPR-associated immunopathology and the development of potential ER stress-targeted therapeutics.
Collapse
Affiliation(s)
- Anqi Li
- College of Medicine, The Ohio State University, Columbus, OH, United States.,The James Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States
| | - No-Joon Song
- The James Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States
| | - Brian P Riesenberg
- The James Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States
| | - Zihai Li
- College of Medicine, The Ohio State University, Columbus, OH, United States.,The James Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States.,Division of Medical Oncology, Department of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
81
|
Ren L, Huang J, Wei J, Zang Y, Zhao Y, Wu S, Zhao X, Zhou X, Sun Z, Lu H. Maternal exposure to fine particle matters cause autophagy via UPR-mediated PI3K-mTOR pathway in testicular tissue of adult male mice in offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109943. [PMID: 31761553 DOI: 10.1016/j.ecoenv.2019.109943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/04/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
Epidemiological studies have shown that particulate matters are closely related to human infertility. However, the long-term risk of particulate matters exposure in early life is rarely considered. For the first time this study is designed to explore and elucidate the mechanism of maternal exposure to fine particle matters (PM2.5) on autophagy in spermatogenic cells of adult offspring. Pregnant C57BL/6 mice were randomly divided into four groups. The 4.8 mg/kg.b.w group and the 43.2 mg/kg.b.w group were administered with different doses of PM2.5. The membrane control group was administered with PM2.5 sampling membrane and the control group received no treatment. The exposure was performed every three days from the day after vaginal plug was checked until delivery for a total of 6 times. The results showed that sperms motility and sperms concentration decreased, and sperm deformity increased in adult male offspring. The expression of SOD decreased and MDA increased. Moreover, the level of GRP78/ATF6 and P62 was upregulated, and the expression of PI3K/Akt/mTOR/p-mTOR was down-regulated. This suggests that early-life exposure to PM2.5 can induce autophagy through the PI3K/Akt/mTOR pathway mediated by unfolded protein response in adult testicular tissue. PM2.5 may pose a significant role and long-term threat to adult after early-life exposure.
Collapse
Affiliation(s)
- Lihua Ren
- School of Nursing, Peking University, Beijing, 100191, China
| | - Jing Huang
- School of Nursing, Peking University, Beijing, 100191, China
| | - Jialiu Wei
- Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Yu Zang
- School of Nursing, Peking University, Beijing, 100191, China; School of Nursing, Hebei Medical University, China
| | - Yang Zhao
- School of Nursing, Peking University, Beijing, 100191, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Xiaohong Zhao
- College of Applied Arts and Science of Beijing Union University, Beijing, 100191, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Zhiwei Sun
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Hong Lu
- School of Nursing, Peking University, Beijing, 100191, China.
| |
Collapse
|
82
|
Lee HY, Lee GH, Kim HR, Lee YC, Chae HJ. Phosphatidylinositol 3-kinase-δ controls endoplasmic reticulum membrane fluidity and permeability in fungus-induced allergic inflammation in mice. Br J Pharmacol 2020; 177:1556-1567. [PMID: 31713846 PMCID: PMC7060358 DOI: 10.1111/bph.14917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/02/2019] [Accepted: 10/04/2019] [Indexed: 01/12/2023] Open
Abstract
Background and Purpose Phosphatidylinositol 3‐kinase (PI3K), especially PI3K‐δ, and endoplasmic reticulum (ER) stress play important roles in refractory asthma induced by the fungus Aspergillus fumigatus through mechanisms that are not well understood. Here we have investigated these mechanisms, using BEAS‐2B human bronchial epithelial cells and a mouse model of A. fumigatus‐induced allergic lung inflammation. Experimental Approach A selective PI3K‐δ inhibitor, IC87114, and an ER folding chaperone, 4‐phenylbutyric acid (4‐PBA), were applied to a model of A. fumigatus‐induced asthma in female C57BL/6 mice. The therapeutic potential of IC87114 and 4‐PBA was assessed in relevant primary cell, tissue, and disease models, using immunohistochemistry, western blotting and assessment of ER redox state and membrane fluidity. Key Results Treatment with IC87114 or 4‐PBA alleviated pulmonary inflammation and airway remodelling and reduced ER stress and inflammation‐associated intra‐ER hyperoxidation, disrupting protein disulfide isomerase (PDI) chaperone activity. IC87114 and 4‐PBA also reversed changes in ER membrane fluidity and permeability and the resultant mitochondrial hyperactivation (i.e., Ca2+ accumulation) under hyperoxidation, thereby restoring the physiological state of the ER and mitochondria. These compounds also abolished mitochondria‐associated ER membrane (MAM) formation caused by the physical contact between these subcellular organelles. Conclusion and Implications PI3K‐δ and ER stress mediate A. fumigatus‐induced allergic lung inflammation by altering the ER redox state, PDI chaperone function, and ER membrane fluidity and permeability and by amplifying ER signalling to mitochondria through MAM formation. Thus, therapeutic strategies that target the PI3K‐δ–ER stress axis could be an effective treatment for allergic asthma caused by fungi.
Collapse
Affiliation(s)
- Hwa-Young Lee
- Department of Pharmacology and Institute of New Drug Development, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Geum-Hwa Lee
- Non-Clinical Evaluation Center, Biomedical Research Institute, Chonbuk National University Hospital, Chonbuk, Republic of Korea
| | - Hyung-Ryong Kim
- College of Dentistry, Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
| | - Yong-Chul Lee
- Department of Internal Medicine, Chonbuk National University Medical School, Chonbuk, Republic of Korea
| | - Han-Jung Chae
- Department of Pharmacology and Institute of New Drug Development, Chonbuk National University Medical School, Jeonju, Republic of Korea
| |
Collapse
|
83
|
ER stress contributes to autophagy induction by adiponectin in macrophages: Implication in cell survival and suppression of inflammatory response. Cytokine 2019; 127:154959. [PMID: 31877413 DOI: 10.1016/j.cyto.2019.154959] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022]
Abstract
Adiponectin, the most abundant adipokine, exhibits various physiological functions. In addition to its critical role in lipid metabolism, recent studies have demonstrated its potent anti-inflammatory and cytoprotective properties. Accumulating evidence suggests that autophagy plays a critical role in various biological responses by adiponectin. However, the underlying mechanisms remain elusive. Herein, we investigated the role of ER stress in adiponectin-induced autophagy and its functional roles in biological responses by adiponectin in macrophages. In this study, globular adiponectin (gAcrp) significantly increased the expression of various ER stress markers in both RAW 264.7 and primary peritoneal macrophages. In addition, inhibition of ER stress by treatment with tauroursodeoxycholic acid (TUDCA) or gene silencing of CHOP prominently suppressed gAcrp-induced autophagy. Treatment with gAcrp also induced significant increase in sestrin2 expression. Interestingly, knockdown of sestrin2 prevented autophagy induction and inhibition of ER stress abrogated sestrin2 induction by gAcrp, collectively implying that ER stress critically contributes to gAcrp-induced autophagy activation via sestrin2 induction. Moreover, pretreatment with TUDCA restored suppression of TNF-α and IL-1β expression and attenuated the enhanced viability of macrophages induced by gAcrp. Taken together, these findings indicate the potential role of ER stress in autophagy activation, modulation of inflammatory responses, and cell survival by gAcrp in macrophages.
Collapse
|
84
|
Induction of Endoplasmic Reticulum Stress Pathway by Green Tea Epigallocatechin-3-Gallate (EGCG) in Colorectal Cancer Cells: Activation of PERK/p-eIF2 α/ATF4 and IRE1 α. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3480569. [PMID: 31930117 PMCID: PMC6942794 DOI: 10.1155/2019/3480569] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/31/2019] [Indexed: 01/01/2023]
Abstract
Epigallocatechin-3-gallate (EGCG) is the most abundant bioactive polyphenolic compound among the green tea constituents and has been identified as a potential anticancer agent in colorectal cancer (CRC) studies. This study was aimed to determine the mechanism of actions of EGCG when targeting the endoplasmic reticulum (ER) stress pathway in CRC. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay was performed on HT-29 cell line and normal cell line (3T3) to determine the EGCG toxicity. Next, western blot was done to observe the expression of the related proteins for the ER stress pathway. The Caspase 3/7 assay was performed to determine the apoptosis induced by EGCG. The results demonstrated that EGCG treatment was toxic to the HT-29 cell line. EGCG induced ER stress in HT-29 by upregulating immunoglobulin-binding (BiP), PKR-like endoplasmic reticulum kinase (PERK), phosphorylation of eukaryotic initiation factor 2 alpha subunit (eIF2α), activating transcription 4 (ATF4), and inositol-requiring kinase 1 alpha (IRE1α). Apoptosis was induced in HT-29 cells after the EGCG treatment, as shown by the Caspase 3/7 activity. This study indicates that green tea EGCG has the potential to inhibit colorectal cancer cells through the induction of ER stress.
Collapse
|
85
|
Dahal B, Lin SC, Carey BD, Jacobs JL, Dinman JD, van Hoek ML, Adams AA, Kehn-Hall K. EGR1 upregulation following Venezuelan equine encephalitis virus infection is regulated by ERK and PERK pathways contributing to cell death. Virology 2019; 539:121-128. [PMID: 31733451 PMCID: PMC7126400 DOI: 10.1016/j.virol.2019.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/02/2019] [Accepted: 10/28/2019] [Indexed: 01/05/2023]
Abstract
Venezuelan equine encephalitis virus (VEEV) is a neurotropic virus that causes significant disease in both humans and equines. Here we characterized the impact of VEEV on signaling pathways regulating cell death in human primary astrocytes. VEEV productively infected primary astrocytes and caused an upregulation of early growth response 1 (EGR1) gene expression at 9 and 18 h post infection. EGR1 induction was dependent on extracellular signal-regulated kinase1/2 (ERK1/2) and protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), but not on p38 mitogen activated protein kinase (MAPK) or phosphoinositide 3-kinase (PI3K) signaling. Knockdown of EGR1 significantly reduced VEEV-induced apoptosis and impacted viral replication. Knockdown of ERK1/2 or PERK significantly reduced EGR1 gene expression, dramatically reduced viral replication, and increased cell survival as well as rescued cells from VEEV-induced apoptosis. These data indicate that EGR1 activation and subsequent cell death are regulated through ERK and PERK pathways in VEEV infected primary astrocytes.
Collapse
Affiliation(s)
- Bibha Dahal
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Shih-Chao Lin
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Brian D Carey
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Jonathan L Jacobs
- QIAGEN Bioinformatics, Aarhus, Denmark; QIAGEN Bioinformatics, Maryland, USA
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Monique L van Hoek
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | | | - Kylene Kehn-Hall
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA.
| |
Collapse
|
86
|
Over-Activated Proteasome Mediates Neuroinflammation on Acute Intracerebral Hemorrhage in Rats. Cells 2019; 8:cells8111326. [PMID: 31717886 PMCID: PMC6912695 DOI: 10.3390/cells8111326] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/16/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Neuroinflammation is a hallmark in intracerebral hemorrhage (ICH) that induces secondary brain injury, leading to neuronal cell death. ER stress-triggered apoptosis and proteostasis disruption caused neuroinflammation to play an important role in various neurological disorders. The consequences of ER stress and proteostasis disruption have rarely been studied during the course of ICH development. Methods: ICH was induced by collagenase VII-S intrastriatal infusion. Animals were sacrificed at 0, 3, 6, 24, and 72 h post-ICH. Rats were determined for body weight changes, hematoma volume, and neurological deficits. Brain tissues were harvested for molecular signaling analysis either for ELISA, immunoblotting, immunoprecipitation, RT-qPCR, protein aggregation, or for histological examination. A non-selective proteasome inhibitor, MG132, was administered into the right striatum three hours prior to ICH induction. Results: ICH-induced acute proteasome over-activation caused the early degradation of the endoplasmic reticulum (ER) chaperone GRP78 and IκB protein. These exacerbations were accompanied by the elevation of pro-apoptotic CCAAT-enhancer-binding protein homologous protein (CHOP) and pro-inflammatory cytokines expression via nuclear factor-kappa B (NF-κB) signal activation. Pre-treatment with proteasome inhibitor MG132 significantly ameliorated the ICH-induced ER stress/proteostasis disruption, pro-inflammatory cytokines, neuronal cells apoptosis, and neurological deficits. Conclusions: ICH induced rapid proteasome over-activation, leading to an exaggeration of the ER stress/proteostasis disruption, and neuroinflammation might be a critical event in acute ICH pathology.
Collapse
|
87
|
Icariin improves the cognitive function of APP/PS1 mice via suppressing endoplasmic reticulum stress. Life Sci 2019; 234:116739. [DOI: 10.1016/j.lfs.2019.116739] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 11/18/2022]
|
88
|
Role of endoplasmic reticulum stress on developmental competency and cryo-tolerance in bovine embryos. Theriogenology 2019; 142:131-137. [PMID: 31593880 DOI: 10.1016/j.theriogenology.2019.09.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/19/2019] [Accepted: 09/26/2019] [Indexed: 12/26/2022]
Abstract
Endoplasmic reticulum (ER) stress, a dysfunction in protein folding capacity of the ER, is involved in many physiological responses including mammalian reproductive systems. Studies have shown that ER stress interferes with the developmental process of in vitro oocyte maturation and embryo development; however, little is known about its effects on bovine preimplantation embryonic development. In this study, we examined the effects of ER stress during IVC on developmental competency and cryo-tolerance in bovine embryos. IVF-derived zygotes were cultured in CR1aa medium supplemented with tauroursodeoxycholic acid (TUDCA) and/or tunicamycin (TM), which are ER stress-inhibitory and stress-inducing agents, respectively, for 8 days. TM treatment decreased the blastocyst developmental rate and increased the percentage of apoptotic cells compared to that in the control group (10.2 ± 2.3% vs. 39.75 ± 1.3% and 17.8 ± 1.2% vs. 3.6 ± 1.1%, respectively; P < 0.01). However, the blastocyst developmental rate was increased and the percentage of apoptotic cells was decreased by addition of TUDCA in IVC medium compared to that in the control group (50.9 ± 0.9% vs. 39.75 ± 1.3% and 1.13 ± 1.0% vs. 3.6 ± 1.1%, respectively; P < 0.01). Importantly, in the group treated with TM plus TUDCA, the developmental rate and the percentage of apoptotic cells in blastocysts were similar to that in the control group, indicating that TUDCA ameliorates the adverse effects of TM alone on embryo development. In addition, TUDCA treatment significantly reduced the reactive oxygen species, expression of ER stress (GRP78, ATF4, ATF6, IER1, and sXBP1) and pro-apoptotic (CHOP and BAX) genes, while it increased anti-apoptotic BCL2 gene expression and glutathione levels. Moreover, TUDCA improved blastocyst cryo-tolerance as marked by a significantly increased hatching rate and decreased the number of apoptotic cells recorded at 48 h after a post-warming. Therefore, in concordance with a previous report in mice or pig, we showed that TUDCA supplementation during IVC increases the developmental competency of bovine in vitro-derived embryos. Additionally, we found that the presence of TUDCA in IVC medium improves the cryo-tolerance of bovine embryos. These results suggest that modulation of ER stress during IVC contributes to the production of high-quality bovine embryos in terms of cryo-tolerance.
Collapse
|
89
|
Liu M, Wang Y, Zhu Q, Zhao J, Wang Y, Shang M, Liu M, Wu Y, Song J, Liu Y. Protective effects of circulating microvesicles derived from ischemic preconditioning on myocardial ischemia/reperfusion injury in rats by inhibiting endoplasmic reticulum stress. Apoptosis 2019; 23:436-448. [PMID: 29980896 DOI: 10.1007/s10495-018-1469-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Microvesicles (MVs) have been shown to be involved in pathophysiology of ischemic heart diseases. However, the underlying mechanisms are still unclear. Here we investigated the effects of MVs derived from ischemic preconditioning (IPC-MVs) on myocardial ischemic/reperfusion (I/R) injury in rats. Myocardial IPC model was elicited by three cycles of ischemia and reperfusion of the left anterior descending (LAD) coronary artery. IPC-MVs from the peripheral blood of the above animal model were isolated by ultracentrifugation and characterized by flow cytometry and transmission electron microscopy. IPC-MVs were administered intravenously (7 mg/kg) at 5 min before reperfusion procedure in I/R injury model which was induced by 30-min ischemia and 120-min reperfusion of LAD in rats. We found that total IPC-MVs and different phenotypes, including platelet-derived MVs (PMVs), endothelial cell-derived MVs (EMVs), leucocyte-derived MVs and erythrocyte-derived MVs (RMVs) were all isolated which were identified membrane vesicles (< 1 µm) with corresponding antibody positive. The numbers of PMVs, EMVs and RMVs were significantly increased in circulation of IPC treated rats respectively. Additionally, treatment with IPC-MVs significantly alleviated damage of myocardium, and restored cardiac function of I/R injury rats, as evidenced by increased heart rate, and decreased the elevation of ST-segment. The size of myocardial infarction, lactate dehydrogenase activity, and the number of apoptotic cardiomyocytes were also reduced significantly with IPC-MVs treatment, coincident with the above function amelioration. Moreover, IPC-MVs decreased the activity of caspase 3, and the expression of endoplasmic reticulum stress (ERS) markers, GRP78, CHOP and caspase 12 indicating the involvement of ERS-specific apoptosis in I/R injury, and cardioprotective effects of IPC-MVs. In summary, our study demonstrated a novel mechanism of IPC in which circulating IPC-MVs could protect hearts from I/R injury in rats through attenuation of ERS-induced apoptosis. These findings provide new insight into therapeutic potential of IPC-induced MVs in cardioprotection against I/R injury.
Collapse
Affiliation(s)
- Miao Liu
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China.,Department of Personnel, Tianjin University of Traditional Chinese Medicine, Health Industrial Park, Tianjin, 301617, China
| | - Yilu Wang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China.,Department of Pharmacy, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
| | - Qian Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Junyu Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Yao Wang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Man Shang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Minglin Liu
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, Temple University School of Medicine, Philadelphia, PA, 19140, USA.,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19140, USA.,Philadelphia VA Medical Center, Philadelphia, PA, 19140, USA
| | - Yanna Wu
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Junqiu Song
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China.
| | - Yanxia Liu
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China.
| |
Collapse
|
90
|
Al-Romaiyan A, Liu B, Persaud S, Jones P. A novel Gymnema sylvestre extract protects pancreatic beta-cells from cytokine-induced apoptosis. Phytother Res 2019; 34:161-172. [PMID: 31515869 DOI: 10.1002/ptr.6512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/04/2019] [Accepted: 08/29/2019] [Indexed: 01/17/2023]
Abstract
Inflammatory cytokines such as interleukin-1β, TNF-α, and interferon-γ are known to be involved in mediating β-cells death in diabetes mellitus (DM). Thus, protecting from β-cells death in patients with DM may be a useful target in alleviating symptoms of hyperglycemia. Traditional plant-based remedies have been used to treat DM for many centuries and may play a role in protecting β-cell from death. An example of these remedies is Gymnema sylvestre (GS) extract. In this study, we investigated the effect of this plant extract on β-cells apoptosis. Om Santal Adivasi (OSA®) maintained cell membrane integrity in MIN6 cells and mouse islets. Om Santal Adivasi significantly protected MIN6 cells and mouse islets from cytokine-induced apoptosis. In the presence of cytokines, OSA® significantly reduced the expression and activity of caspase-3. The antiapoptotic effect of OSA® as shown by microarray analysis is largely mediated by activating pathways involved in cell survival (mainly casein kinase II pathway) and the free radical scavenger system (specifically superoxide dismutase and catalase). This study indicates that the GS isolate OSA® protects against cytokine-induced apoptosis of β-cells by increasing the expression of cell survival pathways and free radical scavenger system.
Collapse
Affiliation(s)
- Altaf Al-Romaiyan
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait
| | - Bo Liu
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, King's College London, London, UK
| | - Shanta Persaud
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, King's College London, London, UK
| | - Peter Jones
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, King's College London, London, UK
| |
Collapse
|
91
|
Tolvaptan activates the Nrf2/HO-1 antioxidant pathway through PERK phosphorylation. Sci Rep 2019; 9:9245. [PMID: 31239473 PMCID: PMC6592894 DOI: 10.1038/s41598-019-45539-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/07/2019] [Indexed: 12/30/2022] Open
Abstract
Tolvaptan, a vasopressin type 2 receptor antagonist initially developed to increase free-water diuresis, has been approved for the treatment of autosomal dominant polycystic kidney disease in multiple countries. Furthermore, tolvaptan has been shown to improve the renal functions in rodent models of chronic kidney disease (CKD); however, the underlying molecular mechanisms remain unknown. CKD is characterized by increased levels of oxidative stress, and an antioxidant transcription factor—nuclear factor erythroid 2-related factor 2 (Nrf2)—has been gaining attention as a therapeutic target. Therefore, we investigated the effects of tolvaptan and a well-known Nrf2 activator, bardoxolone methyl (BARD) on Nrf2. To determine the role of tolvaptan, we used a renal cortical collecting duct (mpkCCD) cell line and mouse kidneys. Tolvaptan activated Nrf2 and increased mRNA and protein expression of antioxidant enzyme heme oxygenase-1 (HO-1) in mpkCCD cells and the outer medulla of mouse kidneys. In contrast to BARD, tolvaptan regulated the antioxidant systems via a unique mechanism. Tolvaptan activated the Nrf2/HO-1 antioxidant pathway through phosphorylation of protein kinase RNA-like endoplasmic reticulum kinase (PERK). As a result, tolvaptan and BARD could successfully generate synergistic activating effects on Nrf2/HO-1 antioxidant pathway, suggesting that this combination therapy can contribute to the treatment of CKD.
Collapse
|
92
|
Unfolded Protein Response (UPR) in Survival, Dormancy, Immunosuppression, Metastasis, and Treatments of Cancer Cells. Int J Mol Sci 2019; 20:ijms20102518. [PMID: 31121863 PMCID: PMC6566956 DOI: 10.3390/ijms20102518] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 02/06/2023] Open
Abstract
The endoplasmic reticulum (ER) has diverse functions, and especially misfolded protein modification is in the focus of this review paper. With a highly regulatory mechanism, called unfolded protein response (UPR), it protects cells from the accumulation of misfolded proteins. Nevertheless, not only does UPR modify improper proteins, but it also degrades proteins that are unable to recover. Three pathways of UPR, namely PERK, IRE-1, and ATF6, have a significant role in regulating stress-induced physiological responses in cells. The dysregulated UPR may be involved in diseases, such as atherosclerosis, heart diseases, amyotrophic lateral sclerosis (ALS), and cancer. Here, we discuss the relation between UPR and cancer, considering several aspects including survival, dormancy, immunosuppression, angiogenesis, and metastasis of cancer cells. Although several moderate adversities can subject cancer cells to a hostile environment, UPR can ensure their survival. Excessive unfavorable conditions, such as overloading with misfolded proteins and nutrient deprivation, tend to trigger cancer cell death signaling. Regarding dormancy and immunosuppression, cancer cells can survive chemotherapies and acquire drug resistance through dormancy and immunosuppression. Cancer cells can also regulate the downstream of UPR to modulate angiogenesis and promote metastasis. In the end, regulating UPR through different molecular mechanisms may provide promising anticancer treatment options by suppressing cancer proliferation and progression.
Collapse
|
93
|
Pan J, Yao Y, Guo X, Kong F, Zhou J, Meng X. Endoplasmic reticulum stress, a novel significant mechanism responsible for DEHP‐induced increased distance between seminiferous tubule of mouse testis. J Cell Physiol 2019; 234:19807-19823. [DOI: 10.1002/jcp.28580] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/27/2019] [Accepted: 03/06/2019] [Indexed: 01/12/2023]
Affiliation(s)
- Junlin Pan
- Shandong Provincial Key Laboratory of Animal Resistance Biology College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University Jinan Shandong China
| | - YuanYuan Yao
- Shandong Provincial Key Laboratory of Animal Resistance Biology College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University Jinan Shandong China
| | - Xiuxiu Guo
- Shandong Provincial Key Laboratory of Animal Resistance Biology College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University Jinan Shandong China
| | - Fengyun Kong
- Reproductive Medical Center The Second Hospital Affiliated to Shandong University of Traditional Chinese Medicine Jinan Shandong China
| | - Jun Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University Jinan Shandong China
| | - Xiaoqian Meng
- Shandong Provincial Key Laboratory of Animal Resistance Biology College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University Jinan Shandong China
| |
Collapse
|
94
|
Ramesh J, Ronsard L, Gao A, Venugopal B. Autophagy Intertwines with Different Diseases-Recent Strategies for Therapeutic Approaches. Diseases 2019; 7:diseases7010015. [PMID: 30717078 PMCID: PMC6473623 DOI: 10.3390/diseases7010015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a regular and substantial “clear-out process” that occurs within the cell and that gets rid of debris that accumulates in membrane-enclosed vacuoles by using enzyme-rich lysosomes, which are filled with acids that degrade the contents of the vacuoles. This machinery is well-connected with many prevalent diseases, including cancer, HIV, and Parkinson’s disease. Considering that autophagy is well-known for its significant connections with a number of well-known fatal diseases, a thorough knowledge of the current findings in the field is essential in developing therapies to control the progression rate of diseases. Thus, this review summarizes the critical events comprising autophagy in the cellular system and the significance of its key molecules in manifesting this pathway in various diseases for down- or upregulation. We collectively reviewed the role of autophagy in various diseases, mainly neurodegenerative diseases, cancer, inflammatory diseases, and renal disorders. Here, some collective reports on autophagy showed that this process might serve as a dual performer: either protector or contributor to certain diseases. The aim of this review is to help researchers to understand the role of autophagy-regulating genes encoding functional open reading frames (ORFs) and its connection with diseases, which will eventually drive better understanding of both the progression and suppression of different diseases at various stages. This review also focuses on certain novel therapeutic strategies which have been published in the recent years based on targeting autophagy key proteins and its interconnecting signaling cascades.
Collapse
Affiliation(s)
- Janani Ramesh
- Department of Medical Biochemistry, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai 600113, India.
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Larance Ronsard
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02140, USA.
| | - Anthony Gao
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Bhuvarahamurthy Venugopal
- Department of Medical Biochemistry, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai 600113, India.
| |
Collapse
|
95
|
Endoplasmic Reticulum Stress Markers and Their Possible Implications in Leprosy's Pathogenesis. DISEASE MARKERS 2018; 2018:7067961. [PMID: 30647798 PMCID: PMC6311872 DOI: 10.1155/2018/7067961] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/04/2018] [Accepted: 10/09/2018] [Indexed: 12/19/2022]
Abstract
Mycobacterium leprae causes leprosy, a dermatoneurological disease which affects the skin and peripheral nerves. One of several cellular structures affected during M. leprae infection is the endoplasmic reticulum (ER). Infection by microorganisms can result in ER stress and lead to the accumulation of unfolded or poorly folded proteins. To restore homeostasis in the cell, the cell induces a series of signaling cascades known as the unfolded protein response called UPR (unfolded protein response). The present work is aimed at investigating the in situ expression of these markers in cutaneous lesions of clinical forms of leprosy and establish possible correlation expression patterns and types of lesion. A total of 43 samples from leprosy patients were analyzed by immunohistochemistry with monoclonal antibodies against GRP78/BiP, PERK, IRE1α, and ATF6. A statistically significant difference between the indeterminate, tuberculoid, and lepromatous clinical forms was detected, with high expression of GRP78/BiP, PERK, IRE1α, and ATF6 in tuberculoid forms (TT) when compared to lepromatous leprosy (LL) and indeterminate (I) leprosy. These results represent the first evidence of ER stress in samples of skin lesions from leprosy patients. We believe that they will provide better understanding of the complex pathogenesis of the disease and facilitate further characterization of the cascade of molecular events elicited during infection.
Collapse
|
96
|
Soni KK, Zhang LT, Choi BR, Karna KK, You JH, Shin YS, Lee SW, Kim CY, Zhao C, Chae HJ, Kim HK, Park JK. Protective effect of MOTILIPERM in varicocele-induced oxidative injury in rat testis by activating phosphorylated inositol requiring kinase 1α (p-IRE1α) and phosphorylated c-Jun N-terminal kinase (p-JNK) pathways. PHARMACEUTICAL BIOLOGY 2018; 56:94-103. [PMID: 29316840 PMCID: PMC6130442 DOI: 10.1080/13880209.2017.1421672] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
CONTEXT MOTILIPERM was prepared as a mixture of extracts of three medicinal herbs [roots of Morinda officinalis How (Rubiaceae), outer scales of Allium cepa L. (Liliaceae) and seeds of Cuscuta chinensis Lamark (Convolvulaceae)]. OBJECTIVE To investigate the role of reactive oxygen species (ROS)-based endoplasmic reticulum (ER) stress in a rat model of varicocele and the therapeutic efficacy of MOTILIPERM in this model. MATERIALS AND METHODS Sixty male rats were divided into five experimental groups: a normal control group (CTR + vehicle), a control group administered MOTILIPERM 200 mg/kg (CTR + M 200), a varicocele-induced control group (VC + vehicle) and two varicocele-induced groups administered MOTILIPERM 100 (VC + M 100) or 200 (VC + M 200) mg/kg for 4 weeks. Testis weights were recorded and serums were assayed for hormone concentrations. Tissues were subjected to semen analysis, histopathology, analyses of ER response protein expression levels and oxidative stress were assessed by measuring ROS, reactive nitrogen species (RNS), malondialdehyde (MDA) level and ratios of total glutathione (GSH)/oxidized GSH (GSSG). RESULTS MOTILIPERM treatment of varicocele-induced groups significantly increased left testis weight, testosterone level, sperm motility, count and spermatogenic cell density. ER-response protein expression levels were dose-dependently decreased in VC + M 200 group compared with VC + vehicle group. MOTILIPERM treatment also decreased MDA and ROS/RNS level but increased GSH/GSSG ratio. DISCUSSION AND CONCLUSIONS This study suggests that ROS-related ER stress may play a major role in varicocele-induced infertility and MOTILIPERM, a novel compound targeting ROS-based ER stress, may be therapeutically useful in treatment of varicocele, or as a supplement for the treatment of infertility.
Collapse
Affiliation(s)
- Kiran Kumar Soni
- Department of Urology, Chonbuk National University and Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute and Clinical Trial Center of Medical Device of Chonbuk National University, Jeonju, Republic of Korea
| | - Li Tao Zhang
- Department of Urology, Chonbuk National University and Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute and Clinical Trial Center of Medical Device of Chonbuk National University, Jeonju, Republic of Korea
| | - Bo Ram Choi
- Department of Urology, Chonbuk National University and Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute and Clinical Trial Center of Medical Device of Chonbuk National University, Jeonju, Republic of Korea
| | - Keshab Kumar Karna
- Department of Urology, Chonbuk National University and Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute and Clinical Trial Center of Medical Device of Chonbuk National University, Jeonju, Republic of Korea
| | - Jae Hyung You
- Department of Urology, Chonbuk National University and Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute and Clinical Trial Center of Medical Device of Chonbuk National University, Jeonju, Republic of Korea
| | - Yu Seob Shin
- Department of Urology, Chonbuk National University and Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute and Clinical Trial Center of Medical Device of Chonbuk National University, Jeonju, Republic of Korea
| | - Sung Won Lee
- Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Chul Young Kim
- College of Pharmacy, Hanyang University, Ansan, Republic of Korea
| | - Chen Zhao
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and Shanghai Institute of Andrology, Shanghai, China
| | - Han-Jung Chae
- Department of Pharmacology, Chonbuk University of Medical School, Jeonju, Republic of Korea
| | - Hye Kyung Kim
- College of Pharmacy, Kyungsung University, Busan, Republic of Korea
| | - Jong Kwan Park
- Department of Urology, Chonbuk National University and Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute and Clinical Trial Center of Medical Device of Chonbuk National University, Jeonju, Republic of Korea
- CONTACT Jong Kwan ParkDepartment of Urology, Chonbuk National University and Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute and Clinical Trial Center of Medical Device of Chonbuk National University, Jeonju54909, Republic of Korea
| |
Collapse
|
97
|
Novel Rhodanine Derivative, 5-[4-(4-Fluorophenoxy) phenyl]methylene-3-{4-[3-(4-methylpiperazin-1-yl) propoxy]phenyl}-2-thioxo-4-thiazolidinone dihydrochloride, Induces Apoptosis via Mitochondria Dysfunction and Endoplasmic Reticulum Stress in Human Colon Cancer Cells. Molecules 2018; 23:molecules23112895. [PMID: 30404185 PMCID: PMC6278386 DOI: 10.3390/molecules23112895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/03/2018] [Accepted: 11/04/2018] [Indexed: 01/29/2023] Open
Abstract
We previously reported that 5-[4-(4-fluorophenoxy) phenyl] methylene-3-{4-[3-(4-methylpiperazin-1-yl)propoxy]phenyl}-2-thioxo-4-thiazolidinone dihydrochloride (KSK05104) has potent, selective and metabolically stable IKKβ inhibitory activities. However, the apoptosis-inducing of KSK05104 and its underlying mechanism have not yet been elucidated in human colon cancer cells. We show that KSK05104 triggered apoptosis, as indicated by externalization of Annexin V-targeted phosphatidylserine residues in HT-29 and HCT-116 cells. KSK05104 induced the activation of caspase-8, -9, and -3, and the cleavage of poly (ADP ribose) polymerase-1 (PARP-1). KSK05104-induced apoptosis was significantly suppressed by pretreatment with z-VAD-fmk (a broad caspase inhibitor). KSK05104 also induced release of cytochrome c (Cyt c), apoptosis inducing factor (AIF), and endonuclease G (Endo G) by damaging mitochondria, resulting in caspase-dependent and -independent apoptotic cell death. KSK05104 triggered endoplasmic reticulum (ER) stress and changed the intracellular calcium level ([Ca2+]i). Interestingly, treatment with KSK05104 activated not only ER stress marker proteins including inositol-requiring enzyme 1-alpha (IRE-1α) and protein kinase RNA-like endoplasmic reticulum kinase (PERK), but also μ-calpain, and caspase-12 in a time-dependent manner. KSK05104-induced apoptosis substantially decreased in the presence of BAPTA/AM (an intracellular calcium chelator). Taken together, these results suggest that mitochondrial dysfunction and ER stress contribute to KSK05104-induced apoptosis in human colon cancer cells.
Collapse
|
98
|
Sadleir KR, Popovic J, Vassar R. ER stress is not elevated in the 5XFAD mouse model of Alzheimer's disease. J Biol Chem 2018; 293:18434-18443. [PMID: 30315100 PMCID: PMC6290164 DOI: 10.1074/jbc.ra118.005769] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/09/2018] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease mouse models that overexpress amyloid precursor protein (APP) and presenilin 1 (PS1) form β-amyloid (Aβ) plaques, a hallmark Alzheimer's disease lesion. It has been assumed that the neuroinflammation, synaptic dysfunction, neurodegeneration, and cognitive impairment observed in these mice are caused by cerebral Aβ accumulation. However, it is also possible that accumulation of the overexpressed transmembrane proteins APP and PS1 in the endoplasmic reticulum (ER) triggers chronic ER stress and activation of the unfolded protein response (UPR). The 5XFAD mouse, a widely used amyloid pathology model, overexpresses APP and PS1, displays aggressive amyloid pathology, and has been reported to exhibit ER stress. To systematically evaluate whether 5XFAD mice have increased ER stress, here we used biochemical approaches to assess a comprehensive panel of UPR markers. We report that APP and PS1 levels are 1.8- and 1.5-fold, respectively, of those in 5XFAD compared with nontransgenic brains, indicating that transgenes are not massively overexpressed in 5XFAD mice. Using immunoblotting, we quantified UPR protein levels in nontransgenic, 5XFAD, and 5XFAD;BACE1−/− mice at 4, 6, and 9 months of age. Importantly, we did not observe elevation of the ER stress markers p-eIF2α, ATF4, CHOP, p-IRE1α, or BiP at any age in 5XFAD or 5XFAD;BACE1−/− compared with nontransgenic mice. Despite lacking Aβ generation, 5XFAD;BACE1−/− mice still expressed APP and PS1 transgenes, indicating that their overexpression does not cause ER stress. These results reveal the absence of ER stress in 5XFAD mice, suggesting that artifactual phenotypes associated with overexpression-induced ER stress are not a concern in this model.
Collapse
Affiliation(s)
- Katherine R Sadleir
- From the Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Jelena Popovic
- From the Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Robert Vassar
- From the Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
99
|
Kalpana K, Priyadarshini E, Sreeja S, Jagan K, Anuradha CV. Scopoletin intervention in pancreatic endoplasmic reticulum stress induced by lipotoxicity. Cell Stress Chaperones 2018; 23:857-869. [PMID: 29574508 PMCID: PMC6111101 DOI: 10.1007/s12192-018-0893-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/03/2018] [Accepted: 03/12/2018] [Indexed: 12/29/2022] Open
Abstract
Endoplasmic reticulum (ER), a dynamic organelle, plays an essential role in organizing the signaling pathways involved in cellular adaptation, resilience, and survival. Impairment in the functions of ER occurs in a variety of nutritive disorders including obesity and type 2 diabetes. Here, we hypothesize that (scopoletin) SPL, a coumarin, has the potential to alleviate ER stress induced in vitro and in vivo models by lipotoxicity. To test this hypothesis, the ability of SPL to restore the levels of proteins of ER stress was analyzed. Rat insulinoma 5f (RIN5f) cells and Sprague Dawley rats were the models used for this study. Groups of control and high-fat, high-fructose diet (HFFD)-fed rats were treated with either SPL or 4-phenylbutyric acid. Status of ER stress was enumerated by quantitative RT-PCR, Western blot, electron microscopic, and immunohistochemical studies. Proximal proteins of ER stress inositol requiring enzyme 1 (IRE1), protein kinase like endoplasmic reticulum kinase (PERK), and activating transcription factor 6 (ATF6) were reduced in the β-cells by SPL. The subsequent signaling proteins X-box binding protein 1, eukaryotic initiation factor2α, activating transcription factor 4, and C/EBP homologous protein were also suppressed in their expression levels when treated with SPL. IRE1, PERK signaling leads to c-Jun-N-terminal kinases phosphorylation, a kinase that interrupts insulin signaling, which was also reverted upon scopoletin treatment. Finally, we confirm that SPL has the ability to suppress the stress proteins and limit pancreatic ER stress which might help in delaying the progression of insulin resistance.
Collapse
Affiliation(s)
- Kalaivanan Kalpana
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, Tamil Nadu, 608002, India
| | - Emayavaramban Priyadarshini
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, Tamil Nadu, 608002, India
| | - S Sreeja
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, Tamil Nadu, 608002, India
| | - Kalivarathan Jagan
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, Tamil Nadu, 608002, India
| | - Carani Venkatraman Anuradha
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, Tamil Nadu, 608002, India.
| |
Collapse
|
100
|
Roberts NB, Alqazzaz A, Hwang JR, Qi X, Keegan AD, Kim AJ, Winkles JA, Woodworth GF. Oxaliplatin disrupts pathological features of glioma cells and associated macrophages independent of apoptosis induction. J Neurooncol 2018; 140:497-507. [PMID: 30132163 DOI: 10.1007/s11060-018-2979-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/06/2018] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Emerging evidence suggests that effective treatment of glioblastoma (GBM), the most common and deadly form of adult primary brain cancer, will likely require concurrent treatment of multiple aspects of tumor pathobiology to overcome tumor heterogeneity and the complex tumor-supporting microenvironment. Recent studies in non-central nervous system (CNS) tumor cells have demonstrated that oxaliplatin (OXA) can induce multi-faceted anti-tumor effects, in particular at drug concentrations below those required to induce apoptosis. These findings motivated re-investigation of OXA for the treatment of GBM. METHODS The effects of OXA on murine KR158 and GL261 glioma cells including cell growth, cell death, inhibition of signal transducer and activator of transcription (STAT) activity, O-6-methylguanine-DNA methyltransferase (MGMT) expression, and immunogenic cell death (ICD) initiation, were evaluated by cytotoxicity assays, Western blot analysis, STAT3-luciferase reporter assays, qRT-PCR assays, and flow cytometry. Chemical inhibitors of endoplasmic reticulum (ER) stress were used to investigate the contribution of this cell damage response to the observed OXA effects. The effect of OXA on bone marrow-derived macrophages (BMDM) exposed to glioma conditioned media (GCM) was also analyzed by Western blot analysis. RESULTS We identified the OXA concentration threshold for induction of apoptosis and from this determined the drug dose and treatment period for sub-cytotoxic treatments of glioma cells. Under these experimental conditions, OXA reduced STAT3 activity, reduced MGMT levels and increased temozolomide sensitivity. In addition, there was evidence of immunogenic cell death (elevated EIF2α phosphorylation and calreticulin exposure) following prolonged OXA treatment. Notably, inhibition of ER stress reversed the OXA-mediated inhibition of STAT3 activity and MGMT expression in the tumor cells. In BMDMs exposed to GCM, OXA also reduced levels of phosphorylated STAT3 and decreased expression of Arginase 1, an enzyme known to contribute to pro-tumor functions in the tumor-immune environment. CONCLUSIONS OXA can induce notable multi-faceted biological effects in glioma cells and BMDMs at relatively low drug concentrations. These findings may have significant therapeutic relevance against GBM and warrant further investigation.
Collapse
Affiliation(s)
- Nathan B Roberts
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, 21201, USA
| | - Aymen Alqazzaz
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, 21201, USA
| | - Jacqueline R Hwang
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, 21201, USA
| | - Xiulan Qi
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Achsah D Keegan
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Research and Development Service, U.S. Department of Veterans Affairs, Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA
| | - Anthony J Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, 21201, USA
| | - Jeffrey A Winkles
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, 21201, USA. .,Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Surgery, University of Maryland School of Medicine, 800 West Baltimore Street, Baltimore, MD, 21201, USA.
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, 21201, USA
| |
Collapse
|