51
|
Cui Y, Wu K, Yao X. The CDPK-related protein kinase HvCRK2 and HvCRK4 interact with HvCML32 to negatively regulate drought tolerance in transgenic Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108909. [PMID: 38971089 DOI: 10.1016/j.plaphy.2024.108909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Calcium-dependent protein kinase (CDPK) as one of calcium sensors were play important roles in stress responses. CDPK-related protein kinase (CRK) was identified as subgroup III of CDPK has been characterized in many plants, but the members and functions of CRK genes in hulless barley (Hordeum vulgare L.) has not been clarified. Here, we identified four HvCRK genes and named HvCRK1-4 according to chromosomes localization. Moreover, the physiological function of highly induced genes of HvCRK2 and HvCRK4 were investigated in drought stress tolerance by examining their overexpression transgenic lines functions generated in Arabidopsis thaliana. Under drought stress, both overexpression HvCRK2 and HvCRK4 displayed reduced drought resistance, and accompanied by higher accumulation levels of ROS. Notably, overexpression of HvCRK2 and HvCRK4 reduced sensitivity to exogenous ABA, meanwhile the expression of ABA-responsive genes in transgenic plants were down-regulated compared to the wild type in response to drought stress. Furthermore, the physically interaction of HvCRK2 and HvCRK4 with calmodulin (CaM) and calmodulin-like (CML) proteins were determined in vivo, the further results showed that HvCML32 binds to HvCRK2/4 S_TKC structural domains and negatively regulates drought tolerance. In summary, this study identified HvCRK members and indicated that HvCRK2 and HvCRK4 genes play negative roles in drought tolerance, and provide insight into potential molecular mechanism of HvCRK2 and HvCRK4 in response to drought stress.
Collapse
Affiliation(s)
- Yongmei Cui
- Academy of Agricultural and Forestry Sciences, Qinghai University, 810016, Xining, China; Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, 810016, Xining, China; Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, 810016, Xining, China; Oinghai Hulless Barley Subcenter of National Triticeae Improvement Center, 810016, Xining, China
| | - Kunlun Wu
- Academy of Agricultural and Forestry Sciences, Qinghai University, 810016, Xining, China; Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, 810016, Xining, China; Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, 810016, Xining, China; Oinghai Hulless Barley Subcenter of National Triticeae Improvement Center, 810016, Xining, China.
| | - Xiaohua Yao
- Academy of Agricultural and Forestry Sciences, Qinghai University, 810016, Xining, China; Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, 810016, Xining, China; Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, 810016, Xining, China; Oinghai Hulless Barley Subcenter of National Triticeae Improvement Center, 810016, Xining, China.
| |
Collapse
|
52
|
Eskikoy G, Kutlu I. Inter-subspecies diversity of maize to drought stress with physio-biochemical, enzymatic and molecular responses. PeerJ 2024; 12:e17931. [PMID: 39184382 PMCID: PMC11345000 DOI: 10.7717/peerj.17931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024] Open
Abstract
Background Drought is the most significant factor limiting maize production, given that maize is a crop with a high water demand. Therefore, studies investigating the mechanisms underlying the drought tolerance of maize are of great importance. There are no studies comparing drought tolerance among economically important subspecies of maize. This study aimed to reveal the differences between the physio-biochemical, enzymatic, and molecular mechanisms of drought tolerance in dent (Zea mays indentata), popcorn (Zea mays everta), and sugar (Zea mays saccharata) maize under control (no-stress), moderate, and severe drought stress. Methods Three distinct irrigation regimes were employed to assess the impact of varying levels of drought stress on maize plants at the V14 growth stage. These included normal irrigation (80% field capacity), moderate drought (50% field capacity), and severe drought (30% field capacity). All plants were grown under controlled conditions. The following parameters were analyzed: leaf relative water content (RWC), loss of turgidity (LOT), proline (PRO) and soluble protein (SPR) contents, membrane durability index (MDI), malondialdehyde (MDA), and hydrogen peroxide (H2O2) content, the antioxidant enzyme activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT). Additionally, the expression of heat shock proteins (HSPs) was examined at the transcriptional and translational levels. Results The effects of severe drought were more pronounced in sugar maize, which had a relatively high loss of RWC and turgor, membrane damage, enzyme activities, and HSP90 gene expression. Dent maize, which is capable of maintaining its RWC and turgor in both moderate and severe droughts, and employs its defense mechanism effectively by maintaining antioxidant enzyme activities at a certain level despite less MDA and H2O2 accumulation, exhibited relatively high drought tolerance. Despite the high levels of MDA and H2O2 in popcorn maize, the up-regulation of antioxidant enzyme activities and HSP70 gene and protein expression indicated that the drought coping mechanism is activated. In particular, the positive correlation of HSP70 with PRO and HSP90 with enzyme activities is a significant result for studies examining the relationships between HSPs and other stress response systems. The discrepancies between the transcriptional and translational findings provide an opportunity for more comprehensive investigations into the role of HSPs in stress conditions.
Collapse
Affiliation(s)
- Gokhan Eskikoy
- Field Crops Department/Faculty of Agriculture, Osmangazi University, Eskişehir, Turkey
| | - Imren Kutlu
- Field Crops Department/Faculty of Agriculture, Osmangazi University, Eskişehir, Turkey
| |
Collapse
|
53
|
Lee S, Kim JA, Song J, Choe S, Jang G, Kim Y. Plant growth-promoting rhizobacterium Bacillus megaterium modulates the expression of antioxidant-related and drought-responsive genes to protect rice ( Oryza sativa L.) from drought. Front Microbiol 2024; 15:1430546. [PMID: 39234545 PMCID: PMC11371581 DOI: 10.3389/fmicb.2024.1430546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024] Open
Abstract
Global climate change poses a significant threat to plant growth and crop yield and is exacerbated by environmental factors, such as drought, salinity, greenhouse gasses, and extreme temperatures. Plant growth-promoting rhizobacteria (PGPR) help plants withstand drought. However, the mechanisms underlying PGPR-plant interactions remain unclear. Thus, this study aimed to isolate PGPR, Bacillus megaterium strains CACC109 and CACC119, from a ginseng field and investigate the mechanisms underlying PGPR-stimulated tolerance to drought stress by evaluating their plant growth-promoting activities and effects on rice growth and stress tolerance through in vitro assays, pot experiments, and physiological and molecular analyses. Compared with B. megaterium type strain ATCC14581, CACC109 and CACC119 exhibited higher survival rates under osmotic stress, indicating their potential to enhance drought tolerance. Additionally, CACC109 and CACC119 strains exhibited various plant growth-promoting activities, including phosphate solubilization, nitrogen fixation, indole-3-acetic acid production, siderophore secretion, 1-aminocyclopropane-1-carboxylate deaminase activity, and exopolysaccharide production. After inoculation, CACC109 and CACC119 significantly improved the seed germination of rice (Oryza sativa L.) under osmotic stress and promoted root growth under stressed and non-stressed conditions. They also facilitated plant growth in pot experiments, as evidenced by increased shoot and root lengths, weights, and leaf widths. Furthermore, CACC109 and CACC119 improved plant physiological characteristics, such as chlorophyll levels, and production of osmolytes, such as proline. In particular, CACC109- and CACC119-treated rice plants showed better drought tolerance, as evidenced by their higher survival rates, greater chlorophyll contents, and lower water loss rates, compared with mock-treated rice plants. Application of CACC109 and CACC119 upregulated the expression of antioxidant-related genes (e.g., OsCAT, OsPOD, OsAPX, and OsSOD) and drought-responsive genes (e.g., OsWRKY47, OsZIP23, OsDREB2, OsNAC066, OsAREB1, and OsAREB2). In conclusion, CACC109 and CACC119 are promising biostimulants for enhancing plant growth and conferring resistance to abiotic stresses in crop production. Future studies should conduct field trials to validate these findings under real agricultural conditions, optimize inoculation methods for practical use, and further investigate the biochemical and physiological responses underlying the observed benefits.
Collapse
Affiliation(s)
- Sanghun Lee
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, Republic of Korea
| | - Jung-Ae Kim
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, Republic of Korea
| | - Jeongsup Song
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, Republic of Korea
| | - Seonbong Choe
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, Republic of Korea
| | - Geupil Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Yangseon Kim
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, Republic of Korea
| |
Collapse
|
54
|
Noor MMA, Tahjib-Ul-Arif M, Alim SMA, Islam MM, Hasan MT, Babar MA, Hossain MA, Jewel ZA, Murata Y, Mostofa MG. Lentil adaptation to drought stress: response, tolerance, and breeding approaches. FRONTIERS IN PLANT SCIENCE 2024; 15:1403922. [PMID: 39228838 PMCID: PMC11368723 DOI: 10.3389/fpls.2024.1403922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/05/2024] [Indexed: 09/05/2024]
Abstract
Lentil (Lens culinaris Medik.) is a cool season legume crop that plays vital roles in food and nutritional security, mostly in the least developed countries. Lentil is often cultivated in dry and semi-dry regions, where the primary abiotic factor is drought, which negatively impacts lentil growth and development, resulting in a reduction of yield. To withstand drought-induced multiple negative effects, lentil plants evolved a variety of adaptation strategies that can be classified within three broad categories of drought tolerance mechanisms (i.e., escape, avoidance, and tolerance). Lentil adapts to drought by the modulation of various traits in the root system, leaf architecture, canopy structure, branching, anatomical features, and flowering process. Furthermore, the activation of certain defensive biochemical pathways as well as the regulation of gene functions contributes to lentil drought tolerance. Plant breeders typically employ conventional and mutational breeding approaches to develop lentil varieties that can withstand drought effects; however, little progress has been made in developing drought-tolerant lentil varieties using genomics-assisted technologies. This review highlights the current understanding of morpho-physiological, biochemical, and molecular mechanisms of lentil adaptation to drought stress. We also discuss the potential application of omics-assisted breeding approaches to develop lentil varieties with superior drought tolerance traits.
Collapse
Affiliation(s)
- Md. Mahmud Al Noor
- Plant Breeding Division, Bangladesh Institute of Nuclear Agriculture, Mymensingh, Bangladesh
| | - Md. Tahjib-Ul-Arif
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| | - S. M. Abdul Alim
- Plant Breeding Division, Bangladesh Institute of Nuclear Agriculture, Mymensingh, Bangladesh
| | - Md. Mohimenul Islam
- Horticulture Division, Bangladesh Institute of Nuclear Agriculture, Mymensingh, Bangladesh
| | - Md. Toufiq Hasan
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Ali Babar
- Agronomy Departments, University of Florida, Gainesville, FL, United States
| | - Mohammad Anwar Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Zilhas Ahmed Jewel
- Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Yoshiyuki Murata
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| | - Mohammad Golam Mostofa
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
55
|
Tabur S, Ozmen S, Oney-Birol S. Promoter role of putrescine for molecular and biochemical processes under drought stress in barley. Sci Rep 2024; 14:19202. [PMID: 39160181 PMCID: PMC11333763 DOI: 10.1038/s41598-024-70137-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
Drought, which adversely affects plant growth and continuity of life and reduces product yield and quality, is one of the most common abiotic stresses at the globally. One of the polyamines that regulates plant development and reacts to abiotic stressors, including drought stress, is Putrescine (Put). This study compared the physiological and molecular effects of applying exogenous Put (10 µM) to barley (Hordeum vulgare cv. Burakbey) under drought stress (- 6.30 mPa PEG 6000). The 21-day drought stress imposed on the barley plant had a strong negative effect on plant metabolism in all experimental groups. Exogenous Put treatment under drought stress had a reformative effect on the cell cycle (transitions from G0-G1 to S and from S to G2-M), total protein content (almost 100%), endogenous polyamine content, malondialdehyde (MDA) (70%), and ascorbate peroxidase (APX) (62%) levels compared to the drought stress plants. Superoxide dismutase (SOD) (12%) and catalase (CAT) (32%) enzyme levels in the same group increased further after exogenous Put application, forming a response to drought stress. Consequently, it was discovered that the administration of exogenous Put in barley raises endogenous polyamine levels and then improves drought tolerance due to increased antioxidant capability, cell division stimulation, and total protein content.
Collapse
Affiliation(s)
- Selma Tabur
- Department of Biology, Faculty of Engineering and Natural Sciences, Suleyman Demirel University, 32260, Isparta, Turkey
| | - Serkan Ozmen
- Department of Biology, Faculty of Engineering and Natural Sciences, Suleyman Demirel University, 32260, Isparta, Turkey
| | - Signem Oney-Birol
- Department of Moleculer Biology and Genetics, Faculty of Arts and Sciences, Burdur Mehmet Akif Ersoy University, 15030, Burdur, Turkey.
| |
Collapse
|
56
|
Rajkumar MS, Tembhare K, Garg R, Jain M. Genome-wide mapping of DNase I hypersensitive sites revealed differential chromatin accessibility and regulatory DNA elements under drought stress in rice cultivars. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2063-2079. [PMID: 38859561 DOI: 10.1111/tpj.16864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/08/2024] [Accepted: 05/22/2024] [Indexed: 06/12/2024]
Abstract
Drought stress (DS) is one of the major constraints limiting yield in crop plants including rice. Gene regulation under DS is largely governed by accessibility of the transcription factors (TFs) to their cognate cis-regulatory elements (CREs). In this study, we used DNase I hypersensitive assays followed by sequencing to identify the accessible chromatin regions under DS in a drought-sensitive (IR64) and a drought-tolerant (N22) rice cultivar. Our results indicated that DNase I hypersensitive sites (DHSs) were highly enriched at transcription start sites (TSSs) and numerous DHSs were detected in the promoter regions. DHSs were concurrent with epigenetic marks and the genes harboring DHSs in their TSS and promoter regions were highly expressed. In addition, DS induced changes in DHSs (∆DHSs) in TSS and promoter regions were positively correlated with upregulation of several genes involved in drought/abiotic stress response, those encoding TFs and located within drought-associated quantitative trait loci, much preferentially in the drought-tolerant cultivar. The CREs representing the binding sites of TFs involved in DS response were detected within the ∆DHSs, suggesting differential accessibility of TFs to their cognate sites under DS in different rice cultivars, which may be further deployed for enhancing drought tolerance in rice.
Collapse
Affiliation(s)
- Mohan Singh Rajkumar
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kunal Tembhare
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rohini Garg
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, 201314, India
| | - Mukesh Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
57
|
Heydari R, Kolahi M, Mohajel Kazemi E, Nosrati H, Movafeghi A. The role of nano-chelated iron on anatomical and biochemical characteristics and concentration of mineral nutrients in lettuce ( Lactuca sativa L.) under cadmium toxicity. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1383-1400. [PMID: 39184560 PMCID: PMC11341518 DOI: 10.1007/s12298-024-01490-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 08/27/2024]
Abstract
Cadmium is one of the most hazardous environmental pollutants for plants due to its mobility and high toxicity. One effective method that may be utilized to decrease heavy metal pollution in the soil is the use of nano-chelated iron. In the present study, lettuce plants were treated with four different concentrations of cadmium chloride, two different concentrations of nano-chelated iron, and six combinations of cadmium chloride+nano-chelated iron. Application of 0.5 and 1 g/L nano-chelated iron reduced the adverse effects of cadmium on photosynthetic pigments and growth parameters. Combined application of cadmium chloride and nano-chelated iron (90 μg CdCl2/g perlite+0.5 g/L nano-chelated iron) led to an increase in soluble sugar content compared to the control lettuce plants. Lettuce had a high capacity to absorb cadmium from the contaminated medium. Interestingly, the levels of cadmium that accumulated in the roots (1.641 mg/g DW) were much higher than in the aerial parts of the plant (0.998 mg/g DW). The results showed that there was a decline in the mineral content of lettuce treated with cadmium, while the application of nano-chelated iron led to its increase. This study suggests that the application of nano-chelated iron is a cost-effective and practical method that can be used in the agricultural soil systems to enhance crop tolerance in cadmium-polluted soil.
Collapse
Affiliation(s)
- Roghayeh Heydari
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Maryam Kolahi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Elham Mohajel Kazemi
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Houshang Nosrati
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Ali Movafeghi
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
58
|
Abdoli M, Amerian MR, Heidari M, Ebrahimi A. Synergistic effects of melatonin and 24-epibrassinolide on chickpea water deficit tolerance. BMC PLANT BIOLOGY 2024; 24:671. [PMID: 39004702 PMCID: PMC11247889 DOI: 10.1186/s12870-024-05380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Water deficiency stress reduces yield in grain legumes, primarily due to a decrease in the pods number. Melatonin (ML) and 24-epibrassinolide (EBL) are recognized for their hormone-like properties that improve plant tolerance to abiotic stresses. This study aimed to assess the impact of different concentrations of ML (0, 100, and 200 µM) and EBL (0, 3, and 6 µM) on the growth, biochemical, and physiological characteristics of chickpea plants under water-stressed conditions. RESULTS The study's findings indicated that under water-stressed conditions, a decrease in seed (30%) and pod numbers (31%), 100-seed weight (17%), total chlorophyll content (46%), stomatal conductance (33%), as well as an increase in H2O2 (62%), malondialdehyde content (40%), and electrolyte leakage index (40%), resulted in a 40% reduction in chickpea plants grain yield. Our findings confirmed that under water-stressed conditions, seed oil, seed oil yield, and seed protein yield dropped by 20%, 55%, and 36%, respectively. The concurrent exogenous application of ML and EBL significantly reduces oxidative stress, plasma membrane damage, and reactive oxygen species (ROS) content. This treatment also leads to increased yield and its components, higher pigment content, enhanced oil and protein yield, and improved enzymatic and non-enzymatic antioxidant activities such as catalase, superoxide dismutase, polyphenol oxidase, ascorbate peroxidase, guaiacol peroxidase, flavonoid, and carotenoid. Furthermore, it promotes the accumulation of osmoprotectants such as proline, total soluble protein, and sugars. CONCLUSIONS Our study found that ML and EBL act synergistically to regulate plant growth, photosynthesis, osmoprotectants accumulation, antioxidant defense systems, and maintain ROS homeostasis, thereby mitigating the adverse effects of water deficit conditions. ML and EBL are key regulatory network components in stressful conditions, with significant potential for future research and practical applications. The regulation metabolic pathways of ML and EBL in water-stressed remains unknown. As a result, future research should aim to elucidate the molecular mechanisms by employing genome editing, RNA sequencing, microarray, transcriptomic, proteomic, and metabolomic analyses to identify the mechanisms involved in plant responses to exogenous ML and EBL under water deficit conditions. Furthermore, the economical applications of synthetic ML and EBL could be an interesting strategy for improving plant tolerance.
Collapse
Affiliation(s)
- Matin Abdoli
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran
| | - Mohamad Reza Amerian
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran.
| | - Mostafa Heidari
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran
| | - Amin Ebrahimi
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran.
| |
Collapse
|
59
|
Wang D, Zhang X, Cao Y, Batool A, Xu Y, Qiao Y, Li Y, Wang H, Lin X, Bie X, Zhang X, Jing R, Dong B, Tong Y, Teng W, Liu X, Xiao J. TabHLH27 orchestrates root growth and drought tolerance to enhance water use efficiency in wheat. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1295-1312. [PMID: 38695649 DOI: 10.1111/jipb.13670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 07/12/2024]
Abstract
Cultivating high-yield wheat under limited water resources is crucial for sustainable agriculture in semiarid regions. Amid water scarcity, plants activate drought response signaling, yet the delicate balance between drought tolerance and development remains unclear. Through genome-wide association studies and transcriptome profiling, we identified a wheat atypical basic helix-loop-helix (bHLH) transcription factor (TF), TabHLH27-A1, as a promising quantitative trait locus candidate for both relative root dry weight and spikelet number per spike in wheat. TabHLH27-A1/B1/D1 knock-out reduced wheat drought tolerance, yield, and water use efficiency (WUE). TabHLH27-A1 exhibited rapid induction with polyethylene glycol (PEG) treatment, gradually declining over days. It activated stress response genes such as TaCBL8-B1 and TaCPI2-A1 while inhibiting root growth genes like TaSH15-B1 and TaWRKY70-B1 under short-term PEG stimulus. The distinct transcriptional regulation of TabHLH27-A1 involved diverse interacting factors such as TaABI3-D1 and TabZIP62-D1. Natural variations of TabHLH27-A1 influence its transcriptional responses to drought stress, with TabHLH27-A1Hap-II associated with stronger drought tolerance, larger root system, more spikelets, and higher WUE in wheat. Significantly, the excellent TabHLH27-A1Hap-II was selected during the breeding process in China, and introgression of TabHLH27-A1Hap-II allele improved drought tolerance and grain yield, especially under water-limited conditions. Our study highlights TabHLH27-A1's role in balancing root growth and drought tolerance, providing a genetic manipulation locus for enhancing WUE in wheat.
Collapse
Affiliation(s)
- Dongzhi Wang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiuxiu Zhang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuan Cao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aamana Batool
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Yongxin Xu
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunzhou Qiao
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Yongpeng Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Hao Wang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuelei Lin
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaomin Bie
- Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiansheng Zhang
- Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Ruilian Jing
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Baodi Dong
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Yiping Tong
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wan Teng
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xigang Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Centre of Excellence for Plant and Microbial Science (CEPAMS), JIC-CAS, Beijing, 100101, China
| |
Collapse
|
60
|
Luo D, Wang C, Mubeen S, Rehman M, Cao S, Yue J, Pan J, Jin G, Li R, Chen T, Chen P. HcLEA113, a late embryogenesis abundant protein gene, positively regulates drought-stress responses in kenaf. PHYSIOLOGIA PLANTARUM 2024; 176:e14506. [PMID: 39191701 DOI: 10.1111/ppl.14506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
Late embryogenesis abundant (LEA) proteins have been widely recognized for their role in various abiotic stress responses in higher plants. Nevertheless, the specific mechanism responsible for the function of LEA proteins in plants has not yet been explored. This research involved the isolation and characterization of HcLEA113 from kenaf, revealing a significant increase in its expression in response to drought stress. When HcLEA113 was introduced into yeast, it resulted in an improved survival rate under drought conditions. Furthermore, the overexpression of HcLEA113 in tobacco plants led to enhanced tolerance to drought stress. Specifically, HcLEA113-OE plants exhibited higher germination rates, longer root lengths, greater chlorophyll content, and higher relative water content under drought stress compared to wild-type (WT) plants, while their relative conductivity was significantly lower than that of WT plants. Further physiological measurements revealed that the proline content, soluble sugars, and antioxidant activities of WT and HcLEA113-OE tobacco leaves increased significantly under drought stress, with greater changes in HcLEA113-OE plants than WT. The increase in hydrogen peroxide (H2O2), superoxide anions (O2 -), and malondialdehyde (MDA) content was significantly lower in HcLEA113-OE lines than in WT plants. Additionally, HcLEA113-OE plants can activate reactive oxygen species (ROS)- and osmotic-related genes in response to drought stress. On the other hand, silencing the HcLEA113 gene through virus-induced gene silencing (VIGS) in kenaf plants led to notable growth suppression when exposed to drought conditions, manifesting as decreased plant height and dry weight. Meanwhile, antioxidant enzymes' activity significantly decreased and the ROS content increased. This study offers valuable insights for future research on the genetic engineering of drought resistance in plants.
Collapse
Affiliation(s)
- Dengjie Luo
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Caijin Wang
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, China
| | - Samavia Mubeen
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, China
| | - Muzammal Rehman
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, China
| | - Shan Cao
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, China
| | - Jiao Yue
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, China
| | - Jiao Pan
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, China
| | - Gang Jin
- Guangxi Subtropical Crops Research Institute, Nanning, China
| | - Ru Li
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Tao Chen
- Guangxi Subtropical Crops Research Institute, Nanning, China
| | - Peng Chen
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, China
| |
Collapse
|
61
|
Gelaw TA, Sanan-Mishra N. Molecular priming with H 2O 2 and proline triggers antioxidant enzyme signals in maize seedlings during drought stress. Biochim Biophys Acta Gen Subj 2024; 1868:130633. [PMID: 38762030 DOI: 10.1016/j.bbagen.2024.130633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Drought and water stress impose major limitations to crops, including Maize, as they affect the plant biology at multiple levels. Drought activates the cellular signalling machinery to maintain the osmotic and ROS homeostasis for controlling plant response and adaptation to stress. Molecular priming of seeds plays a significant role in imparting stress tolerance by helping plants to remember the stress, which improves their response when they encounter stress again. METHODS In this study, we examined the effect of priming maize seeds with H2O2 and proline, individually or in combination, on response to drought stress. We investigated the role of molecular priming on the physiological, biochemical and molecular response of maize seedlings during drought stress. RESULTS We observed that seed-priming played a significant role in mediating stress tolerance of seedlings under drought stress as indicated by changes in growth, biochemical properties, pigment and osmolyte accumulation, antioxidant enzyme activities, gas exchange parameters and gene expression. Seed-priming resulted in reduced expression of specific miRNAs to increase target transcripts associated with synthesis of osmolytes and maintenance of ROS homeostasis for reducing potential damage to the cellular components. CONCLUSIONS Seed-priming induced changes in the growth, biochemical properties, pigment and osmolyte accumulation, antioxidant enzyme activities, gas exchange parameters and gene expression, though the response was dependent on the genotype, as well as concentration and combination of the priming agents.
Collapse
Affiliation(s)
- Temesgen Assefa Gelaw
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, 110067 New Delhi, India; Department of Biotechnology, College of Agriculture and Natural Resource Sciences, Debre Birhan University, 445 Debre Birhan, Ethiopia
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, 110067 New Delhi, India.
| |
Collapse
|
62
|
Veleshkolaii FR, Gerami M, Younesi-Melerdi E, Moshaei MR, Ghanbari Hassan Kiadeh S. Studying the impact of titanium dioxide nanoparticles on the expression of pivotal genes related to menthol biosynthesis and certain biochemical parameters in peppermint plants (Mentha Piperita L.). BMC PLANT BIOLOGY 2024; 24:531. [PMID: 38862885 PMCID: PMC11167829 DOI: 10.1186/s12870-024-05228-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND This study examines the impact of titanium dioxide nanoparticles (TiO2NPs) on gene expression associated with menthol biosynthesis and selected biochemical parameters in peppermint plants (Mentha piperita L.). Menthol, the active ingredient in peppermint, is synthesized through various pathways involving key genes like geranyl diphosphate synthase, menthone reductase, and menthofuran synthase. Seedlings were treated with different concentrations of TiO2NPs (50, 100, 200, and 300 ppm) via foliar spray. After three weeks of treatment, leaf samples were gathered and kept at -70 °C for analysis. RESULTS According to our findings, there was a significant elevation (P ≤ 0.05) in proline content at concentrations of 200 and 300 ppm in comparison with the control. Specifically, the highest proline level was registered at 200 ppm, reaching 259.64 ± 33.33 µg/g FW. Additionally, hydrogen peroxide and malondialdehyde content exhibited a decreasing trend following nanoparticle treatments. Catalase activity was notably affected by varying TiO2NP concentrations, with a significant decrease observed at 200 and 300 ppm compared to the control (P ≤ 0.05). Conversely, at 100 ppm, catalase activity significantly increased (11.035 ± 1.12 units/mg of protein/min). Guaiacol peroxidase activity decreased across all nanoparticle concentrations. Furthermore, RT-qPCR analysis indicated increased expression of the studied genes at 300 ppm concentration. CONCLUSIONS Hence, it can be inferred that at the transcript level, this nanoparticle exhibited efficacy in influencing the biosynthetic pathway of menthol.
Collapse
Affiliation(s)
| | - Mahyar Gerami
- Department of Biology, Faculty of Sana Institute of Higher Education, Sari, Iran.
| | - Elham Younesi-Melerdi
- Genetics and Agricultural Biotechnology Institute of Tabarestan, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Masoumeh Rezaei Moshaei
- Department of Biotechnology, Amol University of Special Modern Technologies (AUSMT), Amol, Iran.
| | | |
Collapse
|
63
|
Zhang W, Wang D, Cao D, Chen J, Wei X. Exploring the potentials of Sesuvium portulacastrum L. for edibility and bioremediation of saline soils. FRONTIERS IN PLANT SCIENCE 2024; 15:1387102. [PMID: 38916037 PMCID: PMC11194377 DOI: 10.3389/fpls.2024.1387102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/21/2024] [Indexed: 06/26/2024]
Abstract
Sesuvium portulacastrum L. is a flowering succulent halophyte in the ice plant family Aizoaceae. There are various ecotypes distributed in sandy coastlines and salty marshlands in tropical and subtropical regions with the common name of sea purslane. These plants are tolerant to salt, drought, and flooding stresses and have been used for the stabilization of sand dunes and the restoration of coastal areas. With the increased salinization of agricultural soils and the widespread pollution of toxic metals in the environment, as well as excessive nutrients in waterbodies, S. portulacastrum has been explored for the desalination of saline soils and the phytoremediation of metals from contaminated soils and nitrogen and phosphorus from eutrophic water. In addition, sea purslane has nutraceutical and pharmaceutical value. Tissue analysis indicates that many ecotypes are rich in carbohydrates, proteins, vitamins, and mineral nutrients. Native Americans in Florida eat it raw, pickled, or cooked. In the Philippines, it is known as atchara after being pickled. S. portulacastrum contains high levels of ecdysteroids, which possess antidiabetic, anticancer, and anti-inflammatory activities in mammals. In this review article, we present the botanical information, the physiological and molecular mechanisms underlying the tolerance of sea purslane to different stresses, its nutritional and pharmaceutical value, and the methods for its propagation and production in saline soils and waterbodies. Its adaptability to a wide range of stressful environments and its role in the production of valuable bioactive compounds suggest that S. portulacastrum can be produced in saline soils as a leafy vegetable and is a valuable genetic resource that can be used for the bioremediation of soil salinity and eutrophic water.
Collapse
Affiliation(s)
- Wenbin Zhang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| | - Dan Wang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| | - Dingding Cao
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Department of Environmental Horticulture, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL, United States
| | - Xiangying Wei
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| |
Collapse
|
64
|
Abu-Ria ME, Elghareeb EM, Shukry WM, Abo-Hamed SA, Ibraheem F. Mitigation of drought stress in maize and sorghum by humic acid: differential growth and physiological responses. BMC PLANT BIOLOGY 2024; 24:514. [PMID: 38849739 PMCID: PMC11157776 DOI: 10.1186/s12870-024-05184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Drought is a major determinant for growth and productivity of all crops, including cereals, and the drought-induced detrimental effects are anticipated to jeopardize world food security under the ongoing global warming scenario. Biostimulants such as humic acid (HA) can improve drought tolerance in many cereals, including maize and sorghum. These two plant species are genetically related; however, maize is more susceptible to drought than sorghum. The physiological and biochemical mechanisms underlying such differential responses to water shortage in the absence and presence of HA, particularly under field conditions, are not fully understood. RESULTS Herein, the effects of priming maize and sorghum seeds in 100 mg L-1 HA on their vegetative growth and physiological responses under increased levels of drought (100%, 80%, and 60% field capacity) were simultaneously monitored in the field. In the absence of HA, drought caused 37.0 and 58.7% reductions in biomass accumulation in maize compared to 21.2 and 32.3% in sorghum under low and high drought levels, respectively. These responses were associated with differential retardation in overall growth, relative water content (RWC), photosynthetic pigments and CO2 assimilation in both plants. In contrast, drought increased root traits as well as H2O2, malondialdehyde, and electrolyte leakage in both species. HA treatment significantly improved the growth of both plant species under well-watered and drought conditions, with maize being more responsive than sorghum. HA induced a 29.2% increase in the photosynthetic assimilation rate in maize compared to 15.0% in sorghum under high drought level. The HA-promotive effects were also associated with higher total chlorophyll, stomatal conductance, RWC, sucrose, total soluble sugars, total carbohydrates, proline, and total soluble proteins. HA also reduced the drought-induced oxidative stress via induction of non-enzymic and enzymic antioxidants at significantly different extents in maize and sorghum. CONCLUSION The current results identify significant quantitative differences in a set of critical physiological biomarkers underlying the differential responses of field-grown maize and sorghum plants against drought. They also reveal the potential of HA priming as a drought-alleviating biostimulant and as an effective approach for sustainable maize and sorghum production and possibly other crops in drought-affected lands.
Collapse
Affiliation(s)
- Mohamed E Abu-Ria
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| | - Eman M Elghareeb
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Wafaa M Shukry
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| | - Samy A Abo-Hamed
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Farag Ibraheem
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
- Biology and Chemistry Department, Al-Qunfodah University College, Umm Al-Qura University, Al-Qunfodah, 21912, Saudi Arabia
| |
Collapse
|
65
|
Buragohain K, Tamuly D, Sonowal S, Nath R. Impact of Drought Stress on Plant Growth and Its Management Using Plant Growth Promoting Rhizobacteria. Indian J Microbiol 2024; 64:287-303. [PMID: 39011023 PMCID: PMC11246373 DOI: 10.1007/s12088-024-01201-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 01/06/2024] [Indexed: 07/17/2024] Open
Abstract
Drought stress is a significant environmental challenge affecting global agriculture, leading to substantial reductions in crop yields and overall plant productivity. It induces a cascade of physiological and biochemical changes in plants, including reduced water uptake, stomatal closure, and alterations in hormonal balance, all of which contribute to impaired growth and development. Drought stress diminishes crop production by impacting crucial plant metabolic pathways. Plants possess the ability to activate or deactivate specific sets of genes, leading to changes in their physiological and morphological characteristics. This adaptive response enables plants to evade, endure, or prevent the effects of drought stress. Drought stress triggers the activation of various genes, transcription factors, and signal transduction pathways in plants. In this context, imposing plant growth-promoting rhizobacteria (PGPR) emerges as a promising strategy. PGPR, employing diverse mechanisms such as osmotic adjustments, antioxidant activity, and phytohormone production, not only ensures the plant's survival during drought conditions but also enhances its overall growth. This comprehensive review delves into the various mechanisms through which PGPR enhances drought stress resistance, offering a thorough exploration of recent molecular and omics-based approaches to unravel the role of drought-responsive genes. The manuscript encompasses a detailed mechanistic analysis, along with the development of PGPR-based drought stress management in plants.
Collapse
Affiliation(s)
- Kabyashree Buragohain
- Microbiology Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | | | - Sukanya Sonowal
- Microbiology Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Ratul Nath
- Microbiology Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| |
Collapse
|
66
|
Akbari SI, Prismantoro D, Permadi N, Rossiana N, Miranti M, Mispan MS, Mohamed Z, Doni F. Bioprospecting the roles of Trichoderma in alleviating plants' drought tolerance: Principles, mechanisms of action, and prospects. Microbiol Res 2024; 283:127665. [PMID: 38452552 DOI: 10.1016/j.micres.2024.127665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/25/2024] [Accepted: 02/24/2024] [Indexed: 03/09/2024]
Abstract
Drought-induced stress represents a significant challenge to agricultural production, exerting adverse effects on both plant growth and overall productivity. Therefore, the exploration of innovative long-term approaches for addressing drought stress within agriculture constitutes a crucial objective, given its vital role in enhancing food security. This article explores the potential use of Trichoderma, a well-known genus of plant growth-promoting fungi, to enhance plant tolerance to drought stress. Trichoderma species have shown remarkable potential for enhancing plant growth, inducing systemic resistance, and ameliorating the adverse impacts of drought stress on plants through the modulation of morphological, physiological, biochemical, and molecular characteristics. In conclusion, the exploitation of Trichoderma's potential as a sustainable solution to enhance plant drought tolerance is a promising avenue for addressing the challenges posed by the changing climate. The manifold advantages of Trichoderma in promoting plant growth and alleviating the effects of drought stress underscore their pivotal role in fostering sustainable agricultural practices and enhancing food security.
Collapse
Affiliation(s)
- Sulistya Ika Akbari
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Dedat Prismantoro
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Nandang Permadi
- Doctorate Program in Biotechnology, Graduate School, Universitas Padjadjaran, Bandung, West Java 40132, Indonesia
| | - Nia Rossiana
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Mia Miranti
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Muhamad Shakirin Mispan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Zulqarnain Mohamed
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Febri Doni
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia.
| |
Collapse
|
67
|
Kaya C, Uğurlar F, Seth CS. Sodium nitroprusside modulates oxidative and nitrosative processes in Lycopersicum esculentum L. under drought stress. PLANT CELL REPORTS 2024; 43:152. [PMID: 38806834 PMCID: PMC11133051 DOI: 10.1007/s00299-024-03238-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024]
Abstract
KEY MESSAGE Sodium nitroprusside mediates drought stress responses in tomatoes by modulating nitrosative and oxidative pathways, highlighting the interplay between nitric oxide, hydrogen sulfide, and antioxidant systems for enhanced drought tolerance. While nitric oxide (NO), a signalling molecule, enhances plant tolerance to abiotic stresses, its precise contribution to improving tomato tolerance to drought stress (DS) through modulating oxide-nitrosative processes is not yet fully understood. We aimed to examine the interaction of NO and nitrosative signaling, revealing how sodium nitroprusside (SNP) could mitigate the effects of DS on tomatoes. DS-seedlings endured 12% polyethylene glycol (PEG) in a 10% nutrient solution (NS) for 2 days, then transitioned to half-strength NS for 10 days alongside control plants. DS reduced total plant dry weight, chlorophyll a and b, Fv/Fm, leaf water potential (ΨI), and relative water content, but improved hydrogen peroxide (H2O2), proline, and NO content. The SNP reduced the DS-induced H2O2 generation by reducing thiol (-SH) and the carbonyl (-CO) groups. SNP increased not only NO but also the activity of L-cysteine desulfhydrase (L-DES), leading to the generation of H2S. Decreases in S-nitrosoglutathione reductase (GSNOR) and NADPH oxidase (NOX) suggest a potential regulatory mechanism in which S-nitrosylation [formation of S-nitrosothiol (SNO)] may influence protein function and signaling pathways during DS. Moreover, SNP improved ascorbate (AsA) and glutathione (GSH) and reduced oxidized glutathione (GSSG) levels in tomato plants under drought. Furthermore, the interaction of NO and H2S, mediated by L-DES activity, may serve as a vital cross-talk mechanism impacting plant responses to DS. Understanding these signaling interactions is crucial for developing innovative drought-tolerance strategies in crops.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Harran University, Şanlıurfa, 63200, Turkey.
| | - Ferhat Uğurlar
- Soil Science and Plant Nutrition Department, Harran University, Şanlıurfa, 63200, Turkey
| | | |
Collapse
|
68
|
Yang D, Gao Z, Liu Y, Li Q, Yang J, Wang Y, Wang M, Xie T, Zhang M, Sun H. Exogenous application of 5-NGS increased osmotic stress resistance by improving leaf photosynthetic physiology and antioxidant capacity in maize. PeerJ 2024; 12:e17474. [PMID: 38818454 PMCID: PMC11138516 DOI: 10.7717/peerj.17474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024] Open
Abstract
Background Drought is a critical limiting factor affecting the growth and development of spring maize (Zea mays L.) seedlings in northeastern China. Sodium 5-nitroguaiacol (5-NGS) has been found to enhance plant cell metabolism and promote seedling growth, which may increase drought tolerance. Methods In the present study, we investigated the response of maize seedlings to foliar application of a 5-NGS solution under osmotic stress induced by polyethylene glycol (PEG-6000). Four treatment groups were established: foliar application of distilled water (CK), foliar application of 5-NGS (NS), osmotic stress + foliar application of distilled water (D), and osmotic stress + foliar application of 5-NGS (DN). Plant characteristics including growth and photosynthetic and antioxidant capacities under the four treatments were evaluated. Results The results showed that under osmotic stress, the growth of maize seedlings was inhibited, and both the photosynthetic and antioxidant capacities were weakened. Additionally, there were significant increases in the proline and soluble sugar contents and a decrease in seedling relative water content (RWC). However, applying 5-NGS alleviated the impact of osmotic stress on maize seedling growth parameters, particularly the belowground biomass, with a dry mass change of less than 5% and increased relative water content (RWC). Moreover, treatment with 5-NGS mitigated the inhibition of photosynthesis caused by osmotic stress by restoring the net photosynthetic rate (Pn) through an increase in chlorophyll content, photosynthetic electron transport, and intercellular CO2 concentration (Ci). Furthermore, the activity of antioxidant enzymes in the aboveground parts recovered, resulting in an approximately 25% decrease in both malondialdehyde (MDA) and H2O2. Remarkably, the activity of enzymes in the underground parts exhibited more significant changes, with the contents of MDA and H2O2 decreasing by more than 50%. Finally, 5-NGS stimulated the dual roles of soluble sugars as osmoprotectants and energy sources for metabolism under osmotic stress, and the proline content increased by more than 30%. We found that 5-NGS played a role in the accumulation of photosynthates and the effective distribution of resources in maize seedlings. Conclusions Based on these results, we determined that foliar application of 5-NGS may improve osmotic stress tolerance in maize seedlings. This study serves as a valuable reference for increasing maize yield under drought conditions.
Collapse
Affiliation(s)
- Deguang Yang
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhifeng Gao
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yuqi Liu
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Qiao Li
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jingjing Yang
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yanbo Wang
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Meiyu Wang
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Tenglong Xie
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Meng Zhang
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Hao Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
69
|
Zhang F, Rosental L, Ji B, Brotman Y, Dai M. Metabolite-mediated adaptation of crops to drought and the acquisition of tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:626-644. [PMID: 38241088 DOI: 10.1111/tpj.16634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024]
Abstract
Drought is one of the major and growing threats to agriculture productivity and food security. Metabolites are involved in the regulation of plant responses to various environmental stresses, including drought stress. The complex drought tolerance can be ascribed to several simple metabolic traits. These traits could then be used for detecting the genetic architecture of drought tolerance. Plant metabolomes show dynamic differences when drought occurs during different developmental stages or upon different levels of drought stress. Here, we reviewed the major and most recent findings regarding the metabolite-mediated plant drought response. Recent progress in the development of drought-tolerant agents is also discussed. We provide an updated schematic overview of metabolome-driven solutions for increasing crop drought tolerance and thereby addressing an impending agricultural challenge.
Collapse
Affiliation(s)
- Fei Zhang
- National Key Laboratory of Crop Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Leah Rosental
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, 8410501, Israel
| | - Boming Ji
- National Key Laboratory of Crop Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, 8410501, Israel
| | - Mingqiu Dai
- National Key Laboratory of Crop Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
70
|
Baba Y, Cimen A, Birinci Yildirim A, Ucar Turker A. How does water stress affect the bioaccumulation of galanthamine and lycorine, growth performance, phenolic content and defense enzyme activities in summer snowflake ( Leucojum aestivum L.)? PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:775-790. [PMID: 38846456 PMCID: PMC11150218 DOI: 10.1007/s12298-024-01451-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/15/2024] [Accepted: 04/18/2024] [Indexed: 06/09/2024]
Abstract
Leucojum aestivum L. is an Amaryllidaceae bulbous plant with two alkaloids that have remarkable medicinal potential: galanthamine and lycorine. Although the presence of galanthamine in L. aestivum has commercial value for the pharmaceutical industry and the effect of water stress (WS) applications on secondary metabolite enhancement is well established in a variety of plants, no studies have been carried out to reveal the effectiveness of WS on this beneficial medicinal plant. Objective of the study was to investigate the effects of eight different WS treatments [Control, waterlogging (WL) condition, and drought stress conditions (water deficiency generated by water deficit irrigation-WDI 25%, 50%, and 75%- and polyethylene glycol-PEG 6000 15%, 30%, and 45%-)] on growth parameters, alkaloid levels (galanthamine and lycorine), non-enzymatic antioxidant activities (total phenol-flavonoid content and free radical scavenging activity), and enzymatic antioxidant activities [superoxide dismutase (SOD) and catalase (CAT)] of L. aestivum in a pot experiment. Based on the findings, maximum increases in growth parameters were obtained with PEG-induced WS treatments. Moderate water deficiency (50% WDI) produced the highest levels of galanthamine and lycorine, total phenol-flavonoid content, and antioxidant capacity, along with moderately elevated CAT activity in the bulbs. All WS treatments resulted in increased CAT activity in the bulbs. It was observed that bulbs had higher SOD and CAT activities under WL conditions had lower fresh weights and were close to control in terms of alkaloid levels, total phenol-flavonoid content, and free radical scavenging activity. When all of the outcomes were taken into account, it can be concluded that moderate water-deficit stress (50% WDI) was regarded as the most effective treatment for increasing the pharmaceutical value of L. aestivum. Graphical abstract
Collapse
Affiliation(s)
- Yavuz Baba
- Department of Biology, Faculty of Science and Art, Bolu Abant Izzet Baysal University, 14030 Bolu, Türkiye
| | - Ayca Cimen
- Department of Biology, Faculty of Science and Art, Bolu Abant Izzet Baysal University, 14030 Bolu, Türkiye
| | - Arzu Birinci Yildirim
- Department of Field Crops, Faculty of Agricultural and Environmental Science, Bolu Abant Izzet Baysal University, 14030 Bolu, Türkiye
| | - Arzu Ucar Turker
- Department of Biology, Faculty of Science and Art, Bolu Abant Izzet Baysal University, 14030 Bolu, Türkiye
| |
Collapse
|
71
|
Duan H, Shao C, Zhao N, Wang D, Resco de Dios V, Tissue DT. The role of leaf superoxide dismutase and proline on intra-specific photosynthesis recovery of Schima superba following drought. Sci Rep 2024; 14:8824. [PMID: 38627563 PMCID: PMC11021533 DOI: 10.1038/s41598-024-59467-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024] Open
Abstract
Understanding the physiological and biochemical responses of tree seedlings under extreme drought stress, along with recovery during rewatering, and potential intra-species differences, will allow us to more accurately predict forest responses under future climate change. Here, we selected seedlings from four provenances (AH (Anhui), JX (Jiangxi), HN (Hunan) and GX (Guangxi)) of Schima superba and carried out a simulated drought-rewatering experiment in a field-based rain-out shelter. Seedlings were progressively dried until they reached 50% and 88% loss of xylem hydraulic conductivity (PLC) (i.e. P50 and P88), respectively, before they were rehydrated and maintained at field capacity for 30 days. Leaf photosynthesis (Asat), water status, activity of superoxide dismutase (SOD), and proline (Pro) concentration were monitored and their associations were determined. Increasing drought significantly reduced Asat, relative water content (RWC) and SOD activity in all provenances, and Pro concentration was increased to improve water retention; all four provenances exhibited similar response patterns, associated with similar leaf ultrastructure at pre-drought. Upon rewatering, physiological and biochemical traits were restored to well-watered control values in P50-stressed seedlings. In P88-stressed seedlings, Pro was restored to control values, while SOD was not fully recovered. The recovery pattern differed partially among provenances. There was a progression of recovery following watering, with RWC firstly recovered, followed by SOD and Pro, and then Asat, but with significant associations among these traits. Collectively, the intra-specific differences of S. superba seedlings in recovery of physiology and biochemistry following rewatering highlight the need to consider variations within a given tree species coping with future more frequent drought stress.
Collapse
Affiliation(s)
- Honglang Duan
- Institute for Forest Resources & Environment of Guizhou, College of Forestry, Guizhou University, Guiyang, 550025, China.
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, 330099, China.
| | - Changchang Shao
- Institute for Forest Resources & Environment of Guizhou, College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Nan Zhao
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, 330099, China
| | - Defu Wang
- Research Center of Sichuan Old Revolutionary Areas Development, Sichuan University of Arts and Science, Dazhou, 635000, China
| | - Víctor Resco de Dios
- Department of Crop and Forest Sciences, University of Lleida, 25198, Lleida, Spain
| | - David T Tissue
- Hawkesbury Institute for the Environment, Hawkesbury Campus, Western Sydney University, Richmond, NSW, 2753, Australia
- Global Centre for Land-Based Innovation, Hawkesbury Campus, Western Sydney University, Richmond, NSW, 2753, Australia
| |
Collapse
|
72
|
Laftouhi A, Mahraz MA, Hmamou A, Assouguem A, Ullah R, Bari A, Lahlali R, Ercisli S, Kaur S, Idrissi AM, Eloutassi N, Rais Z, Taleb A, Taleb M. Analysis of Primary and Secondary Metabolites, Physical Properties, Antioxidant and Antidiabetic Activities, and Chemical Composition of Rosmarinus officinalis Essential Oils under Differential Water Stress Conditions. ACS OMEGA 2024; 9:16656-16664. [PMID: 38617605 PMCID: PMC11007863 DOI: 10.1021/acsomega.4c00653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 04/16/2024]
Abstract
This study investigated the effects of varying water stress levels on Rosmarinus officinalis essential oils (EO). Three samples (S1, S2, and S3) were cultivated under different stress levels (40, 60, and 80%). Increased water stress led to changes in primary and secondary metabolites, EO contents, and physical properties. Antioxidant activity varied, with S2 exhibiting the highest IC50 value. In terms of antidiabetic activity, S2 showed robust α-amylase inhibition, while S3 displayed a commendable influence. For α-galactosidase inhibition, S3 had a moderate effect, and S2 stood out with increased efficacy. Gas chromatography-mass spectrometry analysis revealed stress-induced changes in major compounds. The study enhances the understanding of plant responses to water stress, with potential applications in antioxidant therapy and diabetes management. The findings emphasize the importance of sustainable water management for optimizing the EO quality in its various uses.
Collapse
Affiliation(s)
- Abdelouahid Laftouhi
- Laboratory
of Electrochemistry, Modeling and Environment Engineering (LIEME)
Faculty of Sciences Fes, Sidi Mohamed Ben
Abdellah University, Fez 30000, Morocco
| | - Mohamed Adil Mahraz
- Laboratory
of Electrochemistry, Modeling and Environment Engineering (LIEME)
Faculty of Sciences Fes, Sidi Mohamed Ben
Abdellah University, Fez 30000, Morocco
| | - Anouar Hmamou
- Laboratory
of Electrochemistry, Modeling and Environment Engineering (LIEME)
Faculty of Sciences Fes, Sidi Mohamed Ben
Abdellah University, Fez 30000, Morocco
| | - Amine Assouguem
- Department
of Plant Protection and Environment, École
Nationale d’Agriculture de Meknès, Km.10, Route Haj Kaddour, B.P.S/40, Meknes 50001, Morocco
- Laboratory
of Functional Ecology and Environment, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Imouzzer Street, P.O. Box 2202, Fez 30000, Morocco
| | - Riaz Ullah
- Department
of Pharmacognosy, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Bari
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rachid Lahlali
- Department
of Plant Protection and Environment, École
Nationale d’Agriculture de Meknès, Km.10, Route Haj Kaddour, B.P.S/40, Meknes 50001, Morocco
| | - Sezai Ercisli
- Department
of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum 25240, Turkey
| | - Sawinder Kaur
- Department
of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Amine Mounadi Idrissi
- Laboratory
of Electrochemistry, Modeling and Environment Engineering (LIEME)
Faculty of Sciences Fes, Sidi Mohamed Ben
Abdellah University, Fez 30000, Morocco
| | - Noureddine Eloutassi
- Laboratory
of Electrochemistry, Modeling and Environment Engineering (LIEME)
Faculty of Sciences Fes, Sidi Mohamed Ben
Abdellah University, Fez 30000, Morocco
| | - Zakia Rais
- Laboratory
of Electrochemistry, Modeling and Environment Engineering (LIEME)
Faculty of Sciences Fes, Sidi Mohamed Ben
Abdellah University, Fez 30000, Morocco
| | - Abdslam Taleb
- Environmental
Process Engineering Laboratory-Faculty of Science and Technology Mohammedia, Hassan II University of Casablanca, Casablanca 20000, Morocco
| | - Mustapha Taleb
- Laboratory
of Electrochemistry, Modeling and Environment Engineering (LIEME)
Faculty of Sciences Fes, Sidi Mohamed Ben
Abdellah University, Fez 30000, Morocco
| |
Collapse
|
73
|
Walczak-Skierska J, Krakowska-Sieprawska A, Monedeiro F, Złoch M, Pomastowski P, Cichorek M, Olszewski J, Głowacka K, Gużewska G, Szultka-Młyńska M. Silicon's Influence on Polyphenol and Flavonoid Profiles in Pea ( Pisum sativum L.) under Cadmium Exposure in Hydroponics: A Study of Metabolomics, Extraction Efficacy, and Antimicrobial Properties of Extracts. ACS OMEGA 2024; 9:14899-14910. [PMID: 38585133 PMCID: PMC10993280 DOI: 10.1021/acsomega.3c08327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 04/09/2024]
Abstract
The current study aimed to investigate the impact of silicon (Si) supplementation in the form of Na2SiO3 on the metabolome of peas under normal conditions and following exposure to cadmium (Cd) stress. Si is known for its ability to enhance stress tolerance in various plant species, including the mitigation of heavy metal toxicity. Cd, a significant contaminant, poses risks to both human health and the environment. The study focused on analyzing the levels of bioactive compounds in different plant parts, including the shoot, root, and pod, to understand the influence of Si supplementation on their biosynthesis. Metabolomic analysis of pea samples was conducted using a targeted HPLC/MS approach, enabling the identification of 15 metabolites comprising 9 flavonoids and 6 phenolic acids. Among the detected compounds, flavonoids, such as flavon and quercetin, along with phenolic acids, including chlorogenic acid and salicylic acid, were found in significant quantities. The study compared Si supplementation at concentrations of 1 and 2 mM, as well as Cd stress conditions, to evaluate their effects on the metabolomic profile. Additionally, the study explored the extraction efficiency of three different methods: accelerated solvent extraction (ASE), supercritical fluid extraction (SFE), and maceration (MAC). The results revealed that SFE was the most efficient method for extracting polyphenolic compounds from the pea samples. Moreover, the study investigated the stability of polyphenolic compounds under different pH conditions, ranging from 4.0 to 6.0, providing insights into the influence of the pH on the extraction and stability of bioactive compounds.
Collapse
Affiliation(s)
- Justyna Walczak-Skierska
- Centre
for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, Torun 87-100, Poland
| | - Aneta Krakowska-Sieprawska
- Department
of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1a, Olsztyn 10-719, Poland
| | - Fernanda Monedeiro
- Centre
for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, Torun 87-100, Poland
| | - Michał Złoch
- Centre
for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, Torun 87-100, Poland
| | - Paweł Pomastowski
- Centre
for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, Torun 87-100, Poland
| | - Mateusz Cichorek
- Department
of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1a, Olsztyn 10-719, Poland
| | - Jacek Olszewski
- Experimental
Education Unit, University of Warmia and
Mazury in Olsztyn, Plac Łódzki 1, Olsztyn 10-721, Poland
| | - Katarzyna Głowacka
- Department
of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1a, Olsztyn 10-719, Poland
| | - Gaja Gużewska
- Department
of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, Torun 87-100, Poland
| | - Małgorzata Szultka-Młyńska
- Department
of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, Torun 87-100, Poland
| |
Collapse
|
74
|
Etesami H, Glick BR. Bacterial indole-3-acetic acid: A key regulator for plant growth, plant-microbe interactions, and agricultural adaptive resilience. Microbiol Res 2024; 281:127602. [PMID: 38228017 DOI: 10.1016/j.micres.2024.127602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/18/2024]
Abstract
Indole-3-acetic acid (IAA), a fundamental phytohormone categorized under auxins, not only influences plant growth and development but also plays a critical role in plant-microbe interactions. This study reviews the role of IAA in bacteria-plant communication, with a focus on its biosynthesis, regulation, and the subsequent effects on host plants. Bacteria synthesize IAA through multiple pathways, which include the indole-3-acetamide (IAM), indole-3-pyruvic acid (IPyA), and several other routes, whose full mechanisms remain to be fully elucidated. The production of bacterial IAA affects root architecture, nutrient uptake, and resistance to various abiotic stresses such as drought, salinity, and heavy metal toxicity, enhancing plant resilience and thus offering promising routes to sustainable agriculture. Bacterial IAA synthesis is regulated through complex gene networks responsive to environmental cues, impacting plant hormonal balances and symbiotic relationships. Pathogenic bacteria have adapted mechanisms to manipulate the host's IAA dynamics, influencing disease outcomes. On the other hand, beneficial bacteria utilize IAA to promote plant growth and mitigate abiotic stresses, thereby enhancing nutrient use efficiency and reducing dependency on chemical fertilizers. Advancements in analytical methods, such as liquid chromatography-tandem mass spectrometry, have improved the quantification of bacterial IAA, enabling accurate measurement and analysis. Future research focusing on molecular interactions between IAA-producing bacteria and host plants could facilitate the development of biotechnological applications that integrate beneficial bacteria to improve crop performance, which is essential for addressing the challenges posed by climate change and ensuring global food security. This integration of bacterial IAA producers into agricultural practice promises to revolutionize crop management strategies by enhancing growth, fostering resilience, and reducing environmental impact.
Collapse
Affiliation(s)
- Hassan Etesami
- Soil Science Department, University of Tehran, Tehran, Iran.
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
75
|
Liu D, Zhao C, Li G, Chen Z, Wang S, Huang C, Zhang P. Shrub leaf area and leaf vein trait trade-offs in response to the light environment in a vegetation transitional zone. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP24011. [PMID: 38621017 DOI: 10.1071/fp24011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/18/2024] [Indexed: 04/17/2024]
Abstract
The leaf is an important site for energy acquisition and material transformation in plants. Leaf functional traits and their trade-off mechanisms reflect the resource utilisation efficiency and habitat adaptation strategies of plants, and contribute to our understanding of the mechanism by which the distribution pattern of plant populations in arid and semi-arid areas influences the evolution of vegetation structure and function. We selected two natural environments, the tree-shrub community canopy area and the shrub-grass community open area in the transition zone between the Qinghai-Tibet Plateau and the Loess Plateau. We studied the trade-off relationships of leaf area with leaf midvein diameter and leaf vein density in Cotoneaster multiflorus using the standardised major axis (SMA) method. The results show that the growth pattern of C. multiflorus , which has small leaves of high density and extremely small vein diameters, in the open area. The water use efficiency and net photosynthetic rate of plants in the open area were significantly greater than those of plants growing in the canopy area. The adaptability of C. multiflorus to environments with high light and low soil water content reflects its spatial colonisation potential in arid and semiarid mountains.
Collapse
Affiliation(s)
- Dingyue Liu
- Gansu Province Wetland Resources Protection and Industrial Development Engineering Research Center, College of Geography and Environmental Sciences, Northwest Normal University, Lanzhou, Gansu 730100, China
| | - Chengzhang Zhao
- Gansu Province Wetland Resources Protection and Industrial Development Engineering Research Center, College of Geography and Environmental Sciences, Northwest Normal University, Lanzhou, Gansu 730100, China
| | - Geyang Li
- Gansu Province Wetland Resources Protection and Industrial Development Engineering Research Center, College of Geography and Environmental Sciences, Northwest Normal University, Lanzhou, Gansu 730100, China
| | - Zhini Chen
- Gansu Province Wetland Resources Protection and Industrial Development Engineering Research Center, College of Geography and Environmental Sciences, Northwest Normal University, Lanzhou, Gansu 730100, China; and Xinglongshan Forest Ecosystem National Positioning Observation and Research Station, Lanzhou 730100, China
| | - Suhong Wang
- Gansu Province Wetland Resources Protection and Industrial Development Engineering Research Center, College of Geography and Environmental Sciences, Northwest Normal University, Lanzhou, Gansu 730100, China
| | - Chenglu Huang
- Gansu Province Wetland Resources Protection and Industrial Development Engineering Research Center, College of Geography and Environmental Sciences, Northwest Normal University, Lanzhou, Gansu 730100, China
| | - Peixian Zhang
- Gansu Province Wetland Resources Protection and Industrial Development Engineering Research Center, College of Geography and Environmental Sciences, Northwest Normal University, Lanzhou, Gansu 730100, China
| |
Collapse
|
76
|
Tran NHT, Hoang DV, Phan LT. Drought stress induces early flowering and the stress tolerance of offspring in Petunia hybrida. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:53-63. [PMID: 39464867 PMCID: PMC11500584 DOI: 10.5511/plantbiotechnology.23.1220a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/20/2023] [Indexed: 10/29/2024]
Abstract
Petunia hybrida (Solanaceae) exhibits high sensitivity to water scarcity, especially during flowering. This study investigated changes in the flowering time of P. hybrida in response to water deficit over a 7-week period. Various levels of water stress-i.e., light, moderate, and severe-were imposed on plants grown in a greenhouse, and these were compared to a control group grown alongside. Remarkably, early flowering was observed under severe stress in P. hybrida for the first time, occurring 5.3 days earlier than in the control group. Furthermore, seeds collected from control and treatment plants were then used to assess drought stress memory in offspring. Seedlings were cultivated in a dehydration medium containing either PEG 8000 or a control MS medium. In the PEG 8000 medium, seedlings from parents exposed to moderate and severe drought stresses exhibited higher drought tolerance than those from well-watered conditions. Moreover, they also displayed significantly longer roots, more leaves, and a lower ion leakage rate. Taken together, these findings demonstrated the presence of positive transgenerational effects on progeny. Thus, while parental drought stress during reproduction stage may affect seed quality, it can enhance drought tolerance in the next generation via induction of stress memory.
Collapse
Affiliation(s)
- Ngoc-Ha Thi Tran
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, Linh Trung, Thu Duc, Ho Chi Minh City 700000, Vietnam
| | - Duong Van Hoang
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, Linh Trung, Thu Duc, Ho Chi Minh City 700000, Vietnam
| | - Loc Tuong Phan
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, Linh Trung, Thu Duc, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
77
|
Xiao F, Zhao Y, Wang X, Jian X, Yang Y. Physiological responses to drought stress of three pine species and comparative transcriptome analysis of Pinus yunnanensis var. pygmaea. BMC Genomics 2024; 25:281. [PMID: 38493093 PMCID: PMC10944613 DOI: 10.1186/s12864-024-10205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/08/2024] [Indexed: 03/18/2024] Open
Abstract
Drought stress can significantly affect plant growth, development, and yield. Fewer comparative studies have been conducted between different species of pines, particularly involving Pinus yunnanensis var. pygmaea (P. pygmaea). In this study, the physiological indices, photosynthetic pigment and related antioxidant enzyme changes in needles from P. pygmaea, P. elliottii and P. massoniana under drought at 0, 7, 14, 21, 28 and 35 d, as well as 7 days after rehydration, were measured. The PacBio single-molecule real-time (SMRT) and Illumina RNA sequencing were used to uncover the gene expression differences in P. pygmaea under drought and rehydration conditions. The results showed that the total antioxidant capacity (TAOC) of P. pygmaea was significantly higher than P. massoniana and P. elliottii. TAOC showed a continuous increase trend across all species. Soluble sugar (SS), starch content and non-structural carbohydrate (NSC) of all three pines displayed a "W" pattern, declining initially, increasing, and then decreasing again. P. pygmaea exhibits stronger drought tolerance and greater recovery ability under prolonged drought conditions. Through the PacBio SMRT-seq, a total of 50,979 high-quality transcripts were generated, and 6,521 SSR and 5,561 long non-coding RNAs (LncRNAs) were identified. A total of 2310, 1849, 5271, 5947, 7710, and 6854 differentially expressed genes (DEGs) were identified compared to the control (Pp0D) in six pair-wise comparisons of treatment versus control. bHLH, NAC, ERF, MYB_related, C3H transcription factors (TFs) play an important role in drought tolerance of P. pygmaea. KEGG enrichment analysis and Gene set enrichment analysis (GSEA) analysis showed that P. pygmaea may respond to drought by enhancing metabolic processes such as ABA signaling pathway, alpha-linolenic acid. Weighted gene co-expression network analysis (WGCNA) revealed GST, CAT, LEC14B, SEC23 were associated with antioxidant enzyme activity and TAOC. This study provides a basis for further research on drought tolerance differences among coniferous species.
Collapse
Affiliation(s)
- Feng Xiao
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guizhou, 550025, China
| | - Yang Zhao
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guizhou, 550025, China.
| | - Xiurong Wang
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guizhou, 550025, China
| | - Xueyan Jian
- College of Continuing Education, Yanbian University, Jilin, 133002, China
| | - Yao Yang
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guizhou, 550025, China
| |
Collapse
|
78
|
Paethaisong W, Lakhunthod P, Santanoo S, Chandarak N, Onwan S, Kaewjampa N, Dongsansuk A. Open field hardening improves leaf physiological drought tolerance in young plants of Sindora siamensis. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23102. [PMID: 38479796 DOI: 10.1071/fp23102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 02/21/2024] [Indexed: 04/04/2024]
Abstract
The effect of drought stress on leaf physiology was studied in 10-month-old plants of Sindora siamensis . Plants were either placed in an open greenhouse (unhardening; UH) or in an open field (open field hardening; H) for 45days. Both the UH and H plants stopped receiving water (D) until the initial drought injury and then rewatered (R) until complete recovery. Results showed necrosis in the leaves of UH+D, while H+D showed wilting at Day 7 after drought. A greater degree of necrosis was found in UH+D+R but made complete recovery in H+D+R at Day 4 after rewatering. Drought stress resulted in decreased leaf area in H, and reduced leaf and stem water status, PSII efficiency, net photosynthetic rate, stomatal conductance and transpiration rate in both UH and H. It also resulted in an increase in water use efficiency in both UH and H. Electrolyte leakage and malondialdehyde contents in UH were markedly increased due to drought stress. These results suggest that unhardened young plants of Sindora exposed to drought exhibited enhanced stomata behaviour by minimising open stomata and transpiration, resulting in high efficiency of water usage. However, there was still membrane damage from lipid peroxidation, which caused necrosis. Open field hardened plants exposed to drought demonstrated reduced open stomata and transpiration, thereby preserving leaf and soil water status and enhancing water use efficiency. This may be a reduction in lipid peroxidation though an oxidative scavenging mechanism that causes a slight alteration in membrane stability and a slight necrosis.
Collapse
Affiliation(s)
- Warunya Paethaisong
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Preeyanuch Lakhunthod
- Department of Biological Sciences, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Supranee Santanoo
- Salt-tolerant Rice Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Natthamon Chandarak
- Salt-tolerant Rice Research Group, Khon Kaen University, Khon Kaen 40002, Thailand; and Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sujittra Onwan
- Department of Forest Resource Management Office No. 7, Khon Kaen 40000, Thailand
| | - Naruemol Kaewjampa
- Department of Conservation, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Anoma Dongsansuk
- Salt-tolerant Rice Research Group, Khon Kaen University, Khon Kaen 40002, Thailand; and Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
79
|
Rubio-Casal AE, Ibrahim MFM. Editorial: Physiological traits and stress detection in crops during global climate change: availability and sustainable use of water resources. FRONTIERS IN PLANT SCIENCE 2024; 15:1371044. [PMID: 38371414 PMCID: PMC10869604 DOI: 10.3389/fpls.2024.1371044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/20/2024]
Affiliation(s)
| | - Mohamed F M Ibrahim
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| |
Collapse
|
80
|
Ben Hamed S, Lefi E, Chaieb M. Effect of drought stress and subsequent re-watering on the physiology and nutrition of Pistacia vera and Pistacia atlantica. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:NULL. [PMID: 37463662 DOI: 10.1071/fp23097] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/25/2023] [Indexed: 07/20/2023]
Abstract
Arid and semi-arid regions are characterised by extreme conditions including drought stress and salinity. These factors profoundly affect the agricultural sector. The objective of this work is to study the effect of drought and re-watering on leaf gas exchange, chlorophyll fluorescence and mineral nutrition in Pistacia vera and Pistacia atlantica . Water stress was applied to individuals of P. vera and P. atlantica for 23days, followed by rehydration for 7days. The results showed a clear reduction in water relations, leaf gas exchange and chlorophyll content in P. vera . Compared to P. vera , P. atlantica maintained less affected water status, total chlorophyll content, leaf gas exchange and chlorophyll fluorescence, stable Zn and Fe proportion, and even elevated K and Cu. The changes in the chlorophyll fluorescence parameter were manifested particularly at the maximal fluorescence (Fm). In contrast, no change was recorded at the minimal fluorescence (F0). After re-hydration, although water status was fully recovered in both species, stomatal conductance (gs), net photosynthesis (A ) and transpiration rate (E ) remain with lower values than the well-watered seedlings. P. atlantica was better adapted to drought stress than P. vera .
Collapse
Affiliation(s)
- Samouna Ben Hamed
- Laboratory of Plant Ecophysiology, Faculty of Sciences, University of Gafsa, Gafsa, Tunisia; and LEBIOMAT: Laboratory of Arid Environment and Plant Biology, Faculty of Sciences, University of Sfax, Sfax, Tunisia
| | - Elkadri Lefi
- Laboratory of Plant Ecophysiology, Faculty of Sciences, University of Gafsa, Gafsa, Tunisia; and LEBIOMAT: Laboratory of Arid Environment and Plant Biology, Faculty of Sciences, University of Sfax, Sfax, Tunisia
| | - Mohamed Chaieb
- LEBIOMAT: Laboratory of Arid Environment and Plant Biology, Faculty of Sciences, University of Sfax, Sfax, Tunisia
| |
Collapse
|
81
|
Kausar A, Zahra N, Zahra H, Hafeez MB, Zafer S, Shahzadi A, Raza A, Djalovic I, Prasad PVV. Alleviation of drought stress through foliar application of thiamine in two varieties of pea ( Pisum sativum L.). PLANT SIGNALING & BEHAVIOR 2023; 18:2186045. [PMID: 37016728 PMCID: PMC10012936 DOI: 10.1080/15592324.2023.2186045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
Drought stress poorly impacts many morphological and physio-biochemical processes in plants. Pea (Pisum sativum L.) plants are highly nutritious crops destined for human consumption; however, their productivity is threatened under drought stress. Thiamine (vitamin B1) is well-known essential micronutrient, acting as a cofactor in key metabolic processes. Therefore, this study was designed to examine the protective effect of foliar application of thiamine (0, 250, and 500 ppm) on two varieties of pea plants under drought stress. Here, we conducted the pot experiment at the Government College Women University, Faisalabad, to investigate the physio-biochemical and morphological traits of two pea varieties (sarsabz and metior) grown under drought stress and thiamine treatment. Drought stress was applied to plants after germination period of 1 month. Results showed that root fresh and dry weight, shoot fresh and dry weight, number of pods, leaf area, total soluble sugars, total phenolics, total protein contents, catalase, peroxidase, and mineral ions were reduced against drought stress. However, the application of thiamine (both 250 and 500 ppm) overcome the stress and also enhances these parameters, and significantly increases the antioxidant activities (catalase and peroxidase). Moreover, the performance of sarsabz was better under control and drought stress conditions than metior variety. In conclusion, the exogenous application of thiamine enabled the plants to withstand drought stress conditions by regulating several physiological and biochemical mechanisms. In agriculture, it is a great latent to alleviate the antagonistic impact of drought stress on crops through the foliar application of thiamine.
Collapse
Affiliation(s)
- Abida Kausar
- Department of Botany, Government College Women University, Faisalabad, Pakistan
| | - Noreen Zahra
- Department of Botany, Government College Women University, Faisalabad, Pakistan
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Hina Zahra
- Department of Botany, Government College Women University, Faisalabad, Pakistan
| | | | - Sara Zafer
- Department of Botany, GC University, Faisalabad, Pakistan
| | - Abida Shahzadi
- Department of Economics, Government College University, Faisalabad, Pakistan
| | - Ali Raza
- College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Novi Sad, Serbia
| | - PV Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
82
|
Sharma A, Choudhary P, Chakdar H, Shukla P. Molecular insights and omics-based understanding of plant-microbe interactions under drought stress. World J Microbiol Biotechnol 2023; 40:42. [PMID: 38105277 DOI: 10.1007/s11274-023-03837-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/11/2023] [Indexed: 12/19/2023]
Abstract
The detrimental effects of adverse environmental conditions are always challenging and remain a major concern for plant development and production worldwide. Plants deal with such constraints by physiological, biochemical, and morphological adaptations as well as acquiring mutual support of beneficial microorganisms. As many stress-responsive traits of plants are influenced by microbial activities, plants have developed a sophisticated interaction with microbes to cope with adverse environmental conditions. The production of numerous bioactive metabolites by rhizospheric, endo-, or epiphytic microorganisms can directly or indirectly alter the root system architecture, foliage production, and defense responses. Although plant-microbe interactions have been shown to improve nutrient uptake and stress resilience in plants, the underlying mechanisms are not fully understood. "Multi-omics" application supported by genomics, transcriptomics, and metabolomics has been quite useful to investigate and understand the biochemical, physiological, and molecular aspects of plant-microbe interactions under drought stress conditions. The present review explores various microbe-mediated mechanisms for drought stress resilience in plants. In addition, plant adaptation to drought stress is discussed, and insights into the latest molecular techniques and approaches available to improve drought-stress resilience are provided.
Collapse
Affiliation(s)
- Aditya Sharma
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Prassan Choudhary
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, 275103, India
| | - Hillol Chakdar
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, 275103, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
83
|
Galicia-Campos E, García-Villaraco A, Montero-Palmero MB, Gutiérrez-Mañero FJ, Ramos-Solano B. Bacillus G7 improves adaptation to salt stress in Olea europaea L. plantlets, enhancing water use efficiency and preventing oxidative stress. Sci Rep 2023; 13:22507. [PMID: 38110443 PMCID: PMC10728083 DOI: 10.1038/s41598-023-49533-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/09/2023] [Indexed: 12/20/2023] Open
Abstract
In addition to genetic adaptative mechanisms, plants retrieve additional help from the surrounding microbiome, especially beneficial bacterial strains (PGPB) that contribute to plant fitness by modulating plant physiology to fine-tune adaptation to environmental changes. The aim of this study was to determine the mechanisms by which the PGPB Bacillus G7 stimulates the adaptive mechanisms of Olea europaea plantlets to high-salinity conditions, exploring changes at the physiological, metabolic and gene expression levels. On the one hand, G7 prevented photosynthetic imbalance under saline stress, increasing the maximum photosynthetic efficiency of photosystem II (Fv/Fm) and energy dissipation (NPQ) and protecting against photooxidative stress. On the other hand, despite the decrease in effective PSII quantum yield (ΦPSII), net carbon fixation was significantly improved, resulting in significant increases in osmolytes and antioxidants, suggesting an improvement in the use of absorbed energy. Water use efficiency (WUE) was significantly improved. Strong genetic reprogramming was evidenced by the transcriptome that revealed involvement of the ABA-mediated pathway based on upregulation of ABA synthesis- and ABA-sensing-related genes together with a strong downregulation of the PLC2 phosphatase family, repressors of ABA-response elements and upregulation of ion homeostasis-related genes. The ion homeostasis response was activated faster in G7-treated plants, as suggested by qPCR data. All these results reveal the multitargeted improvement of plant metabolism under salt stress by Bacillus G7, which allows growth under water limitation conditions, an excellent trait to develop biofertilizers for agriculture under harsh conditions supporting the use of biofertilizers among the new farming practices to meet the increasing demand for food.
Collapse
Affiliation(s)
- Estrella Galicia-Campos
- Facultad de Farmacia, Universidad San Pablo-CEU Universities, Ctra. Boadilla del Monte km 5.3, Boadilla del Monte, 28668, Madrid, Spain
| | - Ana García-Villaraco
- Facultad de Farmacia, Universidad San Pablo-CEU Universities, Ctra. Boadilla del Monte km 5.3, Boadilla del Monte, 28668, Madrid, Spain
| | - Ma Belén Montero-Palmero
- Facultad de Farmacia, Universidad San Pablo-CEU Universities, Ctra. Boadilla del Monte km 5.3, Boadilla del Monte, 28668, Madrid, Spain
| | - F Javier Gutiérrez-Mañero
- Facultad de Farmacia, Universidad San Pablo-CEU Universities, Ctra. Boadilla del Monte km 5.3, Boadilla del Monte, 28668, Madrid, Spain
| | - Beatriz Ramos-Solano
- Facultad de Farmacia, Universidad San Pablo-CEU Universities, Ctra. Boadilla del Monte km 5.3, Boadilla del Monte, 28668, Madrid, Spain.
| |
Collapse
|
84
|
Junaid MD, Öztürk ZN, Gökçe AF. Exploitation of tolerance to drought stress in carrot (Daucus carota L.): an overview. STRESS BIOLOGY 2023; 3:55. [PMID: 38079026 PMCID: PMC10713971 DOI: 10.1007/s44154-023-00130-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/26/2023] [Indexed: 04/19/2025]
Abstract
Drought stress is a significant environmental factor that adversely affects the growth and development of carrot (Daucus carota L.), resulting in reduced crop yields and quality. Drought stress induces a range of physiological and biochemical changes in carrots, including reduced germination, hindered cell elongation, wilting, and disrupted photosynthetic efficiency, ultimately leading to stunted growth and decreased root development. Recent research has focused on understanding the molecular mechanisms underlying carrot's response to drought stress, identifying key genes and transcription factors involved in drought tolerance. Transcriptomic and proteomic analyses have provided insights into the regulatory networks and signaling pathways involved in drought stress adaptation. Among biochemical processes, water scarcity alters carrot antioxidant levels, osmolytes, and hormones. This review provides an overview of the effects of drought stress on carrots and highlights recent advances in drought stress-related studies on this crop. Some recent advances in understanding the effects of drought stress on carrots and developing strategies for drought stress mitigation are crucial for ensuring sustainable carrot production in the face of changing climate conditions. However, understanding the mechanisms underlying the plant's response to drought stress is essential for developing strategies to improve its tolerance to water scarcity and ensure food security in regions affected by drought.
Collapse
Affiliation(s)
- Muhammad Daniyal Junaid
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Türkiye.
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of The Punjab, Lahore, Pakistan.
| | - Zahide Neslihan Öztürk
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Türkiye
| | - Ali Fuat Gökçe
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Türkiye
| |
Collapse
|
85
|
Sánchez-Quintero Á, Fernandes SCM, Beigbeder JB. Overview of microalgae and cyanobacteria-based biostimulants produced from wastewater and CO 2 streams towards sustainable agriculture: A review. Microbiol Res 2023; 277:127505. [PMID: 37832502 DOI: 10.1016/j.micres.2023.127505] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023]
Abstract
For a long time, marine macroalgae (seaweeds) have been used to produce commercial biostimulants in order to ensure both productivity and quality of agricultural crops under abiotic stress. With similar biological properties, microalgae have slowly attracted the scientific community and the biostimulant industry, in particular because of their ability to be cultivated on non-arable lands with high biomass productivity all year long. Moreover, the recent strategies of culturing these photosynthetic microorganisms using wastewater and CO2 opens the possibility to produce large quantity of biomass at moderate costs while integrating local and circular economy approaches. This paper aims to provide a state of the art review on the development of microalgae and cyanobacteria based biostimulants, focusing on the different cultivation, extraction and application techniques available in the literature. Emphasis will be placed on microalgae and cyanobacteria cultivation using liquid and gaseous effluents as well as emerging green-extraction approaches, taking in consideration the actual European regulatory framework.
Collapse
Affiliation(s)
- Ángela Sánchez-Quintero
- Universite de Pau et des Pays de l'Adour, E2S UPPA, IPREM, CNRS, 64 600 Anglet, France; MANTA-Marine Materials Research Group, Universite de Pau et des Pays de l'Adour, E2S UPPA, 64 600 Anglet, France; APESA, Pôle valorisation, 3 chemin de Sers, 64121 Montardon, France
| | - Susana C M Fernandes
- Universite de Pau et des Pays de l'Adour, E2S UPPA, IPREM, CNRS, 64 600 Anglet, France; MANTA-Marine Materials Research Group, Universite de Pau et des Pays de l'Adour, E2S UPPA, 64 600 Anglet, France.
| | | |
Collapse
|
86
|
Zaib P, Ahmad HM, Attacha S, Rahman MU, Shafiq MR, Parveen K, Fiaz S, Attia KA, Ishaq S, Arif S, Abushady AM, Umer MJ. Comparative genomics of light harvesting chlorophyll (LHC) gene family and impact of chlorophyll-A contents under drought stress in Helianthus annuus. JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154136. [PMID: 38007968 DOI: 10.1016/j.jplph.2023.154136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/28/2023]
Abstract
Drought is one of the main environmental stressors that can alter the water status of plants; negatively affect growth, assimilation, and photosynthesis; and eventually reduce crop yield. We explored the dependence of drought tolerance traits on chlorophyll-A content. Local sunflower cultivars (FH-01, FH-628, FH-633, FH-572, and FH-653) were grown in pots and subjected to drought by withholding water for 10, 15, or 20 d. One month after germination, the leaves of the treated and non-treated plants were collected and subjected to biochemical analyses. Under different water stress levels, the levels of peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), and proline increased, whereas those of chlorophyll-A decreased. Regression analysis clearly found that proline (-0.442), POD (-0.528), SOD (-0.532), and CAT (-0.814) have negative beta coefficient values. Phylogenetic analysis revealed that the LHC gene family is divided into six clades. Subcellular locations indicated that most LHC genes were located in the chloroplast; however, only few genes were present in the peroxisomes and endoplasmic reticulum. Our research found that Arabidopsis thaliana LHC genes were highly homologous to the LHC genes of Helianthus annuus. Furthermore, the LHC genes of both species are located in the chloroplasts; therefore, they play a role in photosynthesis and renewable energy production. This study opens a new horizon for discussing the role of chlorophyll-A in the drought-related traits of sunflowers.
Collapse
Affiliation(s)
- Parwsha Zaib
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan.
| | - Hafiz Muhammad Ahmad
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan.
| | - Safira Attacha
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan.
| | - Mahmood-Ur Rahman
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan.
| | - Muhammad Rizwan Shafiq
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Sub-Campus Depalpur, Okara, Punjab, Pakistan.
| | - Kousar Parveen
- Deptarment of Environmental Sciences, The Women University Multan, Multan, 66000, Pakistan.
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, 22620, Haripur, Pakistan.
| | - Kotb A Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Saira Ishaq
- Department of Food Science and Technology, University of Poonch, Rawalakot, Pakistan.
| | - Shazia Arif
- Department of Plant Breeding and Molecular Genetics, University of Poonch, Rawalakot, Pakistan.
| | - Asmaa M Abushady
- Biotechnology School, Nile University, 26th July Corridor, Sheikh Zayed City, Giza, 12588, Egypt; Department of Genetics, Agriculture College, Ain Shams University, Cairo, Egypt.
| | - Muhammad Jawad Umer
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, 455000, China.
| |
Collapse
|
87
|
Kara D, Orhan E. Tolerance evaluation and genetic relationship analysis among some economically important chestnut cultivars in Türkiye using drought-associated SSR and EST-SSR markers. Sci Rep 2023; 13:20950. [PMID: 38016998 PMCID: PMC10684537 DOI: 10.1038/s41598-023-47951-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023] Open
Abstract
The aim of this study was to evaluate drought tolerance and genetic relationships among some important chestnut cultivars for Türkiye by using drought-related genomic simple sequence repeat (SSR) markers and genic expressed sequence tag-simple sequence repeat (EST-SSR) markers. Using five SSR markers, the average number of alleles (avNa), mean heterozygosity (Havp) and polymorphism information content (PIC) were determined to be 9.22, 0.395 and 0.375, respectively. In addition, using eight EST-SSR markers, the values of avNa, Havp and PIC were determined to be 7.75, 0.309 and 0.262, respectively. All microsatellite markers used in this study showed 100% polymorphism among chestnut cultivars. In UPGMA dendrograms obtained with both SSR and EST-SSR markers, the Erfelek and Hacıömer chestnut cultivars were determined to be the most similar cultivars. Some assessments are discussed regarding drought tolerance for specific alleles obtained from the EST-SSR markers GOT045, GOT021, GOT004, FIR094 and VIT033 in chestnut cultivars. Some preliminary results regarding drought tolerance in chestnut cultivars were obtained in our study with the help of these markers. Our study also characterized the genetic relationships among chestnut cultivars of great importance using drought-related character-specific markers.
Collapse
Affiliation(s)
- Didem Kara
- Department of Agricultural Biotechnology, Graduate School of Natural and Applied Sciences, Atatürk University, 25240, Erzurum, Türkiye
| | - Emine Orhan
- Department of Agricultural Biotechnology, Faculty of Agriculture, Atatürk University, 25240, Erzurum, Türkiye.
| |
Collapse
|
88
|
Rico-Cambron TY, Bello-Bello E, Martínez O, Herrera-Estrella L. A non-invasive method to predict drought survival in Arabidopsis using quantum yield under light conditions. PLANT METHODS 2023; 19:127. [PMID: 37968652 PMCID: PMC10647164 DOI: 10.1186/s13007-023-01107-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND Survival rate (SR) is frequently used to compare drought tolerance among plant genotypes. While a variety of techniques for evaluating the stress status of plants under drought stress conditions have been developed, determining the critical point for the recovery irrigation to evaluate plant SR often relies directly on a qualitative inspection by the researcher or on the employment of complex and invasive techniques that invalidate the subsequent use of the tested individuals. RESULTS Here, we present a simple, instantaneous, and non-invasive method to estimate the survival probability of Arabidopsis thaliana plants after severe drought treatments. The quantum yield (QY), or efficiency of photosystem II, was monitored in darkness (Fv/Fm) and light (Fv'/Fm') conditions in the last phase of the drought treatment before recovery irrigation. We found a high correlation between a plant's Fv'/Fm' value before recovery irrigation and its survival phenotype seven days after, allowing us to establish a threshold between alive and dead plants in a calibration stage. This correlation was maintained in the Arabidopsis accessions Col-0, Ler-0, C24, and Kondara under the same conditions. Fv'/Fm' was then applied as a survival predictor to compare the drought tolerance of transgenic lines overexpressing the transcription factors ATAF1 and PLATZ1 with the Col-0 control. CONCLUSIONS The results obtained in this work demonstrate that the chlorophyll a fluorescence parameter Fv'/Fm' can be used as a survival predictor that gives a numerical estimate of the Arabidopsis drought SR before recovery irrigation. The procedure employed to get the Fv'/Fm' measurements is fast, non-destructive, and requires inexpensive and easy-to-handle equipment. Fv'/Fm' as a survival predictor can be used to offer an overview of the photosynthetic state of the tested plants and determine more accurately the best timing for rewatering to assess the SR, especially when the symptoms of severe dehydration between genotypes are not contrasting enough to identify a difference visually.
Collapse
Affiliation(s)
- Thelma Y Rico-Cambron
- National Laboratory of Genomics for Biodiversity (LANGEBIO), Unit of Advanced Genomics, CINVESTAV, Irapuato, Guanajuato, 36824, Mexico
| | - Elohim Bello-Bello
- National Laboratory of Genomics for Biodiversity (LANGEBIO), Unit of Advanced Genomics, CINVESTAV, Irapuato, Guanajuato, 36824, Mexico
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Octavio Martínez
- National Laboratory of Genomics for Biodiversity (LANGEBIO), Unit of Advanced Genomics, CINVESTAV, Irapuato, Guanajuato, 36824, Mexico
| | - Luis Herrera-Estrella
- National Laboratory of Genomics for Biodiversity (LANGEBIO), Unit of Advanced Genomics, CINVESTAV, Irapuato, Guanajuato, 36824, Mexico.
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
89
|
Shariatipour N, Shams Z, Heidari B, Richards C. Genetic variation and response to selection of photosynthetic and forage characteristics in Kentucky bluegrass ( Poa pratensis L.) ecotypes under drought conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1239860. [PMID: 38023869 PMCID: PMC10667697 DOI: 10.3389/fpls.2023.1239860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Introduction Evaluation of the effects of water-limited conditions on the photosynthetic characteristics and forage yield is important for enhancing the forage productivity and drought tolerance in Kentucky bluegrass (Poa pratensis L.). Methods In the present study, 100 P. pratensis ecotypes collected from different geographical areas in Iran were assessed under well-watered and drought stress conditions. Genetic variation and response to selection for the photosynthetic characteristics [i.e., net photosynthesis rate (A), stomatal conductance (gs), transpiration rate (Tr), chlorophyll content (Chl), and photochemical efficiency (Fv/Fm)] and forage yield [fresh forage yield (FY) and dry forage yield (Dy)] traits were analyzed during the 2018 and 2019 growing seasons. Results and discussion Drought stress had negative effects on evaluated photosynthesis parameters and significantly reduced dry and fresh forage yields. On average, FY with a 45% decrease and gs with a 326% decrease under drought stress conditions showed the highest reduction rate among forage yield and photosynthesis traits, respectively. Genotypic coefficients of variation (GCV) for FY were lower under drought stress. The estimates of heritability, genetic advance, and genetic advance as percentage of mean showed the predominance of additive gene action for the traits. Overall, the results showed that "Ciakhor", "Damavand", "Karvandan", "Basmenj", "Abr2", "Abrumand", "Borhan", "Hezarkanian", "LasemCheshmeh", "Torshab", and "DoSar" have higher forage yield production with little change between two irrigation regimes, which makes them promising candidates for developing high-yielding drought-tolerant varieties through breeding programs.
Collapse
Affiliation(s)
- Nikwan Shariatipour
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Zahra Shams
- Department of Horticulture Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Bahram Heidari
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Christopher Richards
- United States Department of Agriculture, The Agricultural Research Service, National Laboratory for Genetic Resources Preservation, Fort Collins, CO, United States
| |
Collapse
|
90
|
Ullah I, Toor MD, Basit A, Mohamed HI, Gamal M, Tanveer NA, Shah ST. Nanotechnology: an Integrated Approach Towards Agriculture Production and Environmental Stress Tolerance in Plants. WATER, AIR, & SOIL POLLUTION 2023; 234:666. [DOI: 10.1007/s11270-023-06675-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023]
|
91
|
Zheng C, Wang X, Xu Y, Wang S, Jiang X, Liu X, Cui W, Wu Y, Yan C, Liu H, Lu Y, Chen J, Zhou J. The peroxidase gene OsPrx114 activated by OsWRKY50 enhances drought tolerance through ROS scavenging in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108138. [PMID: 39492168 DOI: 10.1016/j.plaphy.2023.108138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/28/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
Drought is among the most severe environmental stressors, imposing detrimental effects on plant growth and development. In this study, we have identified a class III peroxidase gene, OsPrx114, which was induced under PEG (Polyethylene glycol) and drought conditions and found to be localized in both the plasma membrane and endoplasmic reticulum. The promoter region of OsPrx114 encompasses cis-elements, including ABRE (ABA response elements), MBS (MYB binding elements), and W-box, which are likely contributors to drought tolerance. In comparison to Nipponbare (Nip) plants, the overexpression of OsPrx114 enhanced drought tolerance by reducing the accumulation of reactive oxygen species (ROS) through the upregulation of enzyme activities, such as peroxide dismutase (POD) and catalase (CAT). This was accompanied by an increase in proline (Pro) content and a decrease in malondialdehyde (MDA) content. Furthermore, a series of assays including yeast one-hybrid, electrophoretic mobility shift, and dual luciferase assays, demonstrated that the transcription factor OsWRKY50 binds to the W-box (TTGACC) within the promoter of OsPrx114, thereby activating its transcription. OsWRKY50 plays a positive role in regulating OsPrx114-mediated drought resistance by mitigating ROS accumulation in rice. These findings offer a molecular foundation for comprehending the function of the OsWRKY50-OsPrx114 module in response to drought stress in rice.
Collapse
Affiliation(s)
- Chao Zheng
- College of Plant Protection, Northwest A&F University, Yangling, 712100, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xuming Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yue Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; Zhejiang Wan Li University, Ningbo, 315100, China
| | - Shaomin Wang
- Agricultural Technology Extension and Service Station of Yuyao City, Yuyao, 315400, China
| | - Xin Jiang
- College of Biological and Environment Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Xiuli Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Weijun Cui
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yueyan Wu
- Zhejiang Wan Li University, Ningbo, 315100, China
| | - Chengqi Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; Zhejiang Wan Li University, Ningbo, 315100, China
| | - Hongjia Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yin Lu
- College of Biological and Environment Engineering, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Jianping Chen
- College of Plant Protection, Northwest A&F University, Yangling, 712100, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Jie Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
92
|
Shaffique S, Hussain S, Kang SM, Imran M, Injamum-Ul-Hoque M, Khan MA, Lee IJ. Phytohormonal modulation of the drought stress in soybean: outlook, research progress, and cross-talk. FRONTIERS IN PLANT SCIENCE 2023; 14:1237295. [PMID: 37929163 PMCID: PMC10623132 DOI: 10.3389/fpls.2023.1237295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/07/2023] [Indexed: 11/07/2023]
Abstract
Phytohormones play vital roles in stress modulation and enhancing the growth of plants. They interact with one another to produce programmed signaling responses by regulating gene expression. Environmental stress, including drought stress, hampers food and energy security. Drought is abiotic stress that negatively affects the productivity of the crops. Abscisic acid (ABA) acts as a prime controller during an acute transient response that leads to stomatal closure. Under long-term stress conditions, ABA interacts with other hormones, such as jasmonic acid (JA), gibberellins (GAs), salicylic acid (SA), and brassinosteroids (BRs), to promote stomatal closure by regulating genetic expression. Regarding antagonistic approaches, cytokinins (CK) and auxins (IAA) regulate stomatal opening. Exogenous application of phytohormone enhances drought stress tolerance in soybean. Thus, phytohormone-producing microbes have received considerable attention from researchers owing to their ability to enhance drought-stress tolerance and regulate biological processes in plants. The present study was conducted to summarize the role of phytohormones (exogenous and endogenous) and their corresponding microbes in drought stress tolerance in model plant soybean. A total of n=137 relevant studies were collected and reviewed using different research databases.
Collapse
Affiliation(s)
- Shifa Shaffique
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Muhamad Imran
- Biosafety Division, National Institute of Agriculture Science, Rural Development Administration, Jeonju, Republic of Korea
| | - Md. Injamum-Ul-Hoque
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Muhammad Aaqil Khan
- Department of Chemical and Life Science, Qurtaba University of Science and Information Technology, Peshawar, Pakistan
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
93
|
Bennis M, Kaddouri K, Badaoui B, Bouhnik O, Chaddad Z, Perez-Tapia V, Lamin H, Alami S, Lamrabet M, Abdelmoumen H, Bedmar EJ, Missbah El Idrissi M. Plant growth promoting activities of Pseudomonas sp. and Enterobacter sp. isolated from the rhizosphere of Vachellia gummifera in Morocco. FEMS Microbiol Ecol 2023; 99:fiad114. [PMID: 37742210 DOI: 10.1093/femsec/fiad114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/22/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023] Open
Abstract
The Moroccan endemic Vachellia gummifera grows wild under extreme desert conditions. This plant could be used as an alternative fodder for goats, and camels, in order to protect the Argan forests against overgrazing in Central and Southwestern Moroccan semiarid areas. With the aim to improve the V. gummifera population's density in semiarid areas, we proposed its inoculation with performing plant growth-promoting bacteria. Hence, 500 bacteria were isolated from the plant rhizosphere. From these, 291 isolates were retained for plant growth-promoting (PGP) activities assessment. A total of 44 isolates showed the best phosphates solubilization potential, as well as siderophore and auxin production. The combination of REP-PCR (repetitive extragenic palindromic-polymerase chain reaction) fingerprinting, PGP activities, and phenotypic properties, allowed the selection of three strains for the inoculation experiments. The three selected strains' 16S rRNA sequencing showed that they are members of the Enterobacter and Pseudomonas genera. The inoculation with three strains had diverse effects on V. gummifera growth parameters. All single and combined inoculations improved the plant shoot weight by more than 200%, and the root length by up to 139%, while some combinations further improved protein and chlorophyll content, thereby improving the plant's forage value. The three selected strains constitute an effective inoculum for use in the arid and semiarid zones of southern Morocco.
Collapse
Affiliation(s)
- Meryeme Bennis
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Koutar Kaddouri
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Bouabid Badaoui
- Laboratoire de Zoologie et de Biologie Générale, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Omar Bouhnik
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Zohra Chaddad
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Vicente Perez-Tapia
- Departamento de Microbiología del Suelo y Sistemas Simbíoticos Estacíon Experimental del Zaidín, CSIC, Apartado Postal 419, 18008 Granada, Spain
| | - Hanane Lamin
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Soufiane Alami
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Mouad Lamrabet
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Hanaa Abdelmoumen
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Eulogio J Bedmar
- Departamento de Microbiología del Suelo y Sistemas Simbíoticos Estacíon Experimental del Zaidín, CSIC, Apartado Postal 419, 18008 Granada, Spain
| | - Mustapha Missbah El Idrissi
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| |
Collapse
|
94
|
Wang Y, Cao JL, Hashem A, Abd_Allah EF, Wu QS. Serendipita indica mitigates drought-triggered oxidative burst in trifoliate orange by stimulating antioxidant defense systems. FRONTIERS IN PLANT SCIENCE 2023; 14:1247342. [PMID: 37860240 PMCID: PMC10582986 DOI: 10.3389/fpls.2023.1247342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/15/2023] [Indexed: 10/21/2023]
Abstract
Soil drought is detrimental to plant growth worldwide, particularly by triggering reactive oxygen species (ROS) burst. Serendipita indica (Si), a culturable root-associated endophytic fungus, can assist host plants in dealing with abiotic stresses; however, it is unknown whether and how Si impacts the drought tolerance of citrus plants. To unravel the effects and roles of Si on drought-stressed plants, trifoliate orange (Poncirus trifoliata L. Raf.; a citrus rootstock) seedlings were inoculated with Si and exposed to soil drought, and growth, gas exchange, ROS levels, antioxidant defense systems, and expression of genes encoding antioxidant enzymes and fatty acid desaturases in leaves were measured. Soil drought suppressed plant biomass, whereas Si inoculation significantly increased plant biomass (10.29%-22.47%) and shoot/root ratio (21.78%-24.68%) under ample water and drought conditions, accompanied by improved net photosynthetic rate (105.71%), water use efficiency (115.29%), chlorophyll index (55.34%), and nitrogen balance index (63.84%) by Si inoculation under soil drought. Soil drought triggered an increase in leaf hydrogen peroxide and superoxide anion levels, while Si inoculation significantly reduced these ROS levels under soil drought, resulting in lower membrane lipid peroxidation with respect to malondialdehyde changes. Furthermore, Si-inoculated seedlings under soil drought had distinctly higher levels of ascorbate and glutathione, as well as catalase, peroxidase, and glutathione peroxidase activities, compared with no-Si-inoculated seedlings. Si inoculation increased the expression of leaf PtFAD2, PtFAD6, PtΔ9, PtΔ15, PtFe-SOD, PtCu/Zn-SOD, PtPOD, and PtCAT1 genes under both ample water and soil drought conditions. Overall, Si-inoculated trifoliate orange plants maintained a low oxidative burst in leaves under drought, which was associated with stimulation of antioxidant defense systems. Therefore, Si has great potential as a biostimulant in enhancing drought tolerance in plants, particularly citrus.
Collapse
Affiliation(s)
- Yu Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Jin-Li Cao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Qiang-Sheng Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
95
|
Xu J, Du N, Dong T, Zhang H, Xue T, Zhao F, Zhao F, Duan Y, Xue J. A novel Pinellia ternata catalase gene PtCAT2 regulates drought tolerance in Arabidopsis by modulating ROS balance. FRONTIERS IN PLANT SCIENCE 2023; 14:1206798. [PMID: 37849844 PMCID: PMC10577230 DOI: 10.3389/fpls.2023.1206798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023]
Abstract
Drought is one of the major abiotic stresses limiting agricultural production, particularly for shallow-rooted plants like Pinellia ternata. It damages plants via oxidative burst, but this effect could be mitigated by catalase (CAT). However, no studies have been reported on CAT homologs in P. ternata, a drought-sensitive plant species. In the present study, a novel CAT gene, PtCAT2, was functionally characterized via overexpression in Arabidopsis and analysis of cis-elements in its promoter. The isolated CAT gene was 1479 bp and encoded a protein containing 242 amino acids. The protein contains the CAT activity motif and the heme-binding site of a typical CAT, and the subcellular analysis indicated that the protein localizes at the cytoplasm and membrane. Moreover, the quantitative real-time reverse transcription PCR indicated that PtCAT2 is expressed ubiquitously in P. ternata and is strongly induced by drought stress and abscisic acid (ABA) signals. PtCAT2 overexpression enhanced the drought tolerance of Arabidopsis, as shown by the 30% increase in plant survival and a five-fold- increase in CAT activity. Moreover, PtCAT2-transgenic plants increased superoxide dismutase and peroxidase activities and reduced malondialdehyde, membrane leakage, and hydrogen peroxide (H2O2) (P<0.05). Furthermore, PtCAT2-transgenic plants showed higher tolerance to oxidative stress caused by exogenous H2O2 and retained higher chlorophyll and water contents than the WT. The mitochondria function was better maintained as presented by the higher oxygen consumption rate in transgenics under drought stress (P<0.05). The endogenous CATs and drought response-related genes were also upregulated in transgenic lines under drought stress, indicating that PtCAT2 confers drought stress tolerance by enhancing the H2O2 scavenging ability of plants to maintain their membrane integrity. These results improve our understanding of the drought response mechanisms and provide a potential breeding strategy for P. ternata genetic improvement.
Collapse
Affiliation(s)
- Juanjuan Xu
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Ni Du
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Tianci Dong
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Han Zhang
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Tao Xue
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Fei Zhao
- College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, China
| | - Fenglan Zhao
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Yongbo Duan
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Jianping Xue
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| |
Collapse
|
96
|
Fallah Imani A, Gomarian M, Ghorbanpour M, Ramak P, Chavoshi S. Foliar-applied nano-cerium dioxide differentially affect morpho-physiological traits and essential oil profile of Salvia mirzayanii Rech. f. & Esfand under drought stress and post-stress recovery conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108046. [PMID: 37757721 DOI: 10.1016/j.plaphy.2023.108046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Drought stress is known to diminish the growth and yield of plants by altering the physiological, biochemical and molecular processes, thus threatening food security worldwide. Nanoparticles (NPs) have emerged as an effective strategy to raise plant productivity under current rapid environmental challenges. However, there is little literature on mechanisms underlying the beneficial role of re-watering in drought-stressed plants treated with NPs. In this study, the effects of cerium dioxide nanoparticles [(CeO2 NPs), 0 (control), 125, 250, 500, and 1000 mL L-1] were investigated on morpho-physiological and phytochemical traits of Salvia mirzayanii plants under different drought stress intensities [(25%, 50%, 75%, and 100% (control) of field capacity (FC) moisture] and post-stress re-watering (recovery) in a three-way factorial arrangement based on randomized complete block design. Uptake and accumulation of CeO2 NPs in the leaf tissue of plant samples were confirmed using SEM and EDX techniques. The results of ANOVA demonstrated that growth and physio-phytochemical traits were significantly (p < 0.05) affected by individual treatment and/or their double and triple interactions. Exposure to various levels of CeO2 NPs during drought stress mitigated the adverse effects of stress on growth parameters (e.g., plant height, shoot and root dry weights, and root length) and photosynthetic pigments (chlorophyll a and b) content compared to the respective controls in varying degrees. However, proline and essential oil content were increased in drought-stressed plants, and tended to decrease during the period of recovery. Before re-watering, the antioxidant enzymes, CAT, POD, and SOD, activity in leaf tissues was increased with the increase of drought stress intensity upon both treated and non-treated CeO2 NPs conditions. However, the three-way interaction results demonstrated that recovery after drought stress following CeO2 NPs application particularly 1000 mL L-1 decreased the activity of antioxidant enzymes compared to the controls. Based on GC and GC-MS analysis, all essential oil samples predominantly composed of oxygenated monoterpenes and sesquiterpenes including Decane, Spathulenol, Octane, α-Terpinyl acetate, Hexyl isovalerate, Dodecane, Butanoic acid, Linalool, δ-Cadinene, Muurolol, α-Cadinol, Eudesm-7(11)-en-4-ol, which significantly (p < 0.05) changed under different experimental treatments. The recovery after stress, however, increased only the content of δ-Cadinene in plants from severe drought stress upon foliar application of 1000 mL L-1 CeO2 NPs compared to the non-recovery period. Conclusively, integrative use of CeO2 NPs and re-watering after drought stress could be an encouraging and eco-friendly strategy to improve both drought tolerance, growth and pyhtochemical contents in S. mirzayanii plants.
Collapse
Affiliation(s)
- Afshar Fallah Imani
- Department of Horticulture Science, Arak Branch, Islamic Azad University, Arak, Iran
| | - Masoud Gomarian
- Department of Agronomy and Plant Breeding, Arak Branch, Islamic Azad University, Arak, Iran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran; Institute of Nanosciences and Nanotechnology, Arak University, Arak, 38156-8-8349, Iran.
| | - Parvin Ramak
- Research Division of Natural Resources, Lorestan Agricultural and Natural Resources Research and Education Centre, AREEO, Khorramabad, Iran
| | - Saeid Chavoshi
- Department of Agronomy and Plant Breeding, Arak Branch, Islamic Azad University, Arak, Iran
| |
Collapse
|
97
|
Li J, Abbas K, Wang L, Gong B, Hou S, Wang W, Dai B, Xia H, Wu X, Lü G, Gao H. Drought resistance index screening and evaluation of lettuce under water deficit conditions on the basis of morphological and physiological differences. FRONTIERS IN PLANT SCIENCE 2023; 14:1228084. [PMID: 37780513 PMCID: PMC10540308 DOI: 10.3389/fpls.2023.1228084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023]
Abstract
Introduction Water is one of the important factors affecting the yield of leafy vegetables. Lettuce, as a widely planted vegetable, requires frequent irrigation due to its shallow taproot and high leaf evaporation rate. Therefore, screening drought-resistant genotypes is of great significance for lettuce production. Methods In the present study, significant variations were observed among 13 morphological and physiological traits of 42 lettuce genotypes under normal irrigation and water-deficient conditions. Results Frequency analysis showed that soluble protein (SP) was evenly distributed across six intervals. Principal component analysis (PCA) was conducted to transform the 13 indexes into four independent comprehensive indicators with a cumulative contribution ratio of 94.83%. The stepwise regression analysis showed that root surface area (RSA), root volume (RV), belowground dry weight (BDW), soluble sugar (SS), SP, and leaf relative water content (RWC) could be used to evaluate and predict the drought resistance of lettuce genotypes. Furthermore, the drought resistance ranks of the genotypes were similar according to the drought resistance comprehensive evaluation value (D value), comprehensive drought resistance coefficient (CDC), and weight drought resistance coefficient (WDC). The cluster analysis enabled the division of the 42 genotypes into five drought resistance groups; among them, variety Yidali151 was divided into group I as a strongly drought-resistant variety, group II included 6 drought-resistant genotypes, group III included 16 moderately drought-resistant genotypes, group IV included 12 drought-sensitive genotypes, and group V included 7 highly drought-sensitive genotypes. Moreover, a representative lettuce variety was selected from each of the five groups to verify its water resistance ability under water deficit conditions. In the drought-resistant variety, it was observed that stomatal density, superoxide anion (O2.-wfi2) production rate, and malondialdehyde (MDA) content exhibited a low increase rate, while catalase (CAT), superoxide dismutase (SOD), and that peroxidase (POD) activity exhibited a higher increase than in the drought-sensitive variety. Discussion In summary, the identified genotypes are important because their drought-resistant traits can be used in future drought-resistant lettuce breeding programs and water-efficient cultivation.
Collapse
Affiliation(s)
- Jingrui Li
- College of Horticulture, Hebei Agricultural University, Baoding, China
- Key Laboratory of North China Water-saving Irrigation Engineering, Hebei Agricultural University, Baoding, China
| | - Kumail Abbas
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Lin Wang
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Binbin Gong
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Shenglin Hou
- Research Management Department, Hebei Academy of Agriculture and Forestry, Shijiazhuang, China
| | - Weihong Wang
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Bowen Dai
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Hui Xia
- Key Laboratory of North China Water-saving Irrigation Engineering, Hebei Agricultural University, Baoding, China
- College of Urban and Rural Construction, Hebei Agricultural University, Baoding, China
| | - Xiaolei Wu
- College of Horticulture, Hebei Agricultural University, Baoding, China
- Key Laboratory of North China Water-saving Irrigation Engineering, Hebei Agricultural University, Baoding, China
| | - Guiyun Lü
- College of Horticulture, Hebei Agricultural University, Baoding, China
- Key Laboratory of North China Water-saving Irrigation Engineering, Hebei Agricultural University, Baoding, China
| | - Hongbo Gao
- College of Horticulture, Hebei Agricultural University, Baoding, China
- Key Laboratory of North China Water-saving Irrigation Engineering, Hebei Agricultural University, Baoding, China
| |
Collapse
|
98
|
Elizabeth Mustamu N, Tampubolon K, Alridiwirsah, Basyuni M, AL-Taey DK, Jawad Kadhim AL Janabi H, Mehdizadeh M. Drought stress induced by polyethylene glycol (PEG) in local maize at the early seedling stage. Heliyon 2023; 9:e20209. [PMID: 37809812 PMCID: PMC10559991 DOI: 10.1016/j.heliyon.2023.e20209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Drought stress adversely impacts growth, crop production, reproductive organ development, and yield characteristics in maize. As a drought-sensitive crop, maize (Zea mays L.) shows considerable varietal differences. A study was conducted at the Tissue Culture Laboratory, Department of Biology, Faculty of Mathematics and Natural Sciences, University of North Sumatra, Medan, Indonesia in order to identify drought-tolerant maize varieties. During germination and early seedling growth, 16 local accessions were evaluated for drought tolerance. Based on local climate and soil conditions, these specific accessions were chosen. The varieties were tested against five levels of drought stress imposed by Polyethylene glycol 6000 (PEG-6000) at 10, 20, 30, 40, and 50%. An experiment with three replications was conducted using a completely randomized design. In the study, local maize accessions (BI3, SB5, DS2, and MN3) and the hybrid variety (H) showed the capability of tolerating drought stress. Generally, germination time, germination percent and vigor index, root and shoot length, shoot ratio, and fresh and dry weight were decreased by increasing PEG concentrations (up to 50%). According to ANOVA results, shoot water content was not significantly affected by the PEG, nor was the interaction between the PEG and the accessions. The root water content, however, was significantly affected by PEG, and the interaction between PEG and accessions. Although interactions between accessions with low PEG concentrations improved germination characteristics, the root histology of the accessions varied. According to drought tolerance indexes, five maize accessions are drought-tolerant, including H (0.683), SB5 (0.617), DS2 (0.565), MN3 (0.512), and BI3 (0.504). The drought-tolerant varieties are recommended in regions with low rainfall or low water sources since they are less water-intensive and produce higher yields.
Collapse
Affiliation(s)
- Novilda Elizabeth Mustamu
- Universitas Labuhanbatu, Faculty of Science and Technology, Program Study of Agrotechnology, Rantauprapat 21415, Sumatera Utara, Indonesia
| | - Koko Tampubolon
- Universitas Sumatera Utara, Faculty of Agriculture, Program Study of Agrotechnology, Medan 20155, Indonesia
| | - Alridiwirsah
- Universitas Muhammadiyah Sumatera Utara, Faculty of Agriculture, Program Study of Agrotechnology, Medan 20238, Indonesia
| | - Mohammad Basyuni
- Universitas Sumatera Utara, Faculty of Forestry, Program Study of Forestry, Medan 20155, Indonesia
| | | | | | - Mohammad Mehdizadeh
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
99
|
Errickson W, Huang B. Rhizobacteria-enhanced drought tolerance and post-drought recovery of creeping bentgrass involving differential modulation of leaf and root metabolism. PHYSIOLOGIA PLANTARUM 2023; 175:e14004. [PMID: 37882287 DOI: 10.1111/ppl.14004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/19/2023] [Indexed: 10/27/2023]
Abstract
Rhizobacteria that produce 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase (ACCd) that inhibits ethylene production may mitigate stress damages. The objectives of this study were to examine whether a novel strain of ACCd-producing bacteria, Paraburkholderia aspalathi "WSF23," promotes plant tolerance to drought stress and post-stress recovery and determine changes in metabolic profiles in leaves and roots associated with the positive ACCd-bacteria effects in cool-season perennial grass species. Creeping bentgrass (Agrostis Stolonifera L. cv. "Penncross") plants were inoculated with P. aspalathi "WSF23" and exposed to drought by withholding irrigation for 35 days, followed by re-watering for 15 days in growth chambers. Inoculated plants demonstrated increased turf quality, canopy density, and root growth during drought stress and more rapid re-growth upon re-watering. Metabolomic analysis demonstrated that inoculation with P. aspalathi "WSF 23" increased the content of metabolites in the metabolic pathways related to stress defense, including osmoregulation, cell wall stability, and antioxidant protection in both leaves and roots, as well as nitrogen metabolism in roots of creeping bentgrass exposed to drought stress. The promotion of post-stress recovery by P. aspalathi "WSF 23" was mainly associated with enhanced carbohydrate and pyrimidine metabolism and zeatin biosynthesis pathways in leaves and increased carbohydrates, biosynthesis of DNA and proteins, cellular metabolism, and TCA cycle activity in roots. These results provide insights into the metabolic pathways regulated by "WSF23," with the PGPR conferring improvements in drought stress tolerance and post-drought recovery in a perennial grass species.
Collapse
Affiliation(s)
- William Errickson
- Department of Agriculture and Natural Resources, Rutgers University, New Brunswick, New Jersey, USA
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
100
|
Kou J, Yan D, Qin B, Zhou Q, Liu C, Zhang L. Physiological response mechanism of European birch ( Betula pendula Roth) to PEG-induced drought stress and hydration. FRONTIERS IN PLANT SCIENCE 2023; 14:1226456. [PMID: 37655222 PMCID: PMC10466415 DOI: 10.3389/fpls.2023.1226456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/24/2023] [Indexed: 09/02/2023]
Abstract
Drought stress is also one of the important abiotic factors limiting plant growth and development, and the global temperature is rising year by year, resulting in a dry environment in most terrestrial forests, which will continue to affect the growth, development and reproduction of tree species in forests. European birch(Betula pendula Roth.) native to Europe, introduced to the mountains of eastern Liaoning in 1981 (annual precipitation of about 800mm), European birch relative to downy birch (B. pubescens)has strong adaptability and drought tolerance and cold tolerance, can grow normally in eastern Liaoning, but it is easy to be affected by drought at the seedling stage and cause death, many arid and semi-arid areas have no introduction and practical application of European birch, and there is less research on the drought resistance of European birch. This study used different concentrations of PEG-6000 treatment to simulate drought stress and clarify the changes of various growth physiological parameters and photosynthetic characteristics of European birch seedlings under drought stress, in order to investigate the physiological response mechanism of European birch under drought stress . This study used different concentrations of PEG-6000 treatment to simulate drought stress and clarify the changes of various growth physiological parameters and photosynthetic characteristics of European birch seedlings under drought stress, in order to investigate the physiological response mechanism of European birch under drought stress. The findings demonstrated that stress duration and increasing PEG concentration had a highly significant impact on the growth traits of European birch seedlings (p<0.01); With increasing stress concentration and stress time, antioxidant enzyme activity, membrane lipid peroxidation, and osmoregulatory substance concentrations increased significantly (p<0.01); With increasing stress concentration and duration, photosynthetic parameters and pigments decreased highly significantly (p<0.01); Under different PEG concentration treatments, the anatomical structure of seedling leaves changed more noticeably; there was a significant effect (p <0.05) on the change in mean stomatal length and a highly significant effect (p<0.01) on the change in mean stomatal structure. The study's findings serve as a foundation for the selection and breeding of new drought-tolerant European birch species, as well as a theoretical underpinning for the use of this species in landscaping and the promotion of new drought-tolerant species in China.
Collapse
Affiliation(s)
- Jing Kou
- Key Laboratory of Forest Tree Genetics and Breeding of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Donghan Yan
- Key Laboratory of Forest Tree Genetics and Breeding of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Baiting Qin
- College of Life Engineering, Shenyang Institute of Technology, Shenyang, China
| | - Qiang Zhou
- Liaoning Forestry and Grassland Administration, Shenyang, China
| | - Chunping Liu
- Key Laboratory of Forest Tree Genetics and Breeding of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Lijie Zhang
- Key Laboratory of Forest Tree Genetics and Breeding of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|