51
|
Argentati C, Morena F, Tortorella I, Bazzucchi M, Porcellati S, Emiliani C, Martino S. Insight into Mechanobiology: How Stem Cells Feel Mechanical Forces and Orchestrate Biological Functions. Int J Mol Sci 2019; 20:E5337. [PMID: 31717803 PMCID: PMC6862138 DOI: 10.3390/ijms20215337] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
The cross-talk between stem cells and their microenvironment has been shown to have a direct impact on stem cells' decisions about proliferation, growth, migration, and differentiation. It is well known that stem cells, tissues, organs, and whole organisms change their internal architecture and composition in response to external physical stimuli, thanks to cells' ability to sense mechanical signals and elicit selected biological functions. Likewise, stem cells play an active role in governing the composition and the architecture of their microenvironment. Is now being documented that, thanks to this dynamic relationship, stemness identity and stem cell functions are maintained. In this work, we review the current knowledge in mechanobiology on stem cells. We start with the description of theoretical basis of mechanobiology, continue with the effects of mechanical cues on stem cells, development, pathology, and regenerative medicine, and emphasize the contribution in the field of the development of ex-vivo mechanobiology modelling and computational tools, which allow for evaluating the role of forces on stem cell biology.
Collapse
Affiliation(s)
- Chiara Argentati
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Ilaria Tortorella
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Martina Bazzucchi
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Serena Porcellati
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
- CEMIN, Center of Excellence on Nanostructured Innovative Materials, Via del Giochetto, 06126 Perugia, Italy
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
- CEMIN, Center of Excellence on Nanostructured Innovative Materials, Via del Giochetto, 06126 Perugia, Italy
| |
Collapse
|
52
|
miR-129-5p Regulates the Immunomodulatory Functions of Adipose-Derived Stem Cells via Targeting Stat1 Signaling. Stem Cells Int 2019; 2019:2631024. [PMID: 31772586 PMCID: PMC6854172 DOI: 10.1155/2019/2631024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/03/2019] [Indexed: 01/06/2023] Open
Abstract
Adipose-derived stem cells (ASCs) have become one of the most promising stem cell populations for cell-based therapies in regenerative medicine and for autoimmune disorders owing to their multilineage differentiation and immunomodulatory capacities, respectively. One advantage of ASC-based therapy lies in their immunosuppressive potential. However, how to get ASCs to provide consistent immunosuppression remains unclear. In the current study, we found that miR-129-5p was induced in ASCs treated with inflammatory factors. ASCs with miR-129-5p knockdown exhibited enhanced immunosuppressive capacity, as evidenced by reduced expression of proinflammatory factors, with concurrent increased expression of inducible nitric oxide synthases (iNOS) and nitric oxide (NO) production. These cells also had an increased capacity to inhibit T cell proliferation in vitro. ASCs with miR-129-5p knockdown alleviated inflammatory bowel diseases and promoted tumor growth in vivo. Consistently, ASCs that overexpressed miR-129-5p exhibited reduced iNOS expression. Furthermore, we show that miR-129-5p knockdown in ASCs results in hyperphosphorylation of signal transducer and activator of transcription 1 (Stat1). When fludarabine, an inhibitor of Stat1 activation, was added to ASCs with miR-129-5p knockdown, iNOS mRNA and protein levels were significantly reduced. Collectively, these results reveal a new role for miR-129-5p in regulating the immunomodulatory activities of ASCs by targeting Stat1 activation. These novel insights into the mechanisms of ASC immunoregulation may lead to the consistent production of ASCs with strong immunosuppressive functions and thus better clinical utility of these cells.
Collapse
|
53
|
Lin CH, Lu JH, Hsia K, Lee H, Yao CL, Ma H. The Antithrombotic Function of Sphingosine-1-Phosphate on Human Adipose-Stem-Cell-Recellularized Tissue Engineered Vascular Graft In Vitro. Int J Mol Sci 2019; 20:ijms20205218. [PMID: 31640220 PMCID: PMC6829437 DOI: 10.3390/ijms20205218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 12/26/2022] Open
Abstract
Adipose stem cells (ASCs) show potential in the recellularization of tissue engineerined vascular grafts (TEVGs). However, whether sphingosine-1-phosphate (S1P) could further enhance the adhesion, proliferation, and antithrombosis of ASCs on decellularized vascular scaffolds is unknown. This study investigated the effect of S1P on the recellularization of TEVGs with ASCs. Human ASCs were derived from lipoaspirate. Scaffolds were derived from human umbilical arteries (HUAs) with treatment of 0.1% sodium dodecyl sulfate (SDS) for 48 h (decellularized HUAs; DHUAs). The adhesion, proliferation, and antithrombotic functions (kinetic clotting time and platelet adhesion) of ASCs on DHUAs with S1P or without S1P were evaluated. The histology and DNA examination revealed a preserved structure and the elimination of the nuclear component more than 95% in HUAs after decellularizaiton. Human ASCs (hASCs) showed CD29(+), CD73(+), CD90(+), CD105(+), CD31(-), CD34(-), CD44(-), HLA-DR(-), and CD146(-) while S1P-treated ASCs showed marker shifting to CD31(+). In contrast to human umbilical vein endothelial cells (HUVECs), S1P didn't significantly increase proliferation of ASCs on DHUAs. However, the kinetic clotting test revealed prolonged blood clotting in S1P-treated ASC-recellularized DHUAs. S1P also decreased platelet adhesion on ASC-recellularized DHUAs. In addition, S1P treatment increased the syndecan-1 expression of ASCs. TEVG reconstituted with S1P and ASC-recellularized DHUAs showed an antithrombotic effect in vitro. The preliminary results showed that ASCs could adhere to DHUAs and S1P could increase the antithrombotic effect on ASC-recellularized DHUAs. The antithrombotic effect is related to ASCs exhibiting an endothelial-cell-like function and preventing of syndecan-1 shedding. A future animal study is warranted to prove this novel method.
Collapse
Affiliation(s)
- Chih-Hsun Lin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
- Department of Surgery, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Jen-Her Lu
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
- Department of Surgery, medicine & Pediatrics, School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan.
- Department of Pediatrics, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Kai Hsia
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan.
| | - Hsinyu Lee
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan.
| | - Chao-Ling Yao
- Department of Chemical Engineering and Materials Science, Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Chung-Li, Taoyuan City 32003, Taiwan.
| | - Hsu Ma
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
- Department of Surgery, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- Department of Surgery, medicine & Pediatrics, School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan.
| |
Collapse
|
54
|
Hong P, Yang H, Wu Y, Li K, Tang Z. The functions and clinical application potential of exosomes derived from adipose mesenchymal stem cells: a comprehensive review. Stem Cell Res Ther 2019; 10:242. [PMID: 31391108 PMCID: PMC6686455 DOI: 10.1186/s13287-019-1358-y] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Exosomes are extracellular membranous nanovesicles that mediate local and systemic intercellular communication by transporting proteins or nucleic acids (DNA and RNA) into target cells, thus altering the behaviors of recipient cells. Recent studies have revealed that these vesicles play a critical role in many biological functions, such as cell proliferation, immune regulation, nerve regeneration, and cancer. Adipose-derived stem cells (ADSCs) are now considered a multipotent and abundant tool in the field of cell therapy and regenerative medicine. ADSCs can produce and secrete many exosomes, which inherit multiple functions of cells. Therefore, in this review, we will introduce the characteristics of exosomes derived from ADSCs (ADSC-Exos), describe their functions in different biological processes, summarize the latest research achievements, describe their limitations in cell-free therapy, and provide further insights into their clinical application potential for the treatment of certain diseases.
Collapse
Affiliation(s)
- Pengyu Hong
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410008 Hunan China
| | - Hao Yang
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410008 Hunan China
| | - Yue Wu
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410008 Hunan China
| | - Kun Li
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410008 Hunan China
| | - Zhangui Tang
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410008 Hunan China
| |
Collapse
|
55
|
Fideles SOM, Ortiz AC, Assis AF, Duarte MJ, Oliveira FS, Passos GA, Beloti MM, Rosa AL. Effect of cell source and osteoblast differentiation on gene expression profiles of mesenchymal stem cells derived from bone marrow or adipose tissue. J Cell Biochem 2019; 120:11842-11852. [PMID: 30746760 DOI: 10.1002/jcb.28463] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/24/2019] [Indexed: 01/24/2023]
Abstract
Mesenchymal stem cells (MSCs) have been used in therapies for bone tissue healing. The aim of this study was to investigate the effect of cell source and osteoblast differentiation on gene expression profiles of MSCs from bone marrow (BM-MSCs) or adipose tissue (AT-MSCs) to contribute for selecting a suitable cell population to be used in cell-based strategies for bone regeneration. BM-MSCs and AT-MSCs were cultured in growth medium to keep MSCs characteristics or in osteogenic medium to induce osteoblast differentiation (BM-OBs and AT-OBs). The transcriptomic analysis was performed by microarray covering the entire rat functional genome. It was observed that cells from bone marrow presented higher expression of genes related to osteogenesis, whereas cells from adipose tissue showed a higher expression of genes related to angiogenesis and adipocyte differentiation, irrespective of cell differentiation. By comparing cells from the same source, MSCs from both sources exhibited higher expression of genes involved in angiogenesis, osteoblast differentiation, and bone morphogenesis than osteoblasts. The clustering analysis showed that AT-OBs exhibited a gene expression profile closer to MSCs from both sources than BM-OBs, suggesting that BM-OBs were in a more advanced stage of differentiation. In conclusion, our results suggest that in cell-based therapies for bone regeneration AT-MSCs could be considered for angiogenic purposes, whereas BM-MSCs and osteoblasts differentiated from either source could be better for osteogenic approaches.
Collapse
Affiliation(s)
- Simone Ortiz Moura Fideles
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Adriana Cassia Ortiz
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Amanda Freire Assis
- Department of Genetics, Molecular Immunogenetics Group, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Max Jordan Duarte
- Department of Genetics, Molecular Immunogenetics Group, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fabiola Singaretti Oliveira
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Geraldo Aleixo Passos
- Department of Genetics, Molecular Immunogenetics Group, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Márcio Mateus Beloti
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Adalberto Luiz Rosa
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
56
|
Torres-Torrillas M, Rubio M, Damia E, Cuervo B, Del Romero A, Peláez P, Chicharro D, Miguel L, Sopena JJ. Adipose-Derived Mesenchymal Stem Cells: A Promising Tool in the Treatment of Musculoskeletal Diseases. Int J Mol Sci 2019; 20:ijms20123105. [PMID: 31242644 PMCID: PMC6627452 DOI: 10.3390/ijms20123105] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 02/08/2023] Open
Abstract
Chronic musculoskeletal (MSK) pain is one of the most common medical complaints worldwide and musculoskeletal injuries have an enormous social and economical impact. Current pharmacological and surgical treatments aim to relief pain and restore function; however, unsatiscactory outcomes are commonly reported. In order to find an accurate treatment to such pathologies, over the last years, there has been a significantly increasing interest in cellular therapies, such as adipose-derived mesenchymal stem cells (AMSCs). These cells represent a relatively new strategy in regenerative medicine, with many potential applications, especially regarding MSK disorders, and preclinical and clinical studies have demonstrated their efficacy in muscle, tendon, bone and cartilage regeneration. Nevertheless, several worries about their safety and side effects at long-term remain unsolved. This article aims to review the current state of AMSCs therapy in the treatment of several MSK diseases and their clinical applications in veterinary and human medicine.
Collapse
Affiliation(s)
- Marta Torres-Torrillas
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Monica Rubio
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
- García Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Elena Damia
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Belen Cuervo
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Ayla Del Romero
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Pau Peláez
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Deborah Chicharro
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Laura Miguel
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Joaquin J Sopena
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
- García Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| |
Collapse
|
57
|
Costa-Almeida R, Calejo I, Altieri R, Domingues RMA, Giordano E, Reis RL, Gomes ME. Exploring platelet lysate hydrogel-coated suture threads as biofunctional composite living fibers for cell delivery in tissue repair. ACTA ACUST UNITED AC 2019; 14:034104. [PMID: 30844766 DOI: 10.1088/1748-605x/ab0de6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
To engineer functional tissue substitutes, it is required a multi-component, multi-scale approach that combines both physical, chemical and biological cues. Fiber-based techniques have been explored in the field of tissue engineering to produce structures recapitulating tissue architecture and mechanical properties. In this work, we engineered biofunctional composite living fibers (CLF) as multi-compartment fibers with a mechanically competent core and a hydrogel layer. For this purpose, commercial silk suture threads were coated with a platelet lysate (PL) hydrogel by first embedding the threads in a thrombin solution and then incubating in PL. The fabrication set-up was optimized and the biological performance was studied by encapsulating human adipose-derived stem cells (hASCs). The developed coating process rendered CLF with a homogenous PL hydrogel layer covering suture threads. Encapsulated hASCs were viable up to 14 d in culture and were able to align at the surface of the core fiber and deposit collagen types I and III. In summary, the study shows that PL-hASCs hydrogel coated suture threads represent a simple multi-compartment and multifunctional system, with PL hydrogel offering biofunctionality to guide the biological activities of encapsulated cells in addition to the replication of tissue-level mechanical support provided by the suture threads.
Collapse
Affiliation(s)
- Raquel Costa-Almeida
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | | | | | | | | | | |
Collapse
|
58
|
Si Z, Wang X, Sun C, Kang Y, Xu J, Wang X, Hui Y. Adipose-derived stem cells: Sources, potency, and implications for regenerative therapies. Biomed Pharmacother 2019; 114:108765. [PMID: 30921703 DOI: 10.1016/j.biopha.2019.108765] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 02/06/2023] Open
Abstract
Adipose-derived stem cells (ASCs) are a subset of mesenchymal stem cells (MSCs) that can be obtained easily from adipose tissues and possess many of the same regenerative properties as other MSCs. ASCs easily adhere to plastic culture flasks, expand in vitro, and have the capacity to differentiate into multiple cell lineages, offering the potential to repair, maintain, or enhance various tissues. Since human adipose tissue is ubiquitous and easily obtained in large quantities using a minimally invasive procedure, the use of autologous ASCs is promising for both regenerative medicine and organs damaged by injury and disease, leading to a rapidly increasing field of research. ASCs are effective for the treatment of severe symptoms such as atrophy, fibrosis, retraction, and ulcers induced by radiation therapy. Moreover, ASCs have been shown to be effective for pathological wound healing such as aberrant scar formation. Additionally, ASCs have been shown to be effective in treating severe refractory acute graft-versus-host disease and hematological and immunological disorders such as idiopathic thrombocytopenic purpura and refractory pure red cell aplasia, indicating that ASCs may have immunomodulatory function. Although many experimental procedures have been proposed, standardized harvesting protocols and processing techniques do not yet exist. Therefore, in this review we focus on the current landscape of ASC isolation, identification, location, and differentiation ability, and summarize the recent progress in ASC applications, the latest preclinical and clinical research, and future approaches for the use of ASCs.
Collapse
Affiliation(s)
- Zizhen Si
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Xue Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Changhui Sun
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Yuchun Kang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Jiakun Xu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Xidi Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China; Basic Medical Institute of Heilongjiang Medical Science Academy, PR China; Translational Medicine Center of Northern China, PR China
| | - Yang Hui
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China; Basic Medical Institute of Heilongjiang Medical Science Academy, PR China; Translational Medicine Center of Northern China, PR China.
| |
Collapse
|
59
|
Lucas-Ruiz F, Galindo-Romero C, García-Bernal D, Norte-Muñoz M, Rodríguez-Ramírez KT, Salinas-Navarro M, Millán-Rivero JE, Vidal-Sanz M, Agudo-Barriuso M. Mesenchymal stromal cell therapy for damaged retinal ganglion cells, is gold all that glitters? Neural Regen Res 2019; 14:1851-1857. [PMID: 31290434 PMCID: PMC6676874 DOI: 10.4103/1673-5374.259601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mesenchymal stromal cells are an excellent source of stem cells because they are isolated from adult tissues or perinatal derivatives, avoiding the ethical concerns that encumber embryonic stem cells. In preclinical models, it has been shown that mesenchymal stromal cells have neuroprotective and immunomodulatory properties, both of which are ideal for central nervous system treatment and repair. Here we will review the current literature on mesenchymal stromal cells, focusing on bone marrow mesenchymal stromal cells, adipose-derived mesenchymal stromal cells and mesenchymal stromal cells from the umbilical cord stroma, i.e., Wharton's jelly mesenchymal stromal cells. Finally, we will discuss the use of these cells to alleviate retinal ganglion cell degeneration following axonal trauma.
Collapse
Affiliation(s)
- Fernando Lucas-Ruiz
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca); Department of Talmología, Universidad de Murcia, Murcia, Spain
| | - Caridad Galindo-Romero
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca); Department of Talmología, Universidad de Murcia, Murcia, Spain
| | - David García-Bernal
- Unidad de Terapia Celular y Trasplante Hematopoyético, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca); Department of Medicina Interna, Universidad de Murcia, Murcia, Spain
| | - María Norte-Muñoz
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca); Department of Talmología, Universidad de Murcia, Murcia, Spain
| | - Kristy T Rodríguez-Ramírez
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca); Department of Talmología, Universidad de Murcia, Murcia, Spain
| | - Manuel Salinas-Navarro
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca); Department of Talmología, Universidad de Murcia, Murcia, Spain
| | - Jose E Millán-Rivero
- Unidad de Terapia Celular y Trasplante Hematopoyético, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca); Department of Medicina Interna, Universidad de Murcia, Murcia, Spain
| | - Manuel Vidal-Sanz
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca); Department of Talmología, Universidad de Murcia, Murcia, Spain
| | - Marta Agudo-Barriuso
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca); Department of Talmología, Universidad de Murcia, Murcia, Spain
| |
Collapse
|