51
|
van Butselaar T, Van den Ackerveken G. Salicylic Acid Steers the Growth-Immunity Tradeoff. TRENDS IN PLANT SCIENCE 2020; 25:566-576. [PMID: 32407696 DOI: 10.1016/j.tplants.2020.02.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 05/10/2023]
Abstract
Plants possess an effective immune system to combat most microbial attackers. The activation of immune responses to biotrophic pathogens requires the hormone salicylic acid (SA). Accumulation of SA triggers a plethora of immune responses (like massive transcriptional reprogramming, cell wall strengthening, and production of secondary metabolites and antimicrobial proteins). A tradeoff of strong immune responses is the active suppression of plant growth and development. The tradeoff also works the opposite way, where active growth and developmental processes suppress SA production and immune responses. Here, we review research on the role of SA in the growth-immunity tradeoff and examples of how the tradeoff can be bypassed. This knowledge will be instrumental in resistance breeding of crops with optimal growth and effective immunity.
Collapse
Affiliation(s)
- Tijmen van Butselaar
- Plant-Microbe Interactions, Department of Biology, Utrecht University, 3584CH Utrecht, The Netherlands.
| | - Guido Van den Ackerveken
- Plant-Microbe Interactions, Department of Biology, Utrecht University, 3584CH Utrecht, The Netherlands.
| |
Collapse
|
52
|
Wang X, Zhao Z, Guo N, Wang H, Zhao J, Xing H. Comparative Proteomics Analysis Reveals That Lignin Biosynthesis Contributes to Brassinosteroid-Mediated Response to Phytophthora sojae in Soybeans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5496-5506. [PMID: 32302119 DOI: 10.1021/acs.jafc.0c00848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Brassinosteroids (BRs) are a group of steroid plant hormones regulating normal growth, development, and stress response in plants. However, the mechanisms by which BRs interfere with the resistance of soybean to Phytophthora sojae (P. sojae) remain largely unknown. The present study analyzed the role of BRs in soybean response against P. sojae by comparative proteomic approaches. A total of 52,381 peptides were obtained by trypsin digestion of 9,680 proteins, among which 6,640 proteins were quantified, and 402 proteins were identified as differentially expressed proteins (DEPs). Further analysis revealed that DEPs were significantly involved in the lignin biosynthesis pathway. The expression of the majority of key enzymes involved in lignin biosynthesis was upregulated by BR-pretreatment and P. sojae infection, and lignin accumulation was faster in BR-pretreated soybeans than in untreated controls. Additionally, accumulation of lignin was consistent with these enzyme expressions levels and resistance phenotype. These findings advance the understanding of the role of BRs in the interaction between soybeans and P. sojae.
Collapse
Affiliation(s)
- Xinfang Wang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zisu Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Na Guo
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Haitang Wang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinming Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Han Xing
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
53
|
Vissenberg K, Claeijs N, Balcerowicz D, Schoenaers S. Hormonal regulation of root hair growth and responses to the environment in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2412-2427. [PMID: 31993645 PMCID: PMC7178432 DOI: 10.1093/jxb/eraa048] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/23/2020] [Indexed: 05/04/2023]
Abstract
The main functions of plant roots are water and nutrient uptake, soil anchorage, and interaction with soil-living biota. Root hairs, single cell tubular extensions of root epidermal cells, facilitate or enhance these functions by drastically enlarging the absorptive surface. Root hair development is constantly adapted to changes in the root's surroundings, allowing for optimization of root functionality in heterogeneous soil environments. The underlying molecular pathway is the result of a complex interplay between position-dependent signalling and feedback loops. Phytohormone signalling interconnects this root hair signalling cascade with biotic and abiotic changes in the rhizosphere, enabling dynamic hormone-driven changes in root hair growth, density, length, and morphology. This review critically discusses the influence of the major plant hormones on root hair development, and how changes in rhizosphere properties impact on the latter.
Collapse
Affiliation(s)
- Kris Vissenberg
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
- Plant Biochemistry and Biotechnology Lab, Department of Agriculture, Hellenic Mediterranean University, Stavromenos PC, Heraklion, Crete, Greece
| | - Naomi Claeijs
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Daria Balcerowicz
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Sébastjen Schoenaers
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
54
|
Li Y, Qiu L, Zhang Q, Zhuansun X, Li H, Chen X, Krugman T, Sun Q, Xie C. Exogenous sodium diethyldithiocarbamate, a Jasmonic acid biosynthesis inhibitor, induced resistance to powdery mildew in wheat. PLANT DIRECT 2020; 4:e00212. [PMID: 32285024 PMCID: PMC7146025 DOI: 10.1002/pld3.212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/08/2020] [Accepted: 03/08/2020] [Indexed: 05/22/2023]
Abstract
Jasmonic acid (JA) is an important plant hormone associated with plant-pathogen defense. To study the role of JA in plant-fungal interactions, we applied a JA biosynthesis inhibitor, sodium diethyldithiocarbamate (DIECA), on wheat leaves. Our results showed that application of 10 mM DIECA 0-2 days before inoculation effectively induced resistance to powdery mildew (Bgt) in wheat. Transcriptome analysis identified 364 up-regulated and 68 down-regulated differentially expressed genes (DEGs) in DIECA-treated leaves compared with water-treated leaves. Gene ontology (GO) enrichment analysis of the DEGs revealed important GO terms and pathways, in particular, response to growth hormones, activity of glutathione metabolism (e.g., glutathione transferase activity), oxalate oxidase, and chitinase activity. Gene annotaion revealed that some pathogenesis-related (PR) genes, such as PR1.1, PR1, PR10, PR4a, Chitinase 8, beta-1,3-glucanase, RPM1, RGA2, and HSP70, were induced by DIECA treatment. DIECA reduced JA and auxin (IAA) levels, while increased brassinosteroid, glutathione, and ROS lesions in wheat leaves, which corroborated with the transcriptional changes. Our results suggest that DIECA can be applied to increase plant immunity and reduce the severity of Bgt disease in wheat fields.
Collapse
Affiliation(s)
- Yinghui Li
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for AgrobiotechnologyBeijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
- Institute of EvolutionUniversity of Haifa, Mt. CarmelHaifaIsrael
| | - Lina Qiu
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for AgrobiotechnologyBeijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Qiang Zhang
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for AgrobiotechnologyBeijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Xiangxi Zhuansun
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for AgrobiotechnologyBeijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Huifang Li
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for AgrobiotechnologyBeijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Xin Chen
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for AgrobiotechnologyBeijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Tamar Krugman
- Institute of EvolutionUniversity of Haifa, Mt. CarmelHaifaIsrael
| | - Qixin Sun
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for AgrobiotechnologyBeijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Chaojie Xie
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for AgrobiotechnologyBeijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| |
Collapse
|
55
|
Mendoza G, Sánchez-Tafolla L, Trigos Á. Oxidative foliar photo-necrosis produced by the bacteria Pseudomonas cedrina. ELECTRON J BIOTECHN 2020. [DOI: 10.1016/j.ejbt.2020.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
56
|
Liao K, Peng YJ, Yuan LB, Dai YS, Chen QF, Yu LJ, Bai MY, Zhang WQ, Xie LJ, Xiao S. Brassinosteroids Antagonize Jasmonate-Activated Plant Defense Responses through BRI1-EMS-SUPPRESSOR1 (BES1). PLANT PHYSIOLOGY 2020; 182:1066-1082. [PMID: 31776183 PMCID: PMC6997682 DOI: 10.1104/pp.19.01220] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/14/2019] [Indexed: 05/05/2023]
Abstract
Brassinosteroids (BRs) and jasmonates (JAs) regulate plant growth, development, and defense responses, but how these phytohormones mediate the growth-defense tradeoff is unclear. Here, we identified the Arabidopsis (Arabidopsis thaliana) dwarf at early stages1 (dwe1) mutant, which exhibits enhanced expression of defensin genes PLANT DEFENSIN1.2a (PDF1.2a) and PDF1.2b The dwe1 mutant showed increased resistance to herbivory by beet armyworms (Spodoptera exigua) and infection by botrytis (Botrytis cinerea). DWE1 encodes ROTUNDIFOLIA3, a cytochrome P450 protein essential for BR biosynthesis. The JA-inducible transcription of PDF1.2a and PDF1.2b was significantly reduced in the BRASSINOSTEROID INSENSITIVE1-ETHYL METHANESULFONATE-SUPPRESSOR1 (BES1) gain-of-function mutant bes1- D, which was highly susceptible to S. exigua and B. cinerea BES1 directly targeted the terminator regions of PDF1.2a/PDF1.2b and suppressed their expression. PDF1.2a overexpression diminished the enhanced susceptibility of bes1- D to B. cinerea but did not improve resistance of bes1- D to S. exigua In response to S. exigua herbivory, BES1 inhibited biosynthesis of the JA-induced insect defense-related metabolite indolic glucosinolate by interacting with transcription factors MYB DOMAIN PROTEIN34 (MYB34), MYB51, and MYB122 and suppressing expression of genes encoding CYTOCHROME P450 FAMILY79 SUBFAMILY B POLYPEPTIDE3 (CYP79B3) and UDP-GLUCOSYL TRANSFERASE 74B1 (UGT74B1). Thus, BR contributes to the growth-defense tradeoff by suppressing expression of defensin and glucosinolate biosynthesis genes.
Collapse
Affiliation(s)
- Ke Liao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu-Jun Peng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Li-Bing Yuan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yang-Shuo Dai
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Qin-Fang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Lu-Jun Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ming-Yi Bai
- School of Life Sciences, Shandong University, Jinan 250110, China
| | - Wen-Qing Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Li-Juan Xie
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
57
|
Dhar N, Chen JY, Subbarao KV, Klosterman SJ. Hormone Signaling and Its Interplay With Development and Defense Responses in Verticillium-Plant Interactions. FRONTIERS IN PLANT SCIENCE 2020; 11:584997. [PMID: 33250913 PMCID: PMC7672037 DOI: 10.3389/fpls.2020.584997] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/12/2020] [Indexed: 05/19/2023]
Abstract
Soilborne plant pathogenic species in the fungal genus Verticillium cause destructive Verticillium wilt disease on economically important crops worldwide. Since R gene-mediated resistance is only effective against race 1 of V. dahliae, fortification of plant basal resistance along with cultural practices are essential to combat Verticillium wilts. Plant hormones involved in cell signaling impact defense responses and development, an understanding of which may provide useful solutions incorporating aspects of basal defense. In this review, we examine the current knowledge of the interplay between plant hormones, salicylic acid, jasmonic acid, ethylene, brassinosteroids, cytokinin, gibberellic acid, auxin, and nitric oxide, and the defense responses and signaling pathways that contribute to resistance and susceptibility in Verticillium-host interactions. Though we make connections where possible to non-model systems, the emphasis is placed on Arabidopsis-V. dahliae and V. longisporum interactions since much of the research on this interplay is focused on these systems. An understanding of hormone signaling in Verticillium-host interactions will help to determine the molecular basis of Verticillium wilt progression in the host and potentially provide insight on alternative approaches for disease management.
Collapse
Affiliation(s)
- Nikhilesh Dhar
- Department of Plant Pathology, University of California, Davis, Salinas, CA, United States
- Nikhilesh Dhar,
| | - Jie-Yin Chen
- Department of Plant Pathology, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Krishna V. Subbarao
- Department of Plant Pathology, University of California, Davis, Salinas, CA, United States
| | - Steven J. Klosterman
- United States Department of Agriculture, Agricultural Research Service, Salinas, CA, United States
- *Correspondence: Steven J. Klosterman,
| |
Collapse
|
58
|
Liu JZ, Lam HM. Signal Transduction Pathways in Plants for Resistance against Pathogens. Int J Mol Sci 2019; 20:ijms20092335. [PMID: 31083506 PMCID: PMC6540066 DOI: 10.3390/ijms20092335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/07/2019] [Indexed: 01/02/2023] Open
Affiliation(s)
- Jian-Zhong Liu
- College of Chemistry and Life, Zhejiang Normal University, Jinhua 321004, China.
| | - Hon-Ming Lam
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
59
|
Li Z, Shen J, Liang J. Genome-Wide Identification, Expression Profile, and Alternative Splicing Analysis of the Brassinosteroid-Signaling Kinase (BSK) Family Genes in Arabidopsis. Int J Mol Sci 2019; 20:ijms20051138. [PMID: 30845672 PMCID: PMC6429265 DOI: 10.3390/ijms20051138] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/01/2019] [Accepted: 03/02/2019] [Indexed: 01/05/2023] Open
Abstract
Brassinosteroids (BRs) are steroid hormones essential for different biological processes, ranging from growth to environmental adaptation in plants. The plant brassinosteroid-signaling kinase (BSK) proteins belong to a family of receptor-like cytoplasmic kinases, which have been reported to play an important role in BR signal transduction. However, the knowledge of BSK genes in plants is still quite limited. In the present study, a total of 143 BSK proteins were identified by a genome-wide search in 17 plant species. A phylogenetic analysis showed that the BSK gene originated in embryophytes, with no BSK found in green algae, and these BSK genes were divided into six groups by comparison with orthologs/paralogs. A further study using comparative analyses of gene structure, expression patterns and alternative splicing of BSK genes in Arabidopsis revealed that all BSK proteins shared similar protein structure with some exception and post-translation modifications including sumolyation and ubiquitination. An expression profile analysis showed that most Arabidopsis BSK genes were constitutively expressed in different tissues; of these, several BSK genes were significantly expressed in response to some hormones or abiotic stresses. Furthermore, reverse transcription-polymerase chain reaction (RT-PCR) assays showed that BSK5, BSK7, and BSK9 underwent alternative splicing in specific stress induced and tissue-dependent patterns. Collectively, these results lay the foundation for further functional analyses of these genes in plants.
Collapse
Affiliation(s)
- Zhiyong Li
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
- Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| | - Jinyu Shen
- Co-Innovation Center for Modern Production Technology of Grain Crop, Yangzhou University, Yangzhou 225000, China.
| | - Jiansheng Liang
- Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| |
Collapse
|
60
|
Li N, Han X, Feng D, Yuan D, Huang LJ. Signaling Crosstalk between Salicylic Acid and Ethylene/Jasmonate in Plant Defense: Do We Understand What They Are Whispering? Int J Mol Sci 2019; 20:ijms20030671. [PMID: 30720746 PMCID: PMC6387439 DOI: 10.3390/ijms20030671] [Citation(s) in RCA: 282] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/30/2019] [Accepted: 02/02/2019] [Indexed: 12/11/2022] Open
Abstract
During their lifetime, plants encounter numerous biotic and abiotic stresses with diverse modes of attack. Phytohormones, including salicylic acid (SA), ethylene (ET), jasmonate (JA), abscisic acid (ABA), auxin (AUX), brassinosteroid (BR), gibberellic acid (GA), cytokinin (CK) and the recently identified strigolactones (SLs), orchestrate effective defense responses by activating defense gene expression. Genetic analysis of the model plant Arabidopsis thaliana has advanced our understanding of the function of these hormones. The SA- and ET/JA-mediated signaling pathways were thought to be the backbone of plant immune responses against biotic invaders, whereas ABA, auxin, BR, GA, CK and SL were considered to be involved in the plant immune response through modulating the SA-ET/JA signaling pathways. In general, the SA-mediated defense response plays a central role in local and systemic-acquired resistance (SAR) against biotrophic pathogens, such as Pseudomonas syringae, which colonize between the host cells by producing nutrient-absorbing structures while keeping the host alive. The ET/JA-mediated response contributes to the defense against necrotrophic pathogens, such as Botrytis cinerea, which invade and kill hosts to extract their nutrients. Increasing evidence indicates that the SA- and ET/JA-mediated defense response pathways are mutually antagonistic.
Collapse
Affiliation(s)
- Ning Li
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Xiao Han
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China.
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Dan Feng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China.
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Deyi Yuan
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Li-Jun Huang
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|