51
|
Berliere M, Coche M, Lacroix C, Riggi J, Coyette M, Coulie J, Galant C, Fellah L, Leconte I, Maiter D, Duhoux FP, François A. Effects of Hormones on Breast Development and Breast Cancer Risk in Transgender Women. Cancers (Basel) 2022; 15:cancers15010245. [PMID: 36612241 PMCID: PMC9818520 DOI: 10.3390/cancers15010245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/05/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Transgender women experience gender dysphoria due to a gender assignment at birth that is incongruent with their gender identity. Transgender people undergo different surgical procedures and receive sex steroids hormones to reduce psychological distress and to induce and maintain desired physical changes. These persons on feminizing hormones represent a unique population to study the hormonal effects on breast development, to evaluate the risk of breast cancer and perhaps to better understand the precise role played by different hormonal components. In MTF (male to female) patients, hormonal treatment usually consists of antiandrogens and estrogens. Exogenous hormones induce breast development with the formation of ducts and lobules and an increase in the deposition of fat. A search of the existing literature dedicated to hormone regimens for MTF patients, their impact on breast tissue (incidence and type of breast lesions) and breast cancer risk provided the available information for this review. The evaluation of breast cancer risk is currently complicated by the heterogeneity of administered treatments and a lack of long-term follow-up in the great majority of studies. Large studies with longer follow-up are required to better evaluate the breast cancer risk and to understand the precise mechanisms on breast development of each exogenous hormone.
Collapse
Affiliation(s)
- Martine Berliere
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
- Department of Gynecology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
- Correspondence: (M.B.); (M.C.)
| | - Maximilienne Coche
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
- Department of Gynecology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
- Correspondence: (M.B.); (M.C.)
| | - Camille Lacroix
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
- Department of Gynecology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
| | - Julia Riggi
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
- Department of Gynecology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
| | - Maude Coyette
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
- Department of Plastic Surgery, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
| | - Julien Coulie
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
- Department of Plastic Surgery, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
| | - Christine Galant
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
- Department of Pathology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
| | - Latifa Fellah
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
- Department of Radiology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
| | - Isabelle Leconte
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
- Department of Radiology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
| | - Dominique Maiter
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
- Department of Endocrinology and Nutrition, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
| | - Francois P. Duhoux
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
- Department of Medical Oncology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
| | - Aline François
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
- Department of Pathology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
| |
Collapse
|
52
|
Shams A. Re-evaluation of the myoepithelial cells roles in the breast cancer progression. Cancer Cell Int 2022; 22:403. [PMID: 36510219 PMCID: PMC9746125 DOI: 10.1186/s12935-022-02829-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Over the past decades, luminal epithelial cell lineage has gained considerable attraction as the functionally milk-secreting units and as the most fruitful acreage for breast cancer launching. Recognition of the effective involvement of the myoepithelial cells in mammary gland development and in hampering tumorigenesis has renewed the interest in investigating the biological roles of this second main mammary lineage. The human breast is made up of an extensively branching ductal system intervening by copious lobular units. The ductal system is coated by a chain of luminal epithelial cells (LECs) situated on a layer of myoepithelial cells (MECs) and encompassed by a distinguished basement membrane. Ductal contractility during lactation is a well-known function delivered by the MECs however this is not the only assignment mediated by these cellular populations. It has been well appreciated that the MECs exhibit a natural paracrine power in defeating cancer development and advancement. MECs were found to express numerous proteinase inhibitors, anti-angiogenic factors, and tumour suppressors proteins. Additionally, MECs contributed effectively to maintaining the right luminal cells' polarization and further separating them from the adjacent stroma by making an integrated fence. Indeed, disruption of the MECs layer was reported to facilitate the invasion of the cancer cells to the surrounding stroma. Nonetheless, MECs were also found to exhibit cancer-promoting effects and provoke tumour invasion and dissemination by displaying distinct cancer chemokines. Herein in this review, we aimed to address the roles delivered by MECs in breast cancer progression and decipher the molecular mechanisms regulating proper MECs' physiology, integrity, and terminal differentiation.
Collapse
Affiliation(s)
- Anwar Shams
- grid.412895.30000 0004 0419 5255Department of Pharmacology, College of Medicine, Taif University, P.O. BOX 11099, Taif, 21944 Saudi Arabia
| |
Collapse
|