51
|
Dejbakht M, Akhzari M, Jalili S, Faraji F, Barazesh M. Multiple Sclerosis: New Insights into Molecular Pathogenesis and Novel Platforms for Disease Treatment. Curr Drug Res Rev 2024; 16:175-197. [PMID: 37724675 DOI: 10.2174/2589977516666230915103730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Multiple sclerosis (MS), a chronic inflammatory disorder, affects the central nervous system via myelin degradation. The cause of MS is not fully known, but during recent years, our knowledge has deepened significantly regarding the different aspects of MS, including etiology, molecular pathophysiology, diagnosis and therapeutic options. Myelin basic protein (MBP) is the main myelin protein that accounts for maintaining the stability of the myelin sheath. Recent evidence has revealed that MBP citrullination or deamination, which is catalyzed by Ca2+ dependent peptidyl arginine deiminase (PAD) enzyme leads to the reduction of positive charge, and subsequently proteolytic cleavage of MBP. The overexpression of PAD2 in the brains of MS patients plays an essential role in new epitope formation and progression of the autoimmune disorder. Some drugs have recently entered phase III clinical trials with promising efficacy and will probably obtain approval in the near future. As different therapeutic platforms develop, finding an optimal treatment for each individual patient will be more challenging. AIMS This review provides a comprehensive insight into MS with a focus on its pathogenesis and recent advances in diagnostic methods and its present and upcoming treatment modalities. CONCLUSION MS therapy alters quickly as research findings and therapeutic options surrounding MS expand. McDonald's guidelines have created different criteria for MS diagnosis. In recent years, ever-growing interest in the development of PAD inhibitors has led to the generation of many reversible and irreversible PAD inhibitors against the disease with satisfactory therapeutic outcomes.
Collapse
Affiliation(s)
- Majid Dejbakht
- Department of Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Morteza Akhzari
- School of Nursing, Larestan University of Medical Sciences, Larestan, Iran
| | - Sajad Jalili
- Department of Orthopedics, School of Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Fouziyeh Faraji
- Department of Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Mahdi Barazesh
- Department of Biotechnology, Cellular and Molecular Research Center, School of Paramedical, Gerash University of Medical Sciences, Gerash, Iran
| |
Collapse
|
52
|
Kumar NS, Reddy N, Kumar H, Vemireddy S. Immunomodulatory Plant Natural Products as Therapeutics against Inflammatory Skin Diseases. Curr Top Med Chem 2024; 24:1013-1034. [PMID: 38485678 DOI: 10.2174/0115680266277952240223120435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/30/2023] [Accepted: 01/11/2024] [Indexed: 07/16/2024]
Abstract
Frequently occurring inflammatory skin conditions such as psoriasis, dermatitis, acne, including skin cancer, wounds and other disorders arising out of premature skin aging, deteriorate skin health and adversely impact human life. Even though several synthetic compounds have evolved for treating these skin conditions, natural-product-based therapeutics are gaining popularity with growing evidence of their efficacy and safety for treating skin disorders. Many of these inflammatory skin diseases have underlying disturbances in our immune system and immunomodulatory natural products provide solutions for their effective treatment and aid in understanding the underlying mechanism of such inflammatory skin conditions. Based on this premise, the present review summarizes the possible application of plant-derived immunomodulatory compositions and single molecules for treating inflammatory skin conditions. In vitro, in vivo and mechanistic studies reported the application of selected plant-derived natural products for the treatment of inflammatory skin disorders including, cancer and infections. Several online databases including PubMed, Google Scholar, and Science Direct have been searched for gathering the information covered in this review. Empirical studies demonstrated that most of these natural compounds exhibited therapeutic properties through their immunomodulatory and anti-inflammatory potential supplemented often with anti-microbial, anti-neoplastic, and anti- oxidant activities. Overall, plant-based natural products discussed here are capable of modulating the immune system to minimize or completely suppress the pro-inflammatory markers, scavenge free radicals (ROS), prevent bacteria, fungal, and virus-derived skin infections and often regress skin cancer through the induction of apoptosis. The challenges and opportunities associated with the application of plant-based immunomodulators for skin applications and their safety considerations are also discussed here. The present study indicated that immunomodulatory plant natural products being biologically validated ligands against various biological targets manifested in inflammatory skin diseases, offer an effective, safe and affordable treatment for such disorders affecting skin health. However, further clinical evaluations are needed to substantiate these findings.
Collapse
Affiliation(s)
- Nikhila Sampath Kumar
- Department of Dermatology, Venereology and Leprosy, Kamineni Institute of Medical Sciences (KIMS), Narketpalli, Nalagonda District, Hyderabad, 500 007, Telangana, India
| | - Navaneetha Reddy
- Department of Dermatology, Venereology and Leprosy, Kamineni Institute of Medical Sciences (KIMS), Narketpalli, Nalagonda District, Hyderabad, 500 007, Telangana, India
| | - Halmuthur Kumar
- Vaccine Immunology Laboratory, Indian Institute of Chemical Technology, Hyderabad-500 007, India
| | - Sravanthi Vemireddy
- Vaccine Immunology Laboratory, Indian Institute of Chemical Technology, Hyderabad-500 007, India
| |
Collapse
|
53
|
Feng YL. A New Frontier in Phytotherapy: Harnessing the Therapeutic Power of Medicinal Herb-derived miRNAs. Curr Pharm Des 2024; 30:3009-3017. [PMID: 39162273 DOI: 10.2174/0113816128310724240730072626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 08/21/2024]
Abstract
Medicinal herbs have been utilized in the treatment of various pathologic conditions, including neoplasms, organ fibrosis, and diabetes mellitus. However, the precise pharmacological actions of plant miRNAs in animals remain to be fully elucidated, particularly in terms of their therapeutic efficacy and mechanism of action. In this review, some important miRNAs from foods and medicinal herbs are presented. Plant miRNAs exhibit a range of pharmacological properties, such as anti-cancer, anti-fibrosis, anti-viral, anti-inflammatory effects, and neuromodulation, among others. These results have not only demonstrated a cross-species regulatory effect, but also suggested that the miRNAs from medicinal herbs are their bioactive components. This shows a promising prospect for plant miRNAs to be used as drugs. Here, the pharmacological properties of plant miRNAs and their underlying mechanisms have been highlighted, which can provide new insights for clarifying the therapeutic mechanisms of medicinal herbs and suggest a new way for developing therapeutic drugs.
Collapse
Affiliation(s)
- Ya-Long Feng
- Department of Life Science, Xianyang Normal University, No.43 Wenlin Road, Xianyang 712000, Shaanxi, China
| |
Collapse
|
54
|
Yuan J, Tao Y, Wang M, Huang F, Wu X. Natural compounds as potential therapeutic candidates for multiple sclerosis: Emerging preclinical evidence. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155248. [PMID: 38096716 DOI: 10.1016/j.phymed.2023.155248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Multiple sclerosis is a chronic neurodegenerative disease, with main characteristics of pathological inflammation, neural damage and axonal demyelination. Current mainstream treatments demonstrate more or less side effects, which limit their extensive use. PURPOSE Increasing studies indicate that natural compounds benefit multiple sclerosis without remarkable side effects. Given the needs to explore the potential effects of natural compounds of plant origin on multiple sclerosis and their mechanisms, we review publications involving the role of natural compounds in animal models of multiple sclerosis, excluding controlled trials. STUDY DESIGN AND METHODS Articles were conducted on PubMed and Web of Science databases using the keywords ``multiple sclerosis'' and ``natural compounds'' published from January 1, 2008, to September 1, 2023. RESULTS This review summarized the effects of natural ingredients (flavonoids, terpenoids, polyphenols, alkaloids, glycosides, and others) from three aspects: immune regulation, oxidative stress suppression, and myelin protection and regeneration in multiple sclerosis. CONCLUSION Overall, we concluded 80 studies to show the preclinical evidence that natural compounds may attenuate multiple sclerosis progression via suppressing immune attacks and/or promoting myelin protection or endogenous repair processes. It would pave the roads for the future development of effective therapeutic regiments of multiple sclerosis.
Collapse
Affiliation(s)
- Jinfeng Yuan
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanlin Tao
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mengxue Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
55
|
Rais N, Ved A, Ahmad R, Kumar M. Valorization potential of custard apple seeds. VALORIZATION OF FRUIT SEED WASTE FROM FOOD PROCESSING INDUSTRY 2024:249-284. [DOI: 10.1016/b978-0-443-15535-2.00002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
56
|
Liu Y, Fu Y, Zhu Z, Chen S, Tong L, Wei Q. Glycyrol Prevents the Progression of Psoriasis-like Skin Inflammation via Immunosuppressive and Anti-Inflammatory Actions. Int J Mol Sci 2023; 24:17335. [PMID: 38139164 PMCID: PMC10744267 DOI: 10.3390/ijms242417335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Glycyrol (GC) is one natural active product. Imiquimod-induced psoriasis-like Balb/c mouse models were established. The model mice were intraperitoneally injected with cyclosporine A (CsA) and GC for 8 days followed by a series of biological detections. GC had little toxicity according to the levels of peripheral blood cells, hemoglobin, blood urea nitrogen (BUN), and serum creatinine (CRE), while CsA significantly increased the levels of BUN and CRE. GC decreased the splenic index and reduced the expressions of IL-6, IL-23, and CXCL-3 in the model mice and IL-6, CXCL-1, and CXCL-2 in the inflammatory HaCaT cells. The half inhibition concentration (IC50) of GC on HaCaT cells was 29.72 μmol/L, resulting in improved apoptosis, enhanced expressions of p21, BAX, and BIK, and reduced expressions of BCL-2. GC is an immunosuppressive agent against psoriasis-like symptoms by anti-inflammatory effects, which provides a strategy for the discovery of anti-psoriatic natural products.
Collapse
Affiliation(s)
| | | | | | | | - Li Tong
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.L.); (Y.F.); (Z.Z.); (S.C.)
| | - Qun Wei
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.L.); (Y.F.); (Z.Z.); (S.C.)
| |
Collapse
|
57
|
Javed E, Khan HM, Shahzad Q, Shahzad Y, Yasin H, Ul-Haq Z, Manzoor M, Ghori MU, Alanazi AM, Khan AA. Phytochemical characterization and anti-arthritic potential of Croton bonplandianus leaves extract: In-vivo and in-silico approach. Saudi Pharm J 2023; 31:101860. [PMID: 38192284 PMCID: PMC10772243 DOI: 10.1016/j.jsps.2023.101860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/01/2023] [Indexed: 01/10/2024] Open
Abstract
Croton bonplandianus, a natural source traditionally used for treating various illnesses, including rheumatoid arthritis, was evaluated in this study. The effects of ethanolic extracts (CBEE) and aqueous fractions (CBAF) of C. bonplandianus leaves on arthritis-induced inflammation were studied using an albino rat model of inflammation induced by Freund's complete adjuvant. Eight test groups (n = 5 per group) and one vehicle control were used to evaluate the antiarthritic effects of different doses of CBEE and CBAF (125 mg.kg-1, 250 mg.kg-1, and 500 mg.kg-1) on days 5, 10, 15, and 20 compared to arthritic and vehicle controls. Arthritis severity was assessed using macroscopic arthritis grading, histological analysis, body weights, and paw thickness. CBEE and CBAF were found to reduce the prevalence of arthritis, increase body weight, and decrease paw inflammation compared to the vehicle control group by the 23rd day. In addition, they showed no effect on biochemical parameters, but a significant difference (p < 0.05) in hematological parameters compared to the arthritic control group. The study identified Hentriacontane compound as a potential contributor to the anti-inflammatory effect of C. bonplandianus, as it showed the lowest dock score for IL-1β and IL-6. Palmitoylethanol amide was identified as a potential contributor to the anti-inflammatory effect of TNF-α. Gene expression of IL-6, IL-1β, and TNF-α was down-regulated significantly (p < 0.05) in a dose-dependent manner in all treatment groups compared to the arthritic control group. In conclusion, this study validated the anti-arthritic and anti-inflammatory properties of CBEE and CBAF in a time and dose-dependent manner.
Collapse
Affiliation(s)
- Erum Javed
- Institute of Pharmacy, Faculty of Pharmaceuticals & Allied Health Sciences, Lahore College for Women University, Lahore 54000, Pakistan
| | - Humaira Majeed Khan
- Institute of Pharmacy, Faculty of Pharmaceuticals & Allied Health Sciences, Lahore College for Women University, Lahore 54000, Pakistan
| | - Qumar Shahzad
- Institute of Pharmacy, Faculty of Pharmaceuticals & Allied Health Sciences, Lahore College for Women University, Lahore 54000, Pakistan
| | - Yasser Shahzad
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
- Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, Private Bag X6001, Potchefstroom 2520, South Africa
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Terengganu, Malaysia
| | - Hina Yasin
- Department of pharmacognosy, Dow college of Pharmacy, Dow University of Health Sciences, Ojha campus, Karachi, Pakistan
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Mobina Manzoor
- Punjab University College of Pharmacy, University of the Punjab, Lahore, 54000, Pakistan
| | | | - Amer M. Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
58
|
Hu J, Liu R, Yang Z, Pan X, Li Y, Gong Y, Guo D. Praeruptorin A inhibits the activation of NF-κB pathway and the expressions of inflammatory factors in poly (I:C)-induced RAW264.7 cells. Chem Biol Drug Des 2023; 102:1110-1120. [PMID: 37500542 DOI: 10.1111/cbdd.14310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/03/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Praeruptorin A (PA), a natural coumarin compound, has significant anti-inflammatory effects. In this study, we evaluate the anti-inflammatory effect of PA on RAW 264.7 mouse macrophages induced by Polyinosinic acid-polycytidylic acid (poly (I:C)). RAW 264.7 mouse macrophages induced by poly (I:C) were treated with or without PA, the viability of which was determined to screen working solution of PA. RNA-sequencing was applied to analyze the differentially expressed genes (DEGs). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were carried out. The expressions of interleukin (IL)-1β, heme oxygenase 1 (HMOX1), prostaglandin-endoperoxide synthase 2 (PTGS2), ATP binding cassette subfamily A member 1 (Abca1) and NF-κB-related proteins were measured by enzyme-linked immunosorbent assay (ELISA), quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot. As a result, PA at 1, 2, 3, 4 and 5 μM slightly affected cell viability, while PA at 6 and 7 μM significantly inhibited cell viability. GO and KEGG analysis results revealed that DEGs were mainly enriched in the pathways related to inflammatory signaling. Through further analysis, we obtained five possible targets of PA, and verified that PA inhibited the expressions of IL-1β, HMOX1, PTGS2 and Abca1 as well as the activation of NF-κB pathway in poly (I:C)-induced RAW264.7 cells. To summarize, PA may inhibit expressions of the inflammation-related genes in poly (I:C)-induced RAW264.7 cells, which demonstrates its potential as a drug against virus related diseases.
Collapse
Affiliation(s)
- Jiayan Hu
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Roujun Liu
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Zhouxin Yang
- Laboratory of Critical Care Medicine, Zhejiang Hospital, Hangzhou, China
| | - Xinyu Pan
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Yuanjing Li
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Yanghui Gong
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Dongyang Guo
- School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Hangzhou City University, Hangzhou, China
| |
Collapse
|
59
|
da Silva FC, Brandão DC, Ferreira EA, Siqueira RP, Ferreira HSV, Da Silva Filho AA, Araújo TG. Tailoring Potential Natural Compounds for the Treatment of Luminal Breast Cancer. Pharmaceuticals (Basel) 2023; 16:1466. [PMID: 37895937 PMCID: PMC10610388 DOI: 10.3390/ph16101466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/24/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Breast cancer (BC) is the most diagnosed cancer worldwide, mainly affecting the epithelial cells from the mammary glands. When it expresses the estrogen receptor (ER), the tumor is called luminal BC, which is eligible for endocrine therapy with hormone signaling blockade. Hormone therapy is essential for the survival of patients, but therapeutic resistance has been shown to be worrying, significantly compromising the prognosis. In this context, the need to explore new compounds emerges, especially compounds of plant origin, since they are biologically active and particularly promising. Natural products are being continuously screened for treating cancer due to their chemical diversity, reduced toxicity, lower side effects, and low price. This review summarizes natural compounds for the treatment of luminal BC, emphasizing the activities of these compounds in ER-positive cells. Moreover, their potential as an alternative to endocrine resistance is explored, opening new opportunities for the design of optimized therapies.
Collapse
Affiliation(s)
- Fernanda Cardoso da Silva
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Douglas Cardoso Brandão
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Everton Allan Ferreira
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (E.A.F.); (A.A.D.S.F.)
| | - Raoni Pais Siqueira
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Helen Soares Valença Ferreira
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Ademar Alves Da Silva Filho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (E.A.F.); (A.A.D.S.F.)
| | - Thaise Gonçalves Araújo
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia 38405-302, MG, Brazil
| |
Collapse
|
60
|
Xiang Y, Zhang M, Jiang D, Su Q, Shi J. The role of inflammation in autoimmune disease: a therapeutic target. Front Immunol 2023; 14:1267091. [PMID: 37859999 PMCID: PMC10584158 DOI: 10.3389/fimmu.2023.1267091] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023] Open
Abstract
Autoimmune diseases (AIDs) are immune disorders whose incidence and prevalence are increasing year by year. AIDs are produced by the immune system's misidentification of self-antigens, seemingly caused by excessive immune function, but in fact they are the result of reduced accuracy due to the decline in immune system function, which cannot clearly identify foreign invaders and self-antigens, thus issuing false attacks, and eventually leading to disease. The occurrence of AIDs is often accompanied by the emergence of inflammation, and inflammatory mediators (inflammatory factors, inflammasomes) play an important role in the pathogenesis of AIDs, which mediate the immune process by affecting innate cells (such as macrophages) and adaptive cells (such as T and B cells), and ultimately promote the occurrence of autoimmune responses, so targeting inflammatory mediators/pathways is one of emerging the treatment strategies of AIDs. This review will briefly describe the role of inflammation in the pathogenesis of different AIDs, and give a rough introduction to inhibitors targeting inflammatory factors, hoping to have reference significance for subsequent treatment options for AIDs.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingxue Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Die Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Qian Su
- Department of Health Management & Institute of Health Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
61
|
Zhao M, Wu F, Tang Z, Yang X, Liu Y, Wang F, Chen B. Anti-inflammatory and antioxidant activity of ursolic acid: a systematic review and meta-analysis. Front Pharmacol 2023; 14:1256946. [PMID: 37841938 PMCID: PMC10568483 DOI: 10.3389/fphar.2023.1256946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction: There is currently evidence suggesting that ursolic acid may exert a favorable influence on both anti-inflammatory and antioxidant impact. Nevertheless, the anti-inflammatory and antioxidant activities of ursolic acid have not been systematically evaluated. Consequently, this study aims to conduct a systematic review and meta-analysis regarding the impact of ursolic acid on markers of inflammatory and antioxidant activity in both animal models and in vitro systems. Methods: The search encompassed databases such as PubMed, Web of Science, Google Scholar, and ScienceDirect, up until May 2023. All eligible articles in English were included in the analysis. Standard mean difference (SMD) was pooled using a random-effects model, and the included studies underwent a thorough assessment for potential bias. Results: The final review comprised 31 articles. In disease-model related studies, animal experiments have consistently shown that ursolic acid significantly reduced the levels of inflammatory parameters IL-1β, IL-6 and TNF-α in mouse tissues. In vitro studies have similarly showed that ursolic acid significantly reduced the levels of inflammatory parameters IL-1β, IL-6, IL-8 and TNF-α. Our results showed that ursolic acid could significantly elevate SOD and GSH levels, while significantly reducing MDA levels in animal tissues. The results of in vitro studies shown that ursolic acid significantly increased the level of GSH and decreased the level of MDA. Discussion: Findings from both animal and in vitro studies suggest that ursolic acid decreases inflammatory cytokine levels, elevates antioxidant enzyme levels, and reduces oxidative stress levels (graphical abstract). This meta-analysis furnishes compelling evidence for the anti-inflammatory and antioxidant properties of ursolic acid.
Collapse
Affiliation(s)
- Man Zhao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Fengyang Wu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Zhaohong Tang
- Hebei Research Institute of Microbiology Co., Ltd., Baoding, China
| | - Xinyu Yang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yanhua Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Fengxia Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Baojiang Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
62
|
Ali RA, Minarchick VC, Zahavi M, Rysenga CE, Sturm KA, Hoy CK, Sarosh C, Knight JS, Demoruelle MK. Ginger intake suppresses neutrophil extracellular trap formation in autoimmune mice and healthy humans. JCI Insight 2023; 8:e172011. [PMID: 37737262 PMCID: PMC10561719 DOI: 10.1172/jci.insight.172011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/15/2023] [Indexed: 09/23/2023] Open
Abstract
We previously reported that treatment of mice with 6-gingerol, the most abundant phytochemical in ginger root, leads to phosphodiesterase inhibition that counteracts neutrophil hyperactivity in models of antiphospholipid syndrome (APS) and lupus. Here, we explored the extent to which oral intake of a whole-ginger extract would similarly impact neutrophils in both autoimmune mice and healthy humans. In vitro, a solubilized ginger extract was able to attenuate neutrophil extracellular trap formation (NETosis) by human neutrophils through a mechanism that was dependent upon the cyclic AMP-dependent kinase, protein kinase A. When mice with features of either APS or lupus were administered a ginger extract orally, they demonstrated reduced circulating NETs, as well as the tempering of other disease outcomes, such as large-vein thrombosis (APS) and autoantibody production (lupus). In a pilot clinical trial, which was validated in a second cohort, daily intake of a ginger supplement for 7 days by healthy volunteers boosted neutrophil cAMP, inhibited NETosis in response to disease-relevant stimuli, and reduced circulating plasma NET levels. In summary, this work demonstrates that ginger intake restrains neutrophil hyperactivity in autoimmune mouse models and that ginger consumption by healthy individuals makes their neutrophils more resistant to NETosis.
Collapse
Affiliation(s)
- Ramadan A. Ali
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Valerie C. Minarchick
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Miela Zahavi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Christine E. Rysenga
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kristin A. Sturm
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Claire K. Hoy
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Cyrus Sarosh
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason S. Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - M. Kristen Demoruelle
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
63
|
Chrastina M, Dráfi F, Pružinská K, Poništ S, Kamga KS, Khademnematolahi S, Bilka F, Novák P, Pašková Ľ, Bauerová K. Crocus sativus L. Extract (Saffron) Effectively Reduces Arthritic and Inflammatory Parameters in Monotherapy and in Combination with Methotrexate in Adjuvant Arthritis. Nutrients 2023; 15:4108. [PMID: 37836391 PMCID: PMC10574733 DOI: 10.3390/nu15194108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Rheumatoid arthritis (RA), an autoimmune disease, is characterized by inflammation that affects not only the liver but also other organs and the musculoskeletal system. The standard therapy for RA is methotrexate (MTX), which has safety limitations. The extract from Crocus sativus L. (saffron-SF) is also known for its anti-inflammatory effects. Therefore, we decided to investigate the potential benefit of SF in monotherapy via two doses (SF1-25 mg/kg of b.w.; SF2-50 mg/kg of b.w.) and in combination with MTX (0.3 mg/kg of b.w., twice a week) using adjuvant arthritis in rats. To evaluate these therapeutic settings, we used biometric, immunological, and biochemical parameters, as well as the relative gene expression of the mRNA in the liver. Our results showed a statistically significant increase in the experimental animals' body weight and the arthritic score (AS) on day 14 for monotherapy with SF1 and SF2. The change of hind paw volume (CHPV) was significant only for SF2 monotherapy on the 14th day of the experiment. A combination of SF1 and SF2 with MTX significantly modulated all the biometric parameters during the experimental period. Additionally, AS and CHPV improved considerably compared to MTX monotherapy on day 21. Furthermore, all monotherapies and combination therapies were significant for the biochemical parameter γ-glutamyl transferase (GGT) in the joint. GGT activity in the spleen was less pronounced; only MTX in combination with SF1 significantly modified this parameter. The higher dose of SF monotherapy (SF2) was similarly significant with respect to immunological parameters, such as plasmatic IL-17A, IL-1β, and MMP-9 on day 21. The combination of both doses of SF with MTX significantly improved these immunological parameters, except for C-reactive protein (CRP), which was influenced only by the higher dose of SF2 in combination with MTX in plasma at the end of the experiment. A different effect was found for the relative expression of CD36 mRNA, where only SF1 significantly decreased gene expression in the liver. However, the relative gene mRNA expression of IL-1β in the liver was significantly reduced by the SF monotherapies and the combination of both SF doses with MTX. Our findings showed SF's partial antiarthritic and anti-inflammatory potential in monotherapy, but the effect was stronger in combination with MTX.
Collapse
Affiliation(s)
- Martin Chrastina
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia; (M.C.); (K.P.); (S.P.); (K.S.K.); (S.K.)
- Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Malá Hora 10701/4A, 036 01 Martin, Slovakia
| | - František Dráfi
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia; (M.C.); (K.P.); (S.P.); (K.S.K.); (S.K.)
| | - Katarína Pružinská
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia; (M.C.); (K.P.); (S.P.); (K.S.K.); (S.K.)
- Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Malá Hora 10701/4A, 036 01 Martin, Slovakia
| | - Silvester Poništ
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia; (M.C.); (K.P.); (S.P.); (K.S.K.); (S.K.)
| | - Kevine Silihe Kamga
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia; (M.C.); (K.P.); (S.P.); (K.S.K.); (S.K.)
- Faculty of Science, University of Yaoundé 1, Yaoundé P.O. Box 812, Cameroon
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé P.O. Box 1364, Cameroon
| | - Sasan Khademnematolahi
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia; (M.C.); (K.P.); (S.P.); (K.S.K.); (S.K.)
- Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - František Bilka
- Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (F.B.); (P.N.); (Ľ.P.)
| | - Peter Novák
- Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (F.B.); (P.N.); (Ľ.P.)
| | - Ľudmila Pašková
- Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (F.B.); (P.N.); (Ľ.P.)
| | - Katarína Bauerová
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia; (M.C.); (K.P.); (S.P.); (K.S.K.); (S.K.)
| |
Collapse
|
64
|
Darwish SF, Elbadry AMM, Elbokhomy AS, Salama GA, Salama RM. The dual face of microglia (M1/M2) as a potential target in the protective effect of nutraceuticals against neurodegenerative diseases. FRONTIERS IN AGING 2023; 4:1231706. [PMID: 37744008 PMCID: PMC10513083 DOI: 10.3389/fragi.2023.1231706] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023]
Abstract
The pathophysiology of different neurodegenerative illnesses is significantly influenced by the polarization regulation of microglia and macrophages. Traditional classifications of macrophage phenotypes include the pro-inflammatory M1 and the anti-inflammatory M2 phenotypes. Numerous studies demonstrated dynamic non-coding RNA modifications, which are catalyzed by microglia-induced neuroinflammation. Different nutraceuticals focus on the polarization of M1/M2 phenotypes of microglia and macrophages, offering a potent defense against neurodegeneration. Caeminaxin A, curcumin, aromatic-turmerone, myricetin, aurantiamide, 3,6'-disinapoylsucrose, and resveratrol reduced M1 microglial inflammatory markers while increased M2 indicators in Alzheimer's disease. Amyloid beta-induced microglial M1 activation was suppressed by andrographolide, sulforaphane, triptolide, xanthoceraside, piperlongumine, and novel plant extracts which also prevented microglia-mediated necroptosis and apoptosis. Asarone, galangin, baicalein, and a-mangostin reduced oxidative stress and pro-inflammatory cytokines, such as interleukin (IL)-1, IL-6, and tumor necrosis factor-alpha in M1-activated microglia in Parkinson's disease. Additionally, myrcene, icariin, and tenuigenin prevented the nod-like receptor family pyrin domain-containing 3 inflammasome and microglial neurotoxicity, while a-cyperone, citronellol, nobiletin, and taurine prevented NADPH oxidase 2 and nuclear factor kappa B activation. Furthermore, other nutraceuticals like plantamajoside, swertiamarin, urolithin A, kurarinone, Daphne genkwa flower, and Boswellia serrata extracts showed promising neuroprotection in treating Parkinson's disease. In Huntington's disease, elderberry, curcumin, iresine celosia, Schisandra chinensis, gintonin, and pomiferin showed promising results against microglial activation and improved patient symptoms. Meanwhile, linolenic acid, resveratrol, Huperzia serrata, icariin, and baicalein protected against activated macrophages and microglia in experimental autoimmune encephalomyelitis and multiple sclerosis. Additionally, emodin, esters of gallic and rosmarinic acids, Agathisflavone, and sinomenine offered promising multiple sclerosis treatments. This review highlights the therapeutic potential of using nutraceuticals to treat neurodegenerative diseases involving microglial-related pathways.
Collapse
Affiliation(s)
- Samar F. Darwish
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| | - Abdullah M. M. Elbadry
- Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El-Sherouk City, Egypt
| | | | - Ghidaa A. Salama
- Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| | - Rania M. Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| |
Collapse
|
65
|
Rani A, Saini V, Patra P, Prashar T, Pandey RK, Mishra A, Jha HC. Epigallocatechin Gallate: A Multifaceted Molecule for Neurological Disorders and Neurotropic Viral Infections. ACS Chem Neurosci 2023; 14:2968-2980. [PMID: 37590965 DOI: 10.1021/acschemneuro.3c00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
Abstract
Epigallocatechin-3-gallate (EGCG), a polyphenolic moiety found in green tea extracts, exhibits pleiotropic bioactivities to combat many diseases including neurological ailments. These neurological diseases include Alzheimer's disease, multiple sclerosis, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. For instance, in the case of Alzheimer's disease, the formation of a β-sheet in the region of the 10th-21st amino acids was significantly reduced in EGCG-induced oligomeric samples of Aβ40. Its interference induces the formation of Aβ structures with an increase in intercenter-of-mass distances, reduction in interchain/intrachain contacts, reduction in β-sheet propensity, and increase in α-helix. Besides, numerous neurotropic viruses are known to instigate or aggravate neurological ailments. It exerts an effect on the oxidative damage caused in neurodegenerative disorders by acting on GSK3-β, PI3K/Akt, and downstream signaling pathways via caspase-3 and cytochrome-c. EGCG also diminishes these viral-mediated effects, such as EGCG delayed HSV-1 infection by blocking the entry for virions, inhibitory effects on NS3/4A protease or NS5B polymerase of HCV and potent inhibitor of ZIKV NS2B-NS3pro/NS3 serine protease (NS3-SP). It showed a reduction in the neurotoxic properties of HIV-gp120 and Tat in the presence of IFN-γ. EGCG also involves numerous viral-mediated inflammatory cascades, such as JAK/STAT. Nonetheless, it also inhibits the Epstein-Barr virus replication protein (Zta and Rta). Moreover, it also impedes certain viruses (influenza A and B strains) by hijacking the endosomal and lysosomal compartments. Therefore, the current article aims to describe the importance of EGCG in numerous neurological diseases and its inhibitory effect against neurotropic viruses.
Collapse
Affiliation(s)
- Annu Rani
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, 453552, Indore India
| | - Vaishali Saini
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, 453552, Indore India
| | - Priyanka Patra
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, 453552, Indore India
| | - Tanish Prashar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu India
| | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, 342030, Jodhpur India
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, 453552, Indore India
| |
Collapse
|
66
|
Faustino C, Pinheiro L, Duarte N. Triterpenes as Potential Drug Candidates for Rheumatoid Arthritis Treatment. Life (Basel) 2023; 13:1514. [PMID: 37511889 PMCID: PMC10381804 DOI: 10.3390/life13071514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease characterized by joint inflammation, swelling and pain. Although RA mainly affects the joints, the disease can also have systemic implications. The presence of autoantibodies, such as anti-cyclic citrullinated peptide antibodies and rheumatoid factors, is a hallmark of the disease. RA is a significant cause of disability worldwide associated with advancing age, genetic predisposition, infectious agents, obesity and smoking, among other risk factors. Currently, RA treatment depends on anti-inflammatory and disease-modifying anti-rheumatic drugs intended to reduce joint inflammation and chronic pain, preventing or slowing down joint damage and disease progression. However, these drugs are associated with severe side effects upon long-term use, including immunosuppression and development of opportunistic infections. Natural products, namely triterpenes with anti-inflammatory properties, have shown relevant anti-arthritic activity in several animal models of RA without undesirable side effects. Therefore, this review covers the recent studies (2017-2022) on triterpenes as safe and promising drug candidates for the treatment of RA. These bioactive compounds were able to produce a reduction in several RA activity indices and immunological markers. Celastrol, betulinic acid, nimbolide and some ginsenosides stand out as the most relevant drug candidates for RA treatment.
Collapse
Affiliation(s)
- Célia Faustino
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Lídia Pinheiro
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Noélia Duarte
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
67
|
Schnur S, Hans F, Dehne A, Osti J, Schneemann MO, Schneider M, Hittinger M. The Potential of Epigallocatechin-3-gallate (EGCG) as Complementary Medicine for the Treatment of Inflammatory Bowel Disease. Pharmaceuticals (Basel) 2023; 16:748. [PMID: 37242530 PMCID: PMC10224516 DOI: 10.3390/ph16050748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Complementary and alternative medicine has the potential to enrich conventional therapy to improve the treatment of various diseases. Patients that suffer from inflammatory bowel disease, which requires a constant need for medication, have to deal with the adverse effects of repeated application. Natural products such as Epigallocatechin-3-gallate (EGCG) possess the potential to improve symptoms of inflammatory diseases. We investigated the efficacy of EGCG on an inflamed co-culture model simulating IBD and compared it to the efficacies of four commonly applied active pharmaceutical ingredients. EGCG (200 µg/mL) strongly stabilized the TEER value of the inflamed epithelial barrier to 165.7 ± 4.6% after 4 h. Moreover, the full barrier integrity was maintained even after 48 h. This corresponds to the immunosuppressant 6-Mercaptopurin and the biological drug Infliximab. The EGCG treatment significantly decreased the release of the pro-inflammatory cytokines IL-6 (to 0%) and IL-8 (to 14.2%), similar to the effect of the corticosteroid Prednisolone. Therefore, EGCG has a high potential to be deployed as complementary medicine in IBD. In future studies, the improvement of EGCG stability is a key factor in increasing the bioavailability in vivo and fully harnessing the health-improving effects of EGCG.
Collapse
Affiliation(s)
- Sabrina Schnur
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, 66123 Saarbrücken, Germany; (S.S.); (M.S.)
- Department of Drug Delivery, PharmBioTec Research and Development GmbH, 66123 Saarbrücken, Germany
| | - Fabian Hans
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, 66123 Saarbrücken, Germany; (S.S.); (M.S.)
- Department of Drug Delivery, PharmBioTec Research and Development GmbH, 66123 Saarbrücken, Germany
| | - Annika Dehne
- Department of Drug Delivery, PharmBioTec Research and Development GmbH, 66123 Saarbrücken, Germany
| | - Janina Osti
- Department of Drug Delivery, PharmBioTec Research and Development GmbH, 66123 Saarbrücken, Germany
| | - Malte-Ole Schneemann
- Department of Drug Delivery, PharmBioTec Research and Development GmbH, 66123 Saarbrücken, Germany
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, 66123 Saarbrücken, Germany; (S.S.); (M.S.)
| | - Marius Hittinger
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, 66123 Saarbrücken, Germany; (S.S.); (M.S.)
- Department of Drug Delivery, PharmBioTec Research and Development GmbH, 66123 Saarbrücken, Germany
- 3RProducts Marius Hittinger, 6640 Blieskastel, Germany
| |
Collapse
|