51
|
Pérez-Lloret S, Cardinali DP. Melatonin as a Chronobiotic and Cytoprotective Agent in Parkinson's Disease. Front Pharmacol 2021; 12:650597. [PMID: 33935759 PMCID: PMC8082390 DOI: 10.3389/fphar.2021.650597] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/10/2021] [Indexed: 12/16/2022] Open
Abstract
This article discusses the role that melatonin may have in the prevention and treatment of Parkinson’s disease (PD). In parkinsonian patients circulating melatonin levels are consistently disrupted and the potential therapeutic value of melatonin on sleep disorders in PD was examined in a limited number of clinical studies using 2–5 mg/day melatonin at bedtime. The low levels of melatonin MT1 and MT2 receptor density in substantia nigra and amygdala found in PD patients supported the hypothesis that the altered sleep/wake cycle seen in PD could be due to a disrupted melatonergic system. Motor symptomatology is seen in PD patients when about 75% of the dopaminergic cells in the substantia nigra pars compacta region degenerate. Nevertheless, symptoms like rapid eye movement (REM) sleep behavior disorder (RBD), hyposmia or depression may precede the onset of motor symptoms in PD for years and are index of worse prognosis. Indeed, RBD patients may evolve to an α-synucleinopathy within 10 years of RBD onset. Daily bedtime administration of 3–12 mg of melatonin has been demonstrated effective in RDB treatment and may halt neurodegeneration to PD. In studies on animal models of PD melatonin was effective to curtail symptomatology in doses that allometrically projected to humans were in the 40–100 mg/day range, rarely employed clinically. Therefore, double-blind, placebo-controlled clinical studies are urgently needed in this respect.
Collapse
Affiliation(s)
- Santiago Pérez-Lloret
- Universidad Abierta Interamericana-Centro de Altos Estudios en Ciencias Humanas y de La Salud, Consejo Nacional de Investigaciones Científicas y Técnicas, UAI-CAECIHS. CONICET, Buenos Aires, Argentina.,Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Daniel P Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| |
Collapse
|
52
|
Fusco G, Gianni S. Function, Regulation, and Dysfunction of Intrinsically Disordered Proteins. Life (Basel) 2021; 11:life11020140. [PMID: 33673214 PMCID: PMC7917908 DOI: 10.3390/life11020140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/07/2021] [Indexed: 12/16/2022] Open
Abstract
The discovery that a considerable fraction of the eukaryotic proteins lacks a well-defined three-dimensional structure in their native state has revolutionised our general understanding of proteins [...].
Collapse
Affiliation(s)
- Giuliana Fusco
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- Correspondence: (G.F.); (S.G.)
| | - Stefano Gianni
- Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli,” Sapienza Università di Roma, 00185 Rome, Italy
- Correspondence: (G.F.); (S.G.)
| |
Collapse
|
53
|
Devi S, Kim JJ, Singh AP, Kumar S, Dubey AK, Singh SK, Singh RS, Kumar V. Proteotoxicity: A Fatal Consequence of Environmental Pollutants-Induced Impairments in Protein Clearance Machinery. J Pers Med 2021; 11:69. [PMID: 33503824 PMCID: PMC7912547 DOI: 10.3390/jpm11020069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023] Open
Abstract
A tightly regulated protein quality control (PQC) system maintains a healthy balance between correctly folded and misfolded protein species. This PQC system work with the help of a complex network comprised of molecular chaperones and proteostasis. Any intruder, especially environmental pollutants, disrupt the PQC network and lead to PQCs disruption, thus generating damaged and infectious protein. These misfolded/unfolded proteins are linked to several diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and cataracts. Numerous studies on proteins misfolding and disruption of PQCs by environmental pollutants highlight the necessity of detailed knowledge. This review represents the PQCs network and environmental pollutants' impact on the PQC network, especially through the protein clearance system.
Collapse
Affiliation(s)
- Shweta Devi
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, India;
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea;
| | - Anand Prakash Singh
- Division of Cardiovascular Disease, The University of Alabama at Birmingham (UAB), 1720 2nd Ave South, Birmingham, AL 35294-1913, USA;
| | - Surendra Kumar
- Cytogenetics Lab, Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India;
| | | | | | - Ravi Shankar Singh
- Department of Biochemistry, Microbiology & Immunology, University of Saskatchewan, Room 4D40, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea;
| |
Collapse
|
54
|
Chen S, Chen Y, Zhang Y, Kuang X, Liu Y, Guo M, Ma L, Zhang D, Li Q. Iron Metabolism and Ferroptosis in Epilepsy. Front Neurosci 2020; 14:601193. [PMID: 33424539 PMCID: PMC7793792 DOI: 10.3389/fnins.2020.601193] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Epilepsy is a disease characterized by recurrent, episodic, and transient central nervous system (CNS) dysfunction resulting from an excessive synchronous discharge of brain neurons. It is characterized by diverse etiology, complex pathogenesis, and difficult treatment. In addition, most epileptic patients exhibit social cognitive impairment and psychological impairment. Iron is an essential trace element for human growth and development and is also involved in a variety of redox reactions in organisms. However, abnormal iron metabolism is associated with several neurological disorders, including hemorrhagic post-stroke epilepsy and post-traumatic epilepsy (PTE). Moreover, ferroptosis is also considered a new form of regulation of cell death, which is attributed to severe lipid peroxidation caused by the production of reactive oxygen species (ROS) and iron overload found in various neurological diseases, including epilepsy. Therefore, this review summarizes the study on iron metabolism and ferroptosis in epilepsy, in order to elucidate the correlation between iron and epilepsy. It also provides a novel method for the treatment, prevention, and research of epilepsy, to control epileptic seizures and reduce nerve injury after the epileptic seizure.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Yongmin Chen
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Yukang Zhang
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Xi Kuang
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Hainan Health Vocational College, Haikou, China
| | - Yan Liu
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Department of Rehabilitation, Hainan Cancer Hospital, Haikou, China
| | - Meiwen Guo
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Lin Ma
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Daqi Zhang
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Qifu Li
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| |
Collapse
|
55
|
Ikram M, Park TJ, Ali T, Kim MO. Antioxidant and Neuroprotective Effects of Caffeine against Alzheimer's and Parkinson's Disease: Insight into the Role of Nrf-2 and A2AR Signaling. Antioxidants (Basel) 2020; 9:antiox9090902. [PMID: 32971922 PMCID: PMC7554764 DOI: 10.3390/antiox9090902] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022] Open
Abstract
This paper reviews the results of studies conducted on the role of caffeine in the management of different neurological disorders, such as Parkinson's disease (PD) and Alzheimer's disease (AD). To highlight the potential role of caffeine in managing different neurodegenerative diseases, we identified studies by searching PubMed, Web of Science, and Google Scholar by scrutinizing the lists of pertinent publications. According to the collected overall findings, caffeine may reduce the elevated oxidative stress; inhibit the activation of adenosine A2A, thereby regulating the accumulation of Aβ; reduce the hyperphosphorylation of tau; and reduce the accumulation of misfolded proteins, such as α-synuclein, in Alzheimer's and Parkinson's diseases. The studies have suggested that caffeine has promising protective effects against different neurodegenerative diseases and that these effects may be used to tackle the neurological diseases and/or their consequences. Here, we review the ongoing research on the role of caffeine in the management of different neurodegenerative disorders, focusing on AD and PD. The current findings suggest that caffeine produces potent antioxidant, inflammatory, and anti-apoptotic effects against different models of neurodegenerative disease, including AD, PD, and other neurodegenerative disorders. Caffeine has shown strong antagonistic effects against the adenosine A2A receptor, which is a microglial receptor, and strong agonistic effects against nuclear-related factor-2 (Nrf-2), thereby regulating the cellular homeostasis at the brain by reducing oxidative stress, neuroinflammation, regulating the accumulation of α-synuclein in PD and tau hyperphosphorylation, amyloidogenesis, and synaptic deficits in AD, which are the cardinal features of these neurodegenerative diseases.
Collapse
Affiliation(s)
- Muhammad Ikram
- Division of Life Science and Applied Life Science (BK21 plus), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.I.); (T.A.)
| | - Tae Ju Park
- Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow 0747 657 5394, UK;
| | - Tahir Ali
- Division of Life Science and Applied Life Science (BK21 plus), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.I.); (T.A.)
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 plus), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.I.); (T.A.)
- Correspondence: ; Tel.: +82-55-772-1345; Fax: +82-55-772-2656
| |
Collapse
|
56
|
Mitochondrial Calcium Deregulation in the Mechanism of Beta-Amyloid and Tau Pathology. Cells 2020; 9:cells9092135. [PMID: 32967303 PMCID: PMC7564294 DOI: 10.3390/cells9092135] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 02/06/2023] Open
Abstract
Aggregation and deposition of β-amyloid and/or tau protein are the key neuropathological features in neurodegenerative disorders such as Alzheimer's disease (AD) and other tauopathies including frontotemporal dementia (FTD). The interaction between oxidative stress, mitochondrial dysfunction and the impairment of calcium ions (Ca2+) homeostasis induced by misfolded tau and β-amyloid plays an important role in the progressive neuronal loss occurring in specific areas of the brain. In addition to the control of bioenergetics and ROS production, mitochondria are fine regulators of the cytosolic Ca2+ homeostasis that induce vital signalling mechanisms in excitable cells such as neurons. Impairment in the mitochondrial Ca2+ uptake through the mitochondrial Ca2+ uniporter (MCU) or release through the Na+/Ca2+ exchanger may lead to mitochondrial Ca2+ overload and opening of the permeability transition pore inducing neuronal death. Recent evidence suggests an important role for these mechanisms as the underlying causes for neuronal death in β-amyloid and tau pathology. The present review will focus on the mechanisms that lead to cytosolic and especially mitochondrial Ca2+ disturbances occurring in AD and tau-induced FTD, and propose possible therapeutic interventions for these disorders.
Collapse
|
57
|
Ruiz-Arias Á, Paredes JM, Di Biase C, Cuerva JM, Giron MD, Salto R, González-Vera JA, Orte A. Seeding and Growth of β-Amyloid Aggregates upon Interaction with Neuronal Cell Membranes. Int J Mol Sci 2020; 21:ijms21145035. [PMID: 32708806 PMCID: PMC7404110 DOI: 10.3390/ijms21145035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/22/2022] Open
Abstract
In recent years, the prevalence of amyloid neurodegenerative diseases such as Alzheimer's disease (AD) has significantly increased in developed countries due to increased life expectancy. This amyloid disease is characterized by the presence of accumulations and deposits of β-amyloid peptide (Aβ) in neuronal tissue, leading to the formation of oligomers, fibers, and plaques. First, oligomeric intermediates that arise during the aggregation process are currently thought to be primarily responsible for cytotoxicity in cells. This work aims to provide further insights into the mechanisms of cytotoxicity by studying the interaction of Aβ aggregates with Neuro-2a (N2a) neuronal cells and the effects caused by this interaction. For this purpose, we have exploited the advantages of advanced, multidimensional fluorescence microscopy techniques to determine whether different types of Aβ are involved in higher rates of cellular toxicity, and we measured the cellular stress caused by such aggregates by using a fluorogenic intracellular biothiol sensor. Stress provoked by the peptide is evident by N2a cells generating high levels of biothiols as a defense mechanism. In our study, we demonstrate that Aβ aggregates act as seeds for aggregate growth upon interacting with the cellular membrane, which results in cell permeability and damage and induces lysis. In parallel, these damaged cells undergo a significant increase in intracellular biothiol levels.
Collapse
Affiliation(s)
- Álvaro Ruiz-Arias
- Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071 Granada, Spain; (Á.R.-A.); (J.M.P.); (C.D.B.); (J.A.G.-V.)
| | - Jose M. Paredes
- Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071 Granada, Spain; (Á.R.-A.); (J.M.P.); (C.D.B.); (J.A.G.-V.)
| | - Chiara Di Biase
- Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071 Granada, Spain; (Á.R.-A.); (J.M.P.); (C.D.B.); (J.A.G.-V.)
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Juan M. Cuerva
- Departamento de Química Orgánica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva, 18071 Granada, Spain;
| | - María D. Giron
- Departamento de Bioquímica y Biología Molecular II, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071 Granada, Spain; (M.D.G.); (R.S.)
| | - Rafael Salto
- Departamento de Bioquímica y Biología Molecular II, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071 Granada, Spain; (M.D.G.); (R.S.)
| | - Juan A. González-Vera
- Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071 Granada, Spain; (Á.R.-A.); (J.M.P.); (C.D.B.); (J.A.G.-V.)
| | - Angel Orte
- Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071 Granada, Spain; (Á.R.-A.); (J.M.P.); (C.D.B.); (J.A.G.-V.)
- Correspondence: ; Tel.: +34-958243825
| |
Collapse
|